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1 Introduction


Questions about isotropy are at the core of the algebraic theory of quadratic
forms over fields. A natural and much studied field invariant in this context
is the so-called u-invariant of a field F of characteristic different from 2. For
a nonreal1 field F it is defined to be the supremum of the dimensions of
anisotropic finite-dimensional quadratic forms over F (see Section 2 for the
general definition of the u-invariant). The main purpose of the present article
is to give examples of fields having infinite u-invariant but not admitting any
anisotropic infinite-dimensional quadratic space.


A quadratic space over the field F is a pair (V, q) of a vector space V over
F together with a map q : V −→ F such that


1For brevity’s sake, we use the term ‘real field’ to denote what many authors call
‘formally real field’.
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• q(λx) = λ2q(x) for all λ ∈ F , x ∈ V , and


• the map bq : V × V −→ F defined by bq(x, y) = q(x + y)− q(x)− q(y)
(x, y ∈ V ) is F -bilinear.2


If V has finite dimension n, we may identify (after fixing a basis of V ) the
quadratic space (V, q) with a form (a homogeneous polynomial) of degree
2 in n variables. By this identification, we will also call (V, q) a quadratic
form over F if dim V < ∞. Recall that a quadratic space (V, q) is said to be
isotropic, if there exists x ∈ V \ {0} such that q(x) = 0; otherwise, (V, q) is
said to be anisotropic.


Assume now that the quadratic space (V, q) over F is anisotropic. For
any positive integer n ≤ dim(V ), we may choose an n-dimensional subspace
Vn of V and consider the restriction qn of q to Vn; in this way we obtain an
n-dimensional quadratic form (Vn, qn) which is obviously again anisotropic.
By this simple argument, we see that if there is an anisotropic quadratic
space over F of infinite dimension, then there exist anisotropic quadratic
forms over F of dimension n for all n ∈ N.


While this observation is rather trivial, it motivates us to examine the
converse statement. If we assume that the field F has anisotropic quadratic
forms of arbitrarily large finite dimensions, does this imply the existence of
some anisotropic quadratic space (V, q) over F of infinite dimension? As
already mentioned in the beginning, this is generally not so.


It appears that originally this question has been formulated by Herbert
Gross. He concludes the introduction to his book ‘Quadratic forms in infinite-
dimensional vector spaces’ [12] (that appeared 1979) by the following sample
of ‘a number of pretty and unsolved problems’ in this area, which we state in
his terms (cf. [12], p. 3; here, it is assumed that the characteristic is different
from 2):


1.1 Question (Gross). Is there any commutative field which admits no
anisotropic ℵ0-form but which has infinite u-invariant, i.e. admits, for each
n ∈ N, some anisotropic form in n variables?


Note that implicitly, Gross is looking for a nonreal field, i.e. a field where
−1 is a sum of squares; for over a real field anisotropic quadratic spaces of
infinite dimension do always exist. Indeed, one observes (or one may take it


2Often, one puts a factor 1/2 in front on the right hand side of the equation, which
then readily establishes the fact that quadratic and bilinear forms in characteristic not 2
are equivalent concepts. The omission has no bearing on what we will do in characteristic
different from 2, but it allows us to also work in characteristic 2 where there is a difference
in the concepts of quadratic and bilinear forms, see section 5.
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as a definition) that the field F is real if and only if the infinite-dimensional
quadratic space (V, q) given by V = k(N) and q : V −→ k, (xi) 7−→ ∑


x2
i is


anisotropic.
By restricting to those quadratic spaces that are totally indefinite (i.e.


indefinite with respect to every field ordering), we obtain a meaningful ana-
logue of the Gross Question, to which we can equally provide a solution.


Of course, one may place the Gross Question also in the context of charac-
teristic 2; there, however, one has to distinguish between bilinear forms and
quadratic forms. When considering quadratic forms, one furthermore has to
distinguish the case of nonsingular forms from the case where one allows ar-
bitrary quadratic forms. The analogue to the Gross Question for nonsingular
quadratic forms in characteristic 2 can be treated in more or less the same
way as in characteristic not 2, simply by invoking suitable characteristic 2
analogues of the results that we use in our proofs in the case of characteristic
different from 2. Yet, if translated to bilinear forms or to arbitrary quadratic
forms (possibly singular) in characteristic 2, it is not difficult to show that
the Gross Question has in fact a negative answer, in other words, the ‘bi-
linear’ resp. ‘general quadratic’ u-invariant is infinite if and only if there exist
infinite-dimensional anisotropic bilinear resp. quadratic spaces.


The paper is structured as follows. In the next section, we are going to
discuss in more detail the u-invariant of a field and some related concepts.
In Section 3 we will give two different constructions of nonreal fields, each
giving a positive answer to the Gross Question.


All our constructions will be based on Merkurjev’s method where one
starts with an arbitrary field of characteristic different from 2 and then uses
iterated extensions obtained by composing function fields of quadrics to pro-
duce an extension with the desired properties. Our first construction will
show the following:


1.2 Theorem I. Let F be a field of characteristic different from 2. There
exists a field extension K/F with the following properties:


(i) K has no finite extensions of odd degree.


(ii) For any binary quadratic form β over K, there is an upper bound on
the dimensions of anisotropic quadratic forms over K that contain β.


(iii) For any k ∈ N, there is an anisotropic k-fold Pfister form over K.


In particular, K is a perfect, nonreal field of infinite u-invariant, IkK 6= 0 for
all k ∈ N, and any infinite-dimensional quadratic space over K is isotropic.
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Here and in the sequel, IkF stands for the kth power of IF , the funda-
mental ideal consisting of classes of even-dimensional forms in the Witt ring
WF of F .


The proof of this theorem only uses some basic properties of Pfister forms
and standard techniques from the theory of funcion fields of quadratic forms.
Varying this construction and using this time products of quaternion algebras
and Merkurjev’s index reduction criterion (see [24] or [38], Théorème 1), we
will then show the following:


1.3 Theorem II. Let F be a field of characteristic different from 2. There
exists a field extension K/F with the following properties:


(i) K has no finite extensions of odd degree and I3K = 0.


(ii) For any binary quadratic form β over K, there is an upper bound on
the dimensions of anisotropic quadratic forms over K that contain β.


(iii) For any k ∈ N, there is a central division algebra over K that is de-
composable into a tensor product of k quaternion algebras.


In particular, K is a nonreal field of infinite u-invariant, and any infinite-
dimensional quadratic space over K is isotropic. Furthermore, K is perfect
and of cohomological dimension 2.


In Section 4, we will show two analoguous theorems for real fields.


1.4 Theorem III. Assume that F is real. Then there exists a field extension
K/F with the following properties:


(i) K has a unique ordering.


(ii) K has no finite extensions of odd degree and I3K is torsion free.


(iii) For any totally indefinite quadratic form β over K, there is an upper
bound on the dimensions of anisotropic quadratic forms over K that
contain β.


(iv) For any k ∈ N, there is a central division algebra over K that is de-
composable into a tensor product of k quaternion algebras.


In particular, K is real field of infinite u-invariant, and any totally indefi-
nite quadratic space of infinite dimension over K is isotropic; moreover, the
cohomological dimension of K(


√
−1) is 2.
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While this can be seen as a counterpart to Theorem II for real fields, we
can also prove an analogue of Theorem I in this situation.


1.5 Theorem IV. Assume that F is real. Then there exists a field extension
K/F with the following properties:


(i) K has a unique ordering.


(ii) K has no finite extensions of odd degree.


(iii) For any totally indefinite quadratic form β over K, there is an upper
bound on the dimensions of anisotropic quadratic forms over K that
contain β.


(iv) for any k ∈ N, there is an element a ∈ K× which is a sum of squares
in K, but not a sum of k squares.


In particular, K is a real field for which the Pythagoras number, the Hasse
number, and the u-invariant are all infinite, the torsion part of IkK is
nonzero for all k ∈ N, and any totally indefinite quadratic space of infinite
dimension over K is isotropic.


In Section 5, we will discuss the Gross Question for quadratic, nonsingu-
lar quadratic and symmetric bilinear forms in characteristic 2. As already
mentioned, for nonsingular quadratic forms, we obtain similar results as in
characteristic different from 2, whereas for arbitrary quadratic forms and for
symmetric bilinear forms the answer turns out to be negative.


In the final Section 6, we discuss an abstract version of the Gross Ques-
tion, formulated for an arbitrary monöıd together with two subsets satisfying
some requirements. We give examples of such monöıds whose elements are
well known objects associated to an arbitrary field, such as central simple al-
gebras or symbols in Milnor K-theory modulo a prime p. In some of the cases
that we shall discuss, the answer to (the analogue of) the Gross Question will
be positive, in others it will be negative.


For all prerequisites from quadratic form theory in characteristic differ-
ent from 2 needed in the sequel, we refer to the books of Lam and Scharlau
(see [20], [21] and [34]). In general, we use the standard notations intro-
duced there. However, we use a different sign convention for Pfister forms:
Given a1, . . . , ar ∈ F×, we write 〈〈a1, . . . , ar〉〉 for the r-fold Pfister form
〈1,−a1〉 ⊗ · · · ⊗ 〈1,−ar〉. If ϕ is a quadratic form over F and n ∈ N, we de-
note by n × ϕ the n-fold orthogonal sum ϕ ⊥ · · · ⊥ ϕ. Given two quadratic
forms ϕ and ψ over F , we write ψ ⊂ ϕ to indicate that ψ is a subform of ϕ,
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in other words, that there exists another quadratic form τ over F such that
ϕ ∼= ψ ⊥ τ .


A quadratic space (V, q) is said to be nonsingular if the radical


Rad(V, q) = {x ∈ V | bq(x, y) = 0 for all y ∈ V }


is reduced to 0. Anisotropic quadratic spaces in characteristic different from
2 are obviously always nonsingular, but this need not be so in characteristic
2.


Unless stated otherwise, the terms ‘form’ or ‘quadratic form’ will always
stand for ‘nonsingular quadratic form’. A binary form is a 2-dimensional
quadratic form.


We recall the definition of the function field F (ϕ) associated to a nonsin-
gular quadratic form ϕ over F in characteristic different from 2. If dim(ϕ) ≥ 3
or if dim(ϕ) = 2 and ϕ is anisotropic, then F (ϕ) is the function field of the
projective quadric given by the equation ϕ = 0. We put F (ϕ) = F if ϕ is
the hyperbolic plane or if dim(ϕ) ≤ 1. We refer to [34], Chapter 4, §5, or
[21], Chapter X, for the crucial properties of function field extensions. They
will play a prominent rôle in all our constructions.


Let K/F be an arbitrary field extension. If ϕ is a quadratic form over
F , then we denote by ϕK the quadratic form over K obtained by scalar
extension from F to K. Similarly, given an F -algebra A, we write AK for
the K-algebra A ⊗F K. Central simple algebras are by definition finite-
dimensional. A central simple algebra without zero-divisors will be called a
‘division algebra’ for short. For the basics about central simple algebras and
the Brauer group of a field, the reader is referred to [34], Chapter 8, or [31],
Chapters 12-13.


2 The u-invariant and its relatives


In this section, all fields are assumed to be of characteristic different from 2.
The question about the existence of an anisotropic infinite-dimensional


quadratic space over the field F can be rephrased within the framework of
finite-dimensional quadratic form theory, as we shall see now.


We call a sequence of quadratic forms (ϕn)n∈N over F a chain of quadratic
forms over F if, for any n ∈ N, we have dim(ϕn) = n and ϕn ⊂ ϕn+1. Given
such a chain (ϕn)n∈N over F , the direct limit over the quadratic spaces ϕn


with the appropriate inclusions has itself a natural structure of a nonsingular
quadratic space over F of dimension ℵ0 (countably infinite). We denote this
quadratic space over F by limn∈N(ϕn) and observe that it is anisotropic if and
only if ϕn is anisotropic for all n ∈ N. Moreover, any infinite-dimensional
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nonsingular quadratic space over F contains a subspace isometric to the
direct limit limn∈N(ϕn) for some chain (ϕn)n∈N.


From these considerations we conclude:


2.1 Proposition. There exists an anisotropic quadratic space of infinite di-
mension over F if and only if there exists a chain of anisotropic quadratic
forms (ϕn)n∈N over F .


Recall that a form ϕ is torsion if n × ϕ is hyperbolic for some n ≥ 1. In
[9], Elman and Lam defined the u-invariant of F as


u(F ) = sup {dim(ϕ) | ϕ is an anisotropic torsion form over F} .


Here, ‘torsion’ means that the Witt class of ϕ is a torsion element in the
Witt ring WF . It is well known that if F is nonreal, then any form over F
is torsion, hence the above supremum is actually taken over all anisotropic
forms over F in this case. If F is real, then Pfister’s Local-Global Principle
says that torsion forms are exactly those forms that have signature zero with
respect to each ordering of F (i.e. that are hyperbolic over each real closure
of F ). In the remainder of this section, we are mainly concerned with nonreal
fields.


It will be convenient to consider also the following relative u-invariants.
Given an anisotropic quadratic form ϕ over F , we define


u(ϕ, F ) = sup {dim(ψ) | ψ anisotropic form over F with ϕ ⊂ ψ} .


Note that, trivially, dim(ϕ) ≤ u(ϕ, F ). If F is nonreal, we further have that
u(ϕ, F ) ≤ u(F ). Moreover, if ϕ1 and ϕ2 are anisotropic forms over F such
that ϕ1 ⊂ ϕ2, then u(ϕ1, F ) ≥ u(ϕ2, F ).


We introduce now the derived u-invariant of F as


u′(F ) = sup {dim(ϕ) | ϕ anisotropic form over F with u(ϕ, F ) = ∞}.
Whenever there exists an anisotropic form ϕ over F with u(ϕ, F ) = ∞, we
have u′(F ) > 0; if no such forms exist, we put u′(F ) = sup ∅ = 0.


2.2 Proposition. If there exists an infinite-dimensional quadratic space over
F , then u′(F ) = ∞.


Proof: Assume that there exists an infinite-dimensional quadratic space
over F which is anisotropic. Then there is also a chain (ϕn)n∈N of anisotropic
forms over F . Now we have certainly u(ϕn, F ) = ∞ for any n ∈ N, and this
implies that u′(F ) = ∞. ¤


In particular, the proposition shows that u′(F ) = ∞ if F is a real field.
Certainly, one could modify the definition of u′ to make this invariant more
interesting for real fields, but we will not pursue this matter here.
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2.3 Proposition. Assume that F is nonreal. Then u(F ) is finite if and only
if u′(F ) = 0.


Proof: Obviously one has u(F ) = u(ρ, F ) for any 1-dimensional form ρ over
F . So, if u(F ) = ∞, then u(ρ, F ) = ∞ for ρ = 〈1〉, and thus u′(F ) ≥ 1.
On the other hand, if u(F ) < ∞, then there is no anisotropic form ϕ over F
such that u(ϕ, F ) = ∞, and therefore u′(F ) = 0. ¤


By the last two statements, any nonreal field F such that 0 < u′(F ) < ∞
will provide an example which answers the Gross Question in the positive.
Now, Theorem I and Theorem II each say that nonreal fields K with u′(K) =
1 do exist.


2.4 Lemma. For the field F ((t)) of Laurent series in the variable t over F ,
one has


u′(F ((t)) ) = 2 u′(F ) .


Proof: The straightforward proof is based on the well known relationship
between the quadratic forms over F and over F ((t)) (see [20], Chapter VI,
Proposition 1.9). The details are left to the diligent reader. ¤


Using this lemma together with the theorems mentioned in the introduc-
tion, one has the following result.


2.5 Corollary. Let m ∈ N. Then there exists a nonreal field L such that
u′(L) = 2m. Moreover, L can be constructed such that in addition Im+3L = 0,
or IrL 6= 0 for all r ∈ N, respectively.


Proof: Theorem I or Theorem II, respectively, asserts the existence of such
fields for m = 0. The induction step from m to m+1 is clear from the above
lemma. ¤


This raises the following question.


2.6 Question. Does there exist a nonreal field F with u′(F ) = ∞ such that
every infinite-dimensional quadratic space over F is isotropic?


3 Nonreal fields with infinite u-invariant


Throughout this section, all fields are assumed to be of characteristic different
from 2.


We are going to give a construction, in several variants, which allows us
to prove the theorems formulated in the introduction. The proof that the
field obtained by this construction has infinite u-invariant will be based on
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known facts about the preservation of properties such as anisotropy of a fixed
quadratic form, or absence of zero-divisors in a central simple algebra, under
certain types of field extensions.


First, we consider a finite field extension K/F of odd degree. Springer’s
Theorem (see [20], Chapter VII, Theorem 2.3) says that any anisotropic
quadratic form over F stays anisotropic after scalar extension from F to K.
One can immediately generalise this to ‘odd’ algebraic extensions that are
not necessarily finite.


For the following definition we allow the case where F has characteristic
2, for later reference. Note that Springer’s Theorem is independent of the
characteristic of F .


An algebraic extension L/F is called an odd closure of F if L is F -
isomorphic to MG, where M is an algebraic (resp. separable) closure of
F if char(F ) 6= 2 (resp. char(F ) = 2), and G is a 2-Sylow subgroup of
the Galois group of M/F . Then L itself has no odd degree extension and
all finite subextensions of F inside L are of odd degree. In particular, L is
perfect if char(F ) 6= 2. We call a field extension K/F an odd extension if it
can be embedded into an odd closure of F . In this case, K/F is algebraic,
thus equal to the direct limit of its finite subextensions, which are all of odd
degree.


Using Springer’s Theorem, we readily obtain:


3.1 Lemma. Let K/F be an odd extension. Then any anisotropic form over
F stays anisotropic over K.


Springer’s Theorem has an analogue in the theory of central simple alge-
bras. It says that if D is a (central) division algebra over F with exponent
equal to a power of 2 and if K/F is a finite field extension of odd degree,
then the K-algebra DK = D⊗F K is also a division algebra (see [31], Section
13.4, Proposition (vi)). Therefore, we obtain in the same way as above:


3.2 Lemma. Let K/F be an odd extension. Then any central division alge-
bra of exponent 2 over F remains a division algebra after scalar extension to
K.


We now turn to extensions of the type F (ϕ)/F , where F (ϕ) is the function
field of a quadratic form ϕ over F .


3.3 Lemma. Let π be an anisotropic Pfister form over F and ϕ a form over
F with dim(ϕ) > dim(π). Then π stays anisotropic over F (ϕ).
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Proof: By the assumption on the dimensions, ϕ is certainly not similar to
any subform of π. Therefore, by [34], Theorem 4.5.4 (ii), πF (ϕ) is not hyper-
bolic. Hence πF (ϕ) is anisotropic as it is a Pfister form (see [34], Lemma
2.10.4). ¤


3.4 Remark. The statement of the last lemma is actually a special case
of a more general phenomenon. Let ϕ and π be anisotropic forms over F
such that, for some n ∈ N, one has dim(π) ≤ 2n < dim(ϕ). Then π stays
anisotropic over F (ϕ) (see [14]). In the particular situation where π is an
n-fold Pfister form, we immediately recover (3.3).


The next statement was the key in Merkurjev’s construction of fields of ar-
bitrary even u-invariant (see [24]). It is readily derived from [38], Théorème 1.


3.5 Theorem (Merkurjev). Let D be a division algebra over F of exponent
2 and degree 2m, where m > 0. Let ϕ be a quadratic form over F such that
dim(ϕ) > 2m + 2 or ϕ ∈ I3F . Then DF (ϕ) is a division algebra.


3.6 Remark. Statements analoguous to (3.1) and (3.2) hold for purely
transcendental extensions. More precisely, if the field extension K/F is
purely transcendental, then every anisotropic quadratic form over F stays
anisotropic over K and every division algebra over F extends to a division
algebra over K. We will use this fact repeatedly, especially in the case where
K is the function field of an isotropic quadratic form over F . Indeed, if a
quadratic form ϕ over F is isotropic, then F (ϕ)/F is purely transcendental
of transcendence degree dim(ϕ) − 2 (see [34], 4.5.2 (vi)).


We are now ready for the proofs of the first two theorems formulated in
the introduction.


3.7 Proof of Theorem I.


Recall that F is an arbitrary field of characteristic different from 2. We define
recursively a tower of fields (Fn)n∈N, starting with F0 = F . Suppose that for
a certain n ≥ 1 the field Fn−1 has already been defined. Let F#


n−1 be an odd
closure of Fn−1 and let


F
(n)
n−1 = F#


n−1(X
(n)
1 , . . . , X(n)


n )


where X
(n)
1 , . . . , X


(n)
n are indeterminates over F#


n−1. We define Fn as the free


compositum3 of all the function fields F
(n)
n−1(ϕ) where ϕ is an anisotropic form


3See [21], p. 333, for a precise description of the notion of ‘free compositum’ of a family
of function fields of quadratic forms.
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defined over Fn−1 such that, for some j < n, ϕ contains a binary form defined
over Fj and dim(ϕ) = 2j + 1.


Let K be the direct limit of the tower of fields (Fn)n∈N. We are going to
show that the field K has the following properties:


(i) K has no finite extensions of odd degree.


(ii) For any binary quadratic form β over K, there is an upper bound on
the dimensions of anisotropic quadratic forms over K that contain β.


(iii) For any k ∈ N, there is an anisotropic k-fold Pfister form over K.


Once these are established the remaining claims in Theorem I will follow.
Indeed, (ii) implies that every infinite-dimensional quadratic space over K
is isotropic and that K is nonreal, whereas (iii) implies that u(K) = ∞ and
that IkK 6= 0 for all k ∈ N. Finally, since char(K) = char(F ) 6= 2, it follows
from (i) that K is perfect.


(i) Consider an irreducible polynomial f over K of odd degree. Then
f is defined over Fn for some n ∈ N. Since K contains Fn+1 which in turn
contains an odd closure of Fn, it follows that f has degree one. This shows
that K is equal to its odd closure.


(ii) Consider an anisotropic binary form β over K. There is some j ∈ N


such that β is defined over Fj. Let ϕ be a form of dimension 2j + 1 over
K containing β. Let n > j be an integer such that ϕ is defined over Fn−1.


Then by construction, Fn contains F
(n)
n−1(ϕ) and ϕ is therefore isotropic over


Fn and thus over K. This shows that u(β, K) ≤ 2j . Here, j depends on the
binary form β, but in any case we have that u(β, K) is finite, proving (ii).


(iii) Given positive integers n and j, we write Fn,j for the compositum
of Fn with the algebraic closure of Fj inside a fixed algebraic closure of K.


Similarly, we write F#
n−1,j and F


(n)
n−1,j , for the compositum of F#


n−1, F
(n)
n−1,


respectively, with the algebraic closure of Fj .
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Fn,j


k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k


Fn


compositum


F
(n)


n−1,j


l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l


F
(n)


n−1


purely transc.


F #
n−1,j


k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k


F #
n−1


odd


Fn−1,j


k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k


Fn−1


Let us assume from now on that n > j. Note that F
(n)
n−1,j is equal to


F#
n−1,j(X


(n)
1 , . . . , X


(n)
n ), which is a purely transcendental extension of F#


n−1,j.


Further, F#
n−1,j is an odd extension of Fn−1,j . Using (3.1), it follows that


every anisotropic form over Fn−1,j stays anisotropic over F#
n−1,j , hence also


over F
(n)
n−1,j. Moreover, Fn,j is obtained from F


(n)
n−1,j as a free compositum of


certain function fields F
(n)
n−1,j(ϕ) where ϕ is a form defined over F


(n)
n−1,j which


is either of dimension at least 2j+1+1 or which contains a binary form defined
over Fj and thus is isotropic over F


(n)
n−1,j .


Consider now an anisotropic m-fold Pfister form π defined over F
(n)
n−1,j,


where m ≤ j + 1. Using (3.3) and (3.6) it follows, that π stays anisotropic


over Fn,j , again by (3.6). But then π stays anisotropic over F
(n+1)
n,j as well.


Repeating this, we see that π stays anisotropic over all the fields Fn,j when
j is fixed and n increases.


Let now k be any positive integer. Let π denote the k-fold Pfister form
〈〈X(k)


1 , . . . , X
(k)
k 〉〉. This form is defined over F


(k)
k−1. Since X


(k)
1 , . . . , X


(k)
k are


algebraically independent over Fk−1, hence also over its algebraic closure
Fk−1,k−1 = F#


k−1,k−1, we know that π is still anisotropic when considered as


a form over the field F
(k)
k−1,k−1 = F#


k−1,k−1(X
(k)
1 , . . . , X


(k)
n ). Now the above


argument shows that, for any n ≥ k, the form π is anisotropic over Fn,k−1


and, thus, over Fn. This implies that π is anisotropic over K, the direct limit
of the fields Fn.


Hence we showed that for any k ∈ N, there exists an anisotropic k-fold
Pfister form over K.
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3.8 Proof of Theorem II.


Again, we define recursively a tower of fields (Fn)n∈N, starting with F0 = F .
Suppose that for a certain n ≥ 1, the field Fn−1 is defined. As before, let
F#


n−1 denote an odd closure of Fn−1. This time we define


F
(n)
n−1 = F#


n−1( X
(n)
1 , Y


(n)
1 , . . . , X(n)


n , Y (n)
n )


where X
(n)
1 , Y


(n)
1 , . . . , X


(n)
n , Y


(n)
n are indeterminates over F#


n−1. Let Fn denote


the free compositum of the function fields F
(n)
n−1(ϕ) where ϕ is an anisotropic


form over Fn−1 such that


• ϕ is a 3-fold Pfister form, or


• dim(ϕ) = 2j + 3 for some j < n and ϕ contains a binary form defined
over Fj .


Let K be the direct limit of the tower of fields (Fn)n∈N. We want to show
that K has the following properties:


(i) K has no finite extensions of odd degree and I3K = 0.


(ii) For any binary quadratic form β over K, there is an upper bound on
the dimensions of anisotropic quadratic forms over K which contain β.


(iii) For any k ∈ N, there is a central division algebra over K that is de-
composable into a tensor product of k quaternion algebras.


Note that (iii) implies that u(K) = ∞ (see [24] or [28], Lemma 1.1(d)), while
(ii) excludes the possibility that there is an infinite-dimensional anisotropic
quadratic space over K. As before, the field K is perfect by (i) and nonreal
by (iii). Furthermore, (i) and (iii) together imply that the cohomological
dimension of K is exactly 2 (see [24]).


(i) As in the proof of Theorem I, we see that K has no finite extensions
of odd degree.


Let π be an arbitrary 3-fold Pfister form over K. It is defined as a 3-fold
Pfister form over Fn−1 for some n ≥ 1. By the construction of the field Fn,
π becomes isotropic over Fn and thus over K. Hence, every 3-fold Pfister
form over K is isotropic and therefore hyperbolic. Since I3K is additively
generated by the 3-fold Pfister forms over K (see [34], p. 156), we conclude
that I3K = 0.


(ii) Let β be an anisotropic binary form over K. There is an integer
j ∈ N such that β is defined over Fj . Let ϕ be any form of dimension 2j + 3
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over K containing β. There is some integer n > j such that ϕ is defined over
Fn−1. Since F#


n−1(ϕ) is part of the compositum Fn, ϕ becomes isotropic over
Fn and thus over K. Therefore u(β, K) ≤ 2j + 2, establishing (ii).


(iii) For positive integers n and j, we denote by Fn,j, F#
n−1,j, F


(n)
n−1,j the


composita of the fields Fn, F#
n−1, F


(n)
n−1, respectively, with the algebraic closure


of Fj inside a fixed algebraic closure of K.
Assume from now on that n > j. Similarly as in the proof of Theorem


I, we have that F
(n)
n−1,j is equal to F#


n−1,j(X
(n)
1 , Y


(n)
1 , . . . , X


(n)
n , Y


(n)
n ), a purely


transcendental extension of F#
n−1,j, which in turn is an odd extension of Fn−1,j.


Using (3.2) and (3.6), it follows that every division algebra of exponent 2 over


Fn−1,j remains a division algebra after scalar extension to F
(n)
n−1,j .


Moreover, Fn,j is obtained from F
(n)
n−1,j as a free compositum of certain


function fields F
(n)
n−1,j(ϕ) where ϕ is a form defined over F


(n)
n−1,j which is either


a 3-fold Pfister form, or which has dimension at least 2j+3, or which contains
a binary form defined over Fj and thus is isotropic over F


(n)
n−1,j. Hence, by


Merkurjev’s Criterion (3.5) and by (3.6), any division algebra over F
(n)
n−1,j of


exponent 2 and of degree at most 2j remains a division algebra after scalar
extension to the field Fn,j.


Consider now a central simple algebra D of exponent 2 and degree 2j


over F
(j)
j−1 for some j ∈ N. Assume that for some n > j, the algebra D


will stay a division algebra after extending scalars to F
(n)
n−1,j . Combining the


observations above, we see that D also remains a division algebra when we
extend scalars to Fn,j, or even to F


(n+1)
n,j . Repeating this argument shows


that D will stay a division algebra after scalar extension to F
(N)
N−1,j for any


N ≥ n.
Let now k be a positive integer and let D denote the tensor product


of quaternion algebras (X
(k)
1 , Y


(k)
1 ) ⊗ · · · ⊗ (X


(k)
k , Y


(k)
k ) over the field F


(k)
k−1.


This is a central simple algebra over F
(k)
k−1 of degree 2k and of exponent 2.


Since X
(k)
1 , Y


(k)
1 , . . . , X


(k)
k , Y


(k)
k are algebraically independent over the field


Fk−1, hence also over its algebraic closure Fk−1,k−1 = F#
k−1,k−1, it follows that


D
F


(k)
k−1,k−1


is a division algebra over the field F
(k)
k−1,k−1. Now the argument


above applies, showing that DFn,k−1
is a division algebra over Fn,k−1 for any


n ≥ k. But then DFn
is a division algebra for any n ≥ k, implying that the


tensor product of k quaternion algebras DK is a division algebra over K.


3.9 Remark. At first glance, it may seem that the fields K constructed in the
proofs of the theorems are horrendously big. However, a closer inspection
of the proofs reveals that if the field F we start with is infinite, the field
K obtained by the construction will have the same cardinality as F . For
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example, if we start with F = Q, then the field K we end up with is countable
and thus can be embedded into C.


4 Real fields and totally indefinite spaces


In our answer to the Gross Question, we had to construct a field F which
in particular has the property that all infinite-dimensional quadratic spaces
over F are isotropic. A real such field cannot exist as mentioned previously.
In fact, for a quadratic space ϕ (of finite or infinite dimension) over a real
field F to be isotropic, a necessary condition is that ϕ be totally indefinite,
i.e. indefinite with respect to each ordering. To get a meaningful analogue
to the Gross Question in the case of real fields, it is therefore reasonable to
restrict our attention to quadratic spaces that are totally indefinite. We start
this section with the definition of this notion and some general observations
before proving the ‘real’ analogues to the constructions that answer the Gross
Question.


We consider an ordering P on F and denote by <P the corresponding
order relation on F . A quadratic space (V, q) over F is said to be indefinite at
P , if there exist elements v1, v2 ∈ V such that q(v1) <P 0 <P q(v2). If (V, q) is
indefinite at every ordering of F , then we say that (V, q) is totally indefinite.
Note that this definition of (total) indefiniteness extends the common one
for quadratic forms.


The Hasse number ũ of F is defined by


ũ(F ) = sup {dim(ϕ) | ϕ anisotropic, totally indefinite form over F} .


Since any nontrivial torsion form is obviously totally indefinite, one has
u(F ) ≤ ũ(F ). On the other hand, there are examples of real fields F where
u(F ) < ∞ while ũ(F ) = ∞. For a survey on the possible pairs of values
(u(F ), ũ(F )), we refer to [15].


In view of Theorem IV, we recall that the Pythagoras number p(F ) of
F is the least integer m ≥ 1 such that every sum of squares is a sum of m
squares in F if such an m exists, otherwise p(F ) = ∞. It is well known and
not difficult to see that if p(F ) = ∞, then also u(F ) = ũ(F ) = ∞, and if
u(F ) > 0 then p(F ) ≤ u(F ).


The following observation is useful when dealing with infinite-dimensional
totally indefinite quadratic spaces.


4.1 Proposition. Every totally indefinite quadratic space over F contains a
finite-dimensional, nonsingular, totally indefinite quadratic subspace.
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Proof: Let (V, q) be a totally indefinite quadratic space over F . We may
assume (V, q) nonsingular. If (V, q) is isotropic then it contains a hyperbolic
plane which yields the desired subspace. Hence, we may assume that (V, q)
is anisotropic. In particular, any subspace of (V, q) is nonsingular. After
scaling we may furthermore assume that there exists a vector v0 ∈ V with
q(v0) = 1. Since (V, q) is totally indefinite, for each ordering P there exists
a vector vP ∈ V such that q(vP ) <P 0.


Recall that the set of all orderings of F , denoted by XF , is a compact
topological space that has as a subbasis the clopen sets


H(a) = {P ∈ XF | a ∈ P}
(see [32], Theorem 6.5). We put aP = q(vP ) for every P ∈ XF . The above
choice of the family (vP )P∈XF


⊂ F implies that XF =
⋃


P∈XF
H(−aP ).


The compactness of XF thus yields that there are finitely many orderings
P1, . . . , Pn ∈ XF such that


XF = H(−aP1) ∪ · · · ∪ H(−aPn
).


We put vi = vPi
for 1 ≤ i ≤ n. By the last equality, for each ordering P of


F we have q(vi) <P 0 for at least one i ∈ {1, . . . , n}.
Let W be the subspace of V generated by the vectors v0, v1, . . . , vn. Then


it follows that (W, q) is an anisotropic, finite-dimensional, totally indefinite
subspace of (V, q). ¤


Recall that any ordering P of F can be extended to the odd closure of F
as well as to any purely transcendental extension of F . From [10], Theorem
3.5, Remark 3.6, we cite the following simple criterion for when an ordering
can be extended to the function field of a given quadratic form.


4.2 Lemma. Let P be an ordering of F and let {ϕi} be any family of
quadratic forms over F of dimension at least 2. Then P can be extended
to the free compositum of the F (ϕi) if and only if each ϕi is indefinite at P .


We are now going to modify the constructions presented in the last section
and prove the remaining two theorems formulated in the introduction.


4.3 Proof of Theorem III.


This time, we construct a tower of fields with orderings (Fn, Pn)n∈N, where
the ordering Pn+1 on Fn+1 extends the ordering Pn on Fn for all n. Let
F0 = F and let P0 be any ordering of this field. Suppose now that the pair
(Fn−1, Pn−1) has been defined for a certain n ≥ 1. Let F#


n−1 denote an odd


closure of Fn−1 and let P#
n−1 be any ordering on F#


n−1 extending Pn−1. Let


F
(n)
n−1 = F#


n−1(X
(n)
1 , Y


(n)
1 , . . . , X(n)


n , Y (n)
n )
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where X
(n)
1 , Y


(n)
1 , . . . , X


(n)
n , Y


(n)
n are indeterminates over F#


n−1. Let P
(n)
n−1 be


any ordering on F
(n)
n−1 extending P#


n−1. Let now Fn be the free compositum


of the function fields F
(n)
n−1(ϕ) where ϕ is an anisotropic form over Fn−1 such


that


• ϕ is a 3-fold Pfister form and indefinite at Pn−1, or


• dim(ϕ) = 2j + 3 for some j < n, and ϕ contains a binary form defined
over Fj and indefinite at Pj .


Note that considered as forms over F
(n)
n−1 and by the construction of our


orderings, all the above forms are in fact totally indefinite at P
(n)
n−1. By (4.2),


the ordering P
(n)
n−1 extends to an ordering Pn on Fn. In particular, Fn is a


real field.
Note that, for any 2-fold Pfister form ρ over Fn−1 and any a ∈ Fn−1, at


least one of the 3-fold Pfister forms ρ ⊗ 〈〈a〉〉 and ρ ⊗ 〈〈−a〉〉 is indefinite at
Pn−1 and thus becomes hyperbolic over Fn by the construction of this field.


Let K be the direct limit of the tower of fields (Fn)n∈N. We will show
that K has the following properties:


(i) K has a unique ordering.


(ii) K has no finite extensions of odd degree and I3K is torsion free.


(iii) For any totally indefinite quadratic form β over K, there is an upper
bound on the dimensions of anisotropic quadratic forms over K that
contain β.


(iv) For any k ∈ N, there is a central division algebra over K that is de-
composable into a tensor product of k quaternion algebras.


Once these properties of K are established, the remaining claims in Theorem
III are immediate consequences:


• K is a real field and by (iii) and (4.1), every infinite-dimensional anisot-
ropic quadratic space over K is definite with respect to the unique
ordering.


• (i) implies that K is SAP (see, e.g., [32], § 9, for the definition of and
some facts about SAP), I3K is torsion free, and (iv) implies that the
symbol length λ(K) of K is infinite. (Recall that the symbol length
λ(K) is the smallest m ∈ N such that each central simple algebra
of exponent 2 over K is Brauer equivalent to a tensor product of at
most m quaternion algebras provided such an integer exists, otherwise
λ(K) = ∞.) It follows from [15], Theorem 1.5, that u(K) = ∞.
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• (i) and (ii) imply that the cohomological dimension of K(
√
−1) is at


most 2. That it is exactly 2 then follows from (iv).


We now proceed to the proof of (i)–(iv).


(i) Since all the fields Fn (n ∈ N) are real, the same holds for K. It
follows from what we observed during the construction above that, for any
a ∈ K×, one of the forms 〈〈−1,−1, a〉〉 and 〈〈−1,−1,−a〉〉 is hyperbolic over
K, which means that either a or −a is a sum of (four) squares in K. This
shows that K is uniquely ordered. It is clear that the unique ordering on K
is the direct limit of the orderings Pn.


(ii) There is no change — compared to the previous constructions — in
the argument that K has no finite extensions of odd degree.


The torsion subgroup of I3K is generated by those 3-fold Pfister forms
over K that are torsion. Indeed, this is a general fact (see [2], Corollary 2.7)
which, however, could be proven very easily in our particular situation where
K is uniquely ordered.


Let π be any torsion 3-fold Pfister form over K. Then π is defined as a
3-fold Pfister form over Fn−1 for some n ≥ 1. Since the unique ordering on
K extends the ordering Pn−1 on Fn−1, it follows that π (considered as 3-fold
Pfister form over Fn−1) is indefinite at Pn−1. The construction of Fn then
yields that π becomes isotropic and hence hyperbolic over Fn. Therefore, π
is hyperbolic over K. This shows that I3K is torsion free.


(iii) Since K has a unique ordering, every (totally) indefinite form over
K contains an indefinite binary subform. Hence, (iii) needs only to be proven
for binary indefinite forms β. The proof goes along the same lines as that of
(ii) in Theorem II.


(iv) This part is identical to the corresponding part (iii) in the proof of
Theorem II.


4.4 Proof of Theorem IV.


Again, we define a tower of ordered fields (Fn, Pn)n∈N where the ordering
Pn+1 on Fn+1 extends the ordering Pn on Fn for all n.


Let F0 be the given real field F and P0 any ordering of this field. Suppose
that for a certain n ≥ 1 the pair (Fn−1, Pn−1) is already defined. Let F#


n−1 be


an odd closure of Fn−1 and let F
(n)
n−1 be the rational function field F#


n−1(X
(n)).


As before, Pn−1 extends to some ordering P#
n−1 of F#


n−1 which in turn extends


to an ordering P
(n)
n−1 on F


(n)
n−1 = F#


n−1(X
(n)) at which X(n) is positive.


We define Fn to be the free compositum of all function fields F
(n)
n−1(ϕ)


where ϕ is an anisotropic form defined over Fn−1 such that, for some j < n,
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we have dim(ϕ) = 2j +1 and ϕ contains an binary form which is defined over


Fj and indefinite at Pj. By (4.2), P
(n)
n−1 extends to an ordering Pn of Fn.


Let K be the direct limit of the tower (Fn)n∈N. We are going to establish
the following properties:


(i) K has a unique ordering which is given by P =
⋃


n∈N
Pn.


(ii) K has no finite extensions of odd degree.


(iii) For any totally indefinite quadratic form β over K, there is an upper
bound on the dimensions of anisotropic quadratic forms over K which
contain β.


(iv) for any k ∈ N, there is an element a ∈ K× which is a sum of squares
in K, but not a sum of k squares.


Note that (iv) implies that the Pythagoras number of K is infinite, which in
turn forces the Hasse number and the u-invariant of K to be infinite as well.
As before, (iii) implies that every infinite-dimensional anisotropic quadratic
space over K is definite with respect to the unique ordering of K.


(i) Since each Fn is real, so is the direct limit K. Consider an arbitrary
element a ∈ K×. Then a ∈ Fn for some n ∈ N. Now either 〈1,−a〉 or 〈1, a〉
is indefinite at Pn. Therefore, by construction, either 2n × 〈1〉 ⊥ 〈−a〉 or
2n × 〈1〉 ⊥ 〈a〉 becomes isotropic over the field Fn+1. Hence, a or −a is a
sum of (in fact 2n) squares in K. This shows that K is uniquely ordered.
To show that P is this unique ordering, it therefore suffices to show that P
consists exactly of all nonzero sums of squares.


Any sum of squares s ∈ K× is already a sum of squares in Fn for some n
and hence in Pn. Thus, s ∈ P .


Conversely, any s ∈ P is in Pn for some n, which by the above reasoning
implies that s is a sum of (in fact 2n) squares in K.


(ii) K is equal to its odd closure, by the same arguments as before.
(iii) The argument here is the same as for (iii) in the last proof.


(iv) We denote by Fn−1,j, F#
n−1,j, and F


(n)
n−1,j, the composita of Fn−1,


F#
n−1, and F


(n)
n−1, respectively, with the real closure of Fj at the ordering Pj.


Assume now that n > j. Then we observe as before that every anisotropic
quadratic form defined over Fn−1,j stays anisotropic over F


(n)
n−1,j. Note that


Fn,j is obtained from F
(n)
n−1,j as a compositum of function fields F


(n)
n−1,j(ϕ)


where ϕ is a form defined over F
(n)
n−1,j which either is of dimension at least


2j+1 +1, or which contains a binary form defined over Fj and indefinite at Pj


and which is therefore isotropic over F
(n)
n−1,j. As in part (iii) of the proof of
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Theorem I, we conclude that if π is an anisotropic m-fold Pfister form over
F


(n)
n−1,j with m ≤ j + 1, then π stays anisotropic over Fn,j.


Let now k ∈ N. Then the (k + 1)-fold Pfister form 2k ×〈〈X(k)〉〉 is defined


over F
(k)
k−1 and is still anisotropic over F


(k)
k−1,k−1. It follows now from the


above arguments that this form stays anisotropic over Fn,k−1, for all n > k.
In particular, 2k × 〈〈X(k)〉〉 is anisotropic over all fields Fn for n ≥ k, thus
also over K. This shows that the element X(k) is not a sum of 2k squares in
K. On the other hand, by the construction we have X(k) ∈ P , so that X(k)


is a sum of squares in K, by (i).


5 Fields of characteristic 2


Throughout this section, all fields considered will be of characteristic 2. To
translate the Gross Question into this setting, we have to take into account
the different types of objects for which analogous problems might be for-
mulated: quadratic, nonsingular quadratic, and symmetric bilinear spaces.
We maintain the convention to use the term ‘form(s)’ for finite-dimensional
spaces. For nonsingular quadratic forms we shall obtain analogues to The-
orems I and II stated in the introduction, thus obtaining a positive answer
to (the corresponding formulation of) the Gross Question in this case, too.
On the other hand, for arbitrary quadratic forms as well as for symmetric
bilinear forms, the corresponding answer turns out to be negative. In fact,
this is relatively easy to prove, so we treat these types of forms first.


We refer the reader to [3], [30] or [16] for further details on notation,
terminology and basic results concerning quadratic and bilinear forms in
characteristic 2.


Let (V, q) be a quadratic space over a field F of characteristic 2, and
let bq : V × V → F be the associated bilinear form, given by bq(x, y) =
q(x + y) + q(x) + q(y). Recall that the radical of (q, V ) is the F -subspace


V ⊥ = Rad(q, V ) = {x ∈ V | bq(x, y) = 0 for all y ∈ V } .


The quadratic space (V, q) is said to be


• nonsingular if V ⊥ = 0;


• singular if V ⊥ 6= 0;


• totally singular if V ⊥ = V .


If we write V = V0⊕V ⊥ and we put q0 = q|V0 and qts = q|V ⊥, then q ∼= q0 ⊥ qts


with q0 nonsingular and qts totally singular. If we also have q ∼= ϕ0 ⊥ ϕts
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with ϕ0 nonsingular and ϕts totally singular, then qts
∼= ϕts (any isometry


maps radicals bijectively to radicals), but q0 and ϕ0 might not be isometric.
Note that (V, q) is totally singular if and only if q(x + y) = q(x) + q(y) for
all x, y ∈ V .


For a, b ∈ F , the 2-dimensional quadratic form aX2 + XY + bY 2 is non-
singular, and we will denote it by [a, b]. The hyperbolic plane is then the
form H = [0, 0] = XY . For a1, . . . , as ∈ F , the s-dimensional quadratic form∑s


i=1 aiX
2
i is totally singular, and it will be denoted by 〈a1, . . . , as〉.


Let now q be a quadratic form over F and let n = dim(q). Then there
exist r, s ∈ N with 2r + s = n and a1, b1, . . . , ar, br ∈ F and c1, . . . , cs ∈ F
such that


q ∼= [a1, b1] ⊥ · · · ⊥ [ar, br] ⊥ 〈c1, . . . , cs〉 ,


and we clearly have qts
∼= 〈c1, . . . , cs〉. In particular, nonsingular quadratic


forms are always of even dimension.


There are two versions of the u-invariant in characteristic 2, referring to
the different types of quadratic forms, denoted by u and û, respectively. They
are defined as follows:


u(F ) = sup{dim(q) | q anisotropic nonsingular quadratic form over F}
û(F ) = sup{dim(q) | q anisotropic quadratic form over F}


Clearly, we have u(F ) ≤ û(F ), and u(F ) is always even if finite.
One can define corresponding u-invariants also for the classes of aniso-


tropic symmetric bilinear forms, and of anisotropic totally singular quadratic
forms, respectively, but (5.3) below will show that both suprema thus ob-
tained just coincide with [F : F 2], the degree of inseparability of F .


We will now concentrate for a moment on totally singular quadratic
spaces. These are, in fact, very easy to treat.


For a field F of characteristic 2 we fix an algebraic closure F and put√
F = {x ∈ F | x2 ∈ F}. Note that


√
F/F is a purely inseparable algebraic


field extension of degree [F : F 2]. Hence the squaring map sq : x 7→ x2 yields
a quadratic map sqF :


√
F → F over F , and the quadratic space (


√
F , sqF )


is of dimension [F : F 2].


5.1 Proposition. Let F be a field of characteristic 2. The quadratic space
(
√


F , sqF ) is anisotropic and totally singular. Any anisotropic totally singular
quadratic space over F is isometric to a subspace of (


√
F , sqF ).


Proof: The first part is obvious. Consider now a totally singular quadratic
space (V, q) over F and assume that it is anisotropic. We define


ρ : V −→
√


F , v 7−→
√


q(v) .
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Since q is totally singular, ρ is a homomorphism of F -vector spaces and we
have sqF ◦ ρ = q. Since furthermore q is anisotropic, ρ is injective and thus
(V, q) is isometric to the subspace (ρ(V ), sqF |ρ(V )) of (


√
F , sqF). ¤


We will now briefly look at symmetric bilinear spaces (V, b) over a field F
of characteristic 2. A symmetric bilinear space (V, b) is said to be isotropic
if there exists x ∈ V \ {0} such that b(x, x) = 0, anisotropic otherwise. In
other words, (V, b) is anisotropic if and only if (V, qb) is so, where qb : V → F
is the induced quadratic map defined by qb(x) = b(x, x).


5.2 Lemma. Let F be a field of characteristic 2 and V an F -vector space.
There exists an anisotropic symmetric bilinear map b : V × V → F if and
only if there exists an anisotropic totally singular quadratic map q : V → F .


Proof: By definition, a symmetric bilinear map b : V ×V → F is anisotropic
if and only if the associated totally singular quadratic map qb : V → F is
so. Now, given an anisotropic totally singular quadratic map q : V → F , it
is not difficult to construct a symmetric bilinear map b : V × V → F such
that q = qb. In fact, picking some F -basis (ei)i∈I of V , we can define b by
b(ei, ej) = δijq(ei) for i, j ∈ I. All this implies the claim. ¤


5.3 Corollary. For any field F of characteristic 2, we have


[F : F 2] = sup {dim(q) | q anisotr. tot. singular quadratic form over F}
= sup {dim(b) | b anisotr. symmetric bilinear form over F}


Moreover, if [F : F 2] = ∞, then there exist anisotropic totally singular spaces
and anisotropic symmetric bilinear spaces of infinite dimension over F .


Proof: If [F : F 2] < ∞, then the claim is obvious from the previous
results in this section. If [F : F 2] = ∞ then the same results yield the
existence of infinite-dimensional F -spaces (e.g.


√
F ) carrying anisotropic


totally singular quadratic forms and anisotropic symmetric bilinear forms.
By restricting to subspaces of dimension n for arbitrary n ∈ N, we obtain
that the corresponding suprema for the anisotropic dimensions of totally
singular forms and symmetric bilinear forms are infinite. ¤


We next consider general quadratic forms in characteristic 2 and the cor-
responding û-invariant. The first part of the following statement is [22],
Corollary 1.


5.4 Proposition. Let F be a field of characteristic 2. Then


[F : F 2] ≤ û(F ) ≤ 2[F : F 2] .


Furthermore, û(F ) = ∞ if and only if there exists a totally singular aniso-
tropic quadratic space of infinite dimension over F .
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Proof: The first inequality is obvious from the last corollary. To prove the
second inequality, we may assume that [F : F 2] < ∞. Let q be an anisotropic
quadratic form over F . We may write


q = [a1, b1] ⊥ · · · ⊥ [ar, br] ⊥ 〈c1, . . . , cs〉


with a1, b1, . . . , ar, br, c1, . . . , cs ∈ F . Since this form is anisotropic, the totally
singular subform 〈a1, . . . , ar, c1, . . . , cs〉 is anisotropic as well, whence r + s ≤
[F : F 2] and thus dim(q) ≤ 2 [F : F 2]. Therefore û(F ) ≤ 2 [F : F 2]. The
last part of the statement now also follows from the last corollary. ¤


So far we have shown in this section that the Gross Question (1.1) has ac-
tually a negative answer when it is reformulated for general quadratic forms,
for totally singular quadratic forms, or for symmetric bilinear forms over a
field of characteristic 2.


Let us now return to the case of nonsingular quadratic forms and spaces.
To motivate the Gross Question (1.1), we first shall show that the existence
of an infinite-dimensional anisotropic nonsingular quadratic space implies the
existence of such spaces in every finite even dimension. Again, for quadratic
forms ϕ and ψ over F we write ϕ ⊂ ψ if there exists a quadratic form τ such
that ψ ∼= ϕ ⊥ τ . It is clear that if any two of the quadratic forms ϕ, ψ, τ
are nonsingular, then so is the third.


We call a sequence of nonsingular quadratic forms (ϕn)n∈N over F a chain
of nonsingular quadratic forms over F if, for any n ∈ N, we have dim(ϕn) =
2n and ϕn ⊂ ϕn+1. Note that we need even dimension for nonsingularity.
Given such a chain (ϕn)n∈N over F , the direct limit over the quadratic spaces
ϕn with the appropriate inclusions is again a nonsingular quadratic space over
F of countably infinite dimension. We denote this quadratic space over F by
limn∈N(ϕn) and observe that it is anisotropic if and only if ϕn is anisotropic
for all n ∈ N.


5.5 Lemma. Any infinite-dimensional nonsingular quadratic space over F
contains a subspace isometric to the direct limit limn∈N(ϕn) for some chain
(ϕn)n∈N of nonsingular quadratic forms.


Proof: Let (V, q) be nonsingular with dim(V ) = ∞ and let b = bq.
(i) Let x ∈ V \ {0}. The nonsingularity implies the existence of y ∈ V


such that b(x, y) 6= 0. Clearly, x and y are linearly independent as b(x, x) = 0.
Let U1 ⊂ V be the subspace spanned by x and y. Let ϕ1 = q|U1. One readily
sees that ϕ1 is nonsingular.


(ii) Suppose U ⊂ V is a 2m-dimensional subspace with ϕ = q|U nonsingu-
lar. Let V = U⊕W and let (wi)i∈I be a basis of W . Let (x1, y1, . . . , xm, ym) be
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a basis of U such that, with respect to this basis, ϕ = [a1, b1] ⊥ · · · ⊥ [am, bm]
holds for suitable a1, b1, . . . , am, bm ∈ F .


For each i ∈ I, let


zi = wi +
m∑


j=1


(
b(wi, xj)yj + b(wi, yj)xj


)
.


A straightforward check shows that b(zi, xℓ) = b(zi, yℓ) = 0 for 1 ≤ ℓ ≤ m.
Let Z be the subspace of V generated by (zi)i∈I . Then V = U ⊕ Z and
Z ⊂ U⊥ = {v ∈ V | b(v, U) = 0}. Since U ∩ U⊥ = 0 it follows that Z = U⊥


and V = U⊕U⊥. If ϕ⊥ = q|U⊥, we thus have q ∼= ϕ ⊥ ϕ⊥ with ϕ nonsingular
of dimension 2m and ϕ⊥ nonsingular.


Using (i) and (ii), the lemma follows immediately by induction. ¤


As a direct consequence, we obtain the following:


5.6 Proposition. There exists an anisotropic nonsingular quadratic space
of infinite dimension over F if and only if there exists a chain of anisotropic
nonsingular quadratic forms (ϕn)n∈N over F .


Before we state the analogues of Theorems I and II in characteristic 2,
we have to recall a few more definitions and facts.


Let WF denote the Witt ring of nonsingular bilinear forms over F , and
WqF the Witt group of nonsingular quadratic forms, which is in fact a WF -
module. The fundamental ideal of classes of even-dimensional bilinear forms
in WF will be denoted by IF , and its nth power by InF . We put In


q F =
In−1F ·WqF . Then In


q F is the submodule of WqF generated (as a group) by
the n-fold quadratic Pfister forms


〈〈a1, · · · , an]] = 〈1, a1〉b ⊗ · · · ⊗ 〈1, an−1〉b ⊗ [1, an] ,


with a1, . . . , an−1 ∈ F× and an ∈ F ; here, we denote a diagonal bilinear
form with c1, . . . , cm in the diagonal by 〈c1, . . . , cm〉b.


Quadratic Pfister forms in characteristic 2 have properties quite analo-
gous to those in characteristic different from 2. For example they are either
anisotropic or hyperbolic (i.e. isometric to an orthogonal sum of hyperbolic
planes).


Function fields of nonsingular quadratic forms are defined as in charac-
teristic different from 2, again with the convention that F (H) = F . If q
is a nonsingular quadratic form of dimension 2m > 0, then F (q)/F can be
realized as a purely transcendental extension of F of transcendence degree
2m − 2 followed by a separable quadratic extension, and F (q)/F is purely
transcendental if and only if q is isotropic.
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Lemma (3.1) is still true in characteristic 2, i.e. an anisotropic quadratic
form (possibly singular) stays anisotropic over any odd extension of F and
equally over any purely transcendental extension of F .


Also, (3.3) stays true in characteristic 2 for nonsingular forms. More
precisely, if π is an anisotropic n-fold quadratic Pfister form and q is any
nonsingular form of dimension > 2n, then πF (q) is anisotropic. This follows
simply by invoking the characteristic 2 analogues of the facts referred to in
the proof of (3.3), or in (3.4). See, e.g. [16], Theorem 4.2(i), 4.4, for the
precise formulation in characteristic 2 of these facts.


We can now state the characteristic 2 version of Theorem I.


5.7 Theorem I(2). Let F be a field with char(F ) = 2. There exists a field
extension K/F with the following properties:


(i) K has no finite extensions of odd degree.


(ii) For any binary nonsingular quadratic form β over K, there is an upper
bound on the dimensions of anisotropic nonsingular quadratic forms
over K that contain β.


(iii) For any k ∈ N, there is an anisotropic k-fold quadratic Pfister form
over K.


In particular, K has infinite u-invariant, Ik
q K 6= 0 for all k ∈ N, and any


infinite-dimensional nonsingular quadratic space over K is isotropic.


Note that we cannot possibly expect K to be perfect. Indeed, u(F ) = ∞
implies û(F ) = ∞ and thus [K : K2] = ∞ by (5.4).


Using the above mentioned facts on nonsingular forms, quadratic Pfister
forms and function fields of nonsingular forms, the proof of Theorem I now
easily adapts to become a proof of Theorem I(2). Indeed, it simply suffices
to add the adjective ‘nonsingular’ whenever a quadratic form is mentioned
in the proof and to replace ‘Pfister form’ by ‘quadratic Pfister form’ (with
the appropriate notation). Also, expressions of type 2j + 1 referring to the
dimension of a form must be replaced by 2j + 2 as nonsingularity requires
even dimension. We leave the details to the reader.


To treat the characteristic 2 version of Theorem II, we need a few more
facts about quaternion algebras and their tensor products over fields of char-
acteristic 2.


A quaternion algebra (a, b]F , with a ∈ F× and b ∈ F , is a 4-dimensional
central simple F -algebra generated by two elements x, y subject to the rela-
tions x2 = a, y2 + y = b, xy = (y + 1)x.


We now list some relevant facts that allow us to carry over the proofs
from characteristic different from 2 to characteristic 2.
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5.8 Proposition. Let a1 . . . , an ∈ F× and b1, . . . , bn ∈ F be such that
A = (a1, b1]F ⊗ · · · ⊗ (an, bn]F is a division algebra. Then the following hold:


(i) The nonsingular (2n + 2)-dimensional quadratic form


ϕ = [1, b1 + · · ·+ bn] ⊥ a1[1, b1] ⊥ · · · ⊥ an[1, bn]


is anisotropic.


(ii) For any field extension K/F of one of the following types, the K-algebra
AK = A ⊗F K is a division algebra and ϕK is anisotropic:


• K/F is an odd extension;


• K = F (q) where q is a nonsingular quadratic form q such that
dim q ≥ 2n + 4 or q ∈ I3


q F ;


• K/F is purely transcendental.


Proof: (i) This is [23], Proposition 6.
(ii) By Part (i) it suffices to prove that AK is a division algebra. For a


purely transcendental extension K/F this is obvious, and for an odd exten-
sion it is also clear as the index of A is a 2-power; for K = F (q), this follows
from [23], Theorems 3 and 4. ¤


5.9 Corollary. Suppose that for every n ∈ N there exist a1, . . . , an ∈ F×


and b1, . . . , bn ∈ F such that (a1, b1]F ⊗ · · · ⊗ (an, bn]F is a division algebra.
Then u(F ) = ∞.


The characteristic 2 version of Theorem II now reads as follows.


5.10 Theorem II(2). Let F be a field with char(F ) = 2. There exists a
field extension K/F with the following properties:


(i) K has no finite extensions of odd degree and I3
q K = 0.


(ii) For any binary nonsingular quadratic form β over K, there is an upper
bound on the dimensions of anisotropic nonsingular quadratic forms
over K that contain β.


(iii) For any k ∈ N, there is a central division algebra over K that is de-
composable into a tensor product of k quaternion algebras.


In particular, K has infinite u-invariant and every infinite-dimensional non-
singular quadratic space over K is isotropic.
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Using (5.8) and (5.9), it is now straightforward to obtain a proof of The-
orem II(2) by applying the appropriate changes to the proof of Theorem II,
in a similar fashion as was done in the case of Theorem I(2). This time, it is
expressions of type 2j +3 in the proof of Theorem II which must be replaced
by 2j + 4 because of the nonsingularity of the forms considered. Again, we
leave the details to the reader.


5.11 Remark. In Theorem II (where char(K) 6= 2), the facts that K has no
odd degree extensions and that I3K = 0 but I2K 6= 0 together imply that
K has cohomological dimension cd(K) = 2.


In Theorem II(2) (where char(K) = 2) we have again that K has no
odd degree extension. This implies in particular that any finite separable
extension L/K also has this property, and therefore H1(L, µp) = L×/L×p


vanishes for every finite separable extension L/K and every odd prime p.
This implies that cdp(K) = 0 for the cohomological p-dimension of K for
any odd prime p (see [37], II.1.2, II.2.3).


On the other hand, cd2(F ) ≤ 1 for any field F of characteristic 2 (see
[37], II.2.2). In our case, there exist anisotropic nonsingular forms of di-
mension at least 2 over K, thus there certainly are separable quadratic
extensions over K. This readily implies that cd2(K) = 1 and therefore
cd(K) = sup{cdp(K) | p prime} = 1.


However, rather than considering cd2(F ) for a field F with char(F ) = 2,
it is perhaps more meaningful to ask for the separable 2-dimension dimsep


2 (F )
as defined by P. Gille [11]:


dimsep
2 (F ) = sup{r ≥ 0 |Hr


2(E) 6= 0 for some finite separable ext. E/F} ,


where the Hn
2 (F ) (n ≥ 0) are Kato’s cohomology groups for a field F with


char(F ) = 2 (see, e.g., [19]).
In the situation of Theorem II(2), we have a field K of characteristic 2


with no odd degree extension and I3
q K = 0. By Kato’s proof of the Milnor


conjecture in characteristic 2 in [19], we have H3
2 (K) = 0. Furthermore, by


Galois theory, if L/K is a finite separable extension then [L : K] is a 2-power
and L/K can be obtained as a tower of separable quadratic extensions. But
for any field F of characteristic 2 and any separable quadratic extension
E/F , we have that Hn


2 (F ) = 0 implies Hn
2 (E) = 0 (see, e.g., [4], 6.6). All


this together implies that H3
2 (L) = 0 for every finite separable extension L


of K, therefore dimsep
2 (K) = 2 (note that I2


q K 6= 0).
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6 Analogues of the Gross Question


Let (M, ∗, ε) be a monöıd (associative semi-group) with neutral element ε.
Let A and S be nonempty subsets of M with ε /∈ S ⊂ A ⊂ M. Denoting
by 〈S〉 the submonöıd of M generated by S, we furthermore assume that for
any a, b ∈ 〈S〉, if a ∗ b ∈ A then a, b ∈ A.


We now define a U-invariant for this triple (M,A,S) by


UM(A,S) = sup {m ∈ N | ∃s1, . . . , sm ∈ S with s1 ∗ · · · ∗ sm ∈ A} .


These definitions have of course been motivated by our investigations of
quadratic forms. More precisely, let F be a field with char(F ) 6= 2. Then we
take M to be the set of nonsingular quadratic forms (up to isometry) over F ,
the operation ∗ the orthogonal sum, ε the trivial (0-dimensional) quadratic
form, A the set of anisotropic forms over F , and S the set of 1-dimensional
(nonzero) quadratic forms over F . In this setting, UM(A,S) is nothing else
but u(F ).


The Gross Question has now an obvious reformulation in this more ab-
stract setting.


6.1 Question. Suppose that UM(A,S) = ∞. Does there exist a sequence
(sn)n∈N ⊂ S such that s1 ∗ · · · ∗ sn belongs to A for every n ∈ N?


We proved that this does not always hold for anisotropy of quadratic
forms over a field F . We will now pass from quadratic forms to other types
of algebraic objects defined over a field that also naturally give rise to a triple
(M,A,S), and we will sketch answers to the above question in these new
contexts.


Symbol algebras


Let F be a field and n ≥ 2 be an integer. We assume that char(F ) does
not divide n, and that F contains a primitive nth root of unity ζ which we
fix. An F -algebra generated by two elements x, y subject to the relations
xn = a, yn = b, xy = ζyx, where a, b ∈ F× is denoted by (a, b)n and called
an n-symbol algebra over F . Note that (a, b)n is a central simple F -algebra
of degree n. For n = 2, we recover the case of quaternion algebras. For basic
properties of such symbol algebras, we refer to [7], §11 (there, such algebras
are called ‘power norm residue algebras’). In the sequel, we will concentrate
on the case where n = p is a prime number.


With F as above, let M be the set of isomorphism classes of central
simple algebras over F . The tensor product ⊗, taken over F , endows M
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with a monöıd structure, where the neutral element is given by the class of
F . Let A ⊂ M be the subset of (finite dimensional) central division algebras
over F . Further, let Sp ⊂ A be the subset given by the non-split p-symbol
algebras over F .


The Gross Question in this context now becomes the following:


6.2 Question. Suppose that UM(A,Sp) = ∞, i.e. suppose that to every n ∈
N there exist p-symbol algebras Q1, . . . , Qn such that


⊗n


i=1 Qi is a division
algebra. Does there exist a sequence (Ai)i∈N of p-symbol algebras Ai over F
such that


⊗n


i=1 Ai is a division algebra for all n ∈ N?


Let us first consider the case p = 2. If we take F = K to be the field
constructed in the proof of Theorem II, then we have in fact shown there
that UM(A,S2) = ∞, while for any sequence (An)n∈N of quaternion algebras
over K, the product A1 ⊗ · · · ⊗ An fails to be a division algebra for n ∈ N


sufficiently large. Actually, these two facts do not only follow from the way
in which K was constructed, but already from the properties (i)–(iii). We
omit the details.


So for p = 2, the answer to (6.2) is negative in general. We will sketch
in the sequel that there are counterexamples for arbitrary primes p. Our
construction is to some extent similar to the one in the proof of Theorem II,
but function fields of quadratic forms will now have to be replaced by func-
tion fields of generic partial splitting varieties, also called generalized Severi-
Brauer (or Brauer-Severi) varieties, and the special case in (3.5) of Merkur-
jev’s index reduction results for function fields of quadratic forms will have to
be replaced by an appropriate version concerning index reduction for function
fields of generic partial splitting varieties.


Such generic partial splitting varieties have been studied systematically
perhaps for the first time by Heuser [13], and then later by Schofield and Van
den Bergh [35], [36], and Blanchet [5]. Blanchet derives in particular an index
reduction formula for central simple algebras over function fields of generic
partial splitting varieties. This formula has been simplified by Wadsworth
[39], and it is the latter formula which we will use. The reader interested in
the most general results on index reduction of central simple algebras over
function fields of varieties is referred to the two papers by Merkurjev, Panin
and Wadsworth [25], [26].


Let A be a central simple algebra over F of degree n, and let s be a
divisor of n. To A we can now associate a generalized Severi-Brauer variety
X = SB(A, n, s) such that for any field exension L/F , the L-points X(L)
are the sn-dimensional right ideals in AL = A⊗F L. In the case where L is a
splitting field, so that A⊗F L ∼= EndL(V ) for an n-dimensional L-vector space
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V , then X(L) is isomorphic to the Grassmannian Gr(V, s) of s-dimensional
subspaces of V .


The function field F (X) has the property that ind(AF (X)) divides s, and
it is generic for that property in the following sense: If L is any field extension
such that ind(AL) divides s, then there exists an F -place F (X) −→ L∪{∞}
(see [13]). More precisely, we have the following (see [5], Proposition 3):


6.3 Lemma. Let A, n, s, X = SB(A, n, s) be as above and let L/F be a
field extension. Then the following statements are equivalent:


(i) X has an L-rational point.


(ii) ind(AL) divides s.


(iii) The free compositum L · F (X) is a purely transcendental extension of
L.


We now have the following index reduction formula for function fields of
generic partial splitting varieties, see [39], Theorem 2:


6.4 Theorem. Let A, n, s, X = SB(A, n, s) be as above, let K = F (X)
and let D be a central simple algebra over F . Then


ind(DK) = gcd


{
s


gcd(i, s)
ind(D ⊗F A−i)


∣∣∣∣ 1 ≤ i ≤ n


}
.


6.5 Corollary. Let p be a prime, let D be a central division algebra of index
pr over F , and let A be a central simple algebra of degree pm over F (m ≥ 1)
and of exponent dividing p. Let X = SB(A, pm, pm−1). If A is not a division
algebra, or if m > r, then DF (X) is a division algebra.


Proof: If A is not a division algebra, then ind(A) divides pm−1 and F (X)/F
is purely transcendental by (6.3). This clearly implies that D will stay a
division algebra over F (X).


Now assume that m > r. We apply the above index reduction formula
with n = pm and s = pm−1. Let i ∈ {1, · · · , n}.


If p | i, then A−i is split, because exp A divides p, and it follows imme-
diately that s


gcd(i,s)
ind(D ⊗F A−i) is divisible by ind(D ⊗F A−i) = ind D.


Furthermore, for i = pm we have s
gcd(i,s)


ind(D ⊗F A−i) = ind D.


If p 6 | i then gcd(i, s) = 1. Therefore,


s


gcd(i, s)
ind(D ⊗F A−i) = pm−1 · ind(D ⊗F A−i) ,


and this number is divisible by pm−1 and thus by ind(D) = pr ≤ pm−1.
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We conclude that


ind(DF (X)) = gcd


{
s


gcd(i, s)
ind(D ⊗F A−i)


∣∣∣∣ 1 ≤ i ≤ n


}
= ind(D) ,


in other words, D stays a division algebra over F (X). ¤


6.6 Theorem. Let p be a prime and let F be a field with char(F ) 6= p. Then
there exists a field extension K/F containing a primitive pth root of unity ζ
such that the following holds:


(i) For any a1 ∈ K×, there exists an n ∈ N such that for any choice of
a2, . . . , an, b1, . . . bn ∈ K×, the product


⊗n


i=1(ai, bi)p is not a division
algebra.


(ii) For every n ∈ N there exist p-symbol algebras A1, · · · , An over K such
that


⊗n


i=1 Ai is a division algebra.


Proof: Let F0 = F (ζ) where ζ is a primitive pth root of unity in an algebraic
closure of F . Let n ≥ 1 and suppose we have have constructed Fn−1. Let
now


F
(n)
n−1 = Fn−1( X


(n)
1 , Y


(n)
1 , . . . , X(n)


n , Y (n)
n )


where X
(n)
1 , Y


(n)
1 , . . . , X


(n)
n , Y


(n)
n are indeterminates over Fn−1. Let Fn denote


the free compositum of function fields F
(n)
n−1(SB(A, pj+1, pj)) for all central


simple algebras A over Fn−1 of type A ∼= (a0, b0)p ⊗ (a1, b1)p ⊗ · · · ⊗ (aj , bj)p


with j < n and a0 ∈ F×
j and a1, . . . , an, b0, . . . , bn ∈ F


(n)×
n−1 .


Finally, we define K =
⋃∞


i=0 Fn and claim that K has the desired prop-
erties.


(i) Let a1 ∈ K×. Then there exists j ∈ N such that a = a0 ∈ Fj .
Let a1, . . . , aj, b0, . . . , bj ∈ K× and consider B =


⊗j


i=0(ai, bi)p. It suffices
to show that B is not a division algebra over K. Now there exists n > j
such that a1, . . . , aj, b0, . . . bj ∈ Fn−1, so B is defined over Fn−1, and since


F
(n)
n−1(SB(B, pj+1, pj)) is part of the compositum Fn, we have that ind(BFn


)
divides pj , which implies that B is not a division algebra over Fn and thus
also not over K.


(ii) For n ≥ 1, consider over Fn the algebra


Cn = (X
(n)
1 , Y


(n)
1 )p ⊗ · · · ⊗ (X(n)


n , Y (n)
n )p .


It is well known that Cn is a division algebra over Fn (see, e.g., [25], Corollary
5.2). Part (ii) now follows if we can show that Cn will stay a division algebra
over K. This can be achieved by mimicking the argument in part (iii) of
the proof of Theorem II, this time by invoking (6.3) and (6.5). We omit the
details. ¤
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Symbols in Milnor K-theory


Recall the definition of the Milnor K-groups KnF of a field F (see [27]).
By definition, K0F = Z, and K1F is the multiplicative group F×, written
additively with the elements denoted by {a}, a ∈ F×: {ab} = {a}+{b}. For
n ≥ 2, KnF is then defined to be the quotient of the tensor product K1F


⊗n by
the subgroup generated by all {a1}⊗· · ·⊗{an} satisfying ai+ai+1 = 1 for some
i. The image of an element {a1}⊗· · ·⊗{an} in the quotient group KnF is de-
noted by {a1, · · · , an} and called a symbol. We then define the Milnor K-ring
as the Z-algebra K∗F =


⋃∞


n=0 KnF with multiplication defined on symbols
in the obvious way: {a1, . . . , an} · {b1, . . . , bm} = {a1, . . . , an, b1, . . . , bm}.


We are interested in KnF/p, the Milnor K-groups modulo p for some
prime p. The image of a symbol {a1, · · · , an} in KnF/p will again be called
a symbol and denoted in the same way.


For p = 2, these groups are linked to quadratic form theory through the
Milnor conjecture (now a theorem due to Orlov, Vishik, and Voevodsky [29])
which asserts that if char(F ) 6= 2 then KnF/2 is isomorphic to InF/In+1F ,
via the isomorphism mapping {a1, . . . , an} to the class of 〈〈a1, . . . , an〉〉 modulo
In+1F .


We now consider the abstract version of the Gross Question (6.1) in the
following setting, where we assume F× 6= F×p because otherwise KnF/p = 0
for all n ≥ 1. Let M = K∗F/p, S = {{a} | a ∈ F× \ F×p} (this is nonempty
by assumption), A = {{a1, · · · , an} 6= 0 |n ∈ N, ai ∈ F×}. It is obvious that
for n ≥ 1 we have KnF/p 6= 0 if and only if there exist a1, · · · , an ∈ F× with
{a1, · · · , an} 6= 0. In this setting, Question (6.1) becomes


6.7 Question. Suppose that UM(A,S) = ∞, i.e. KnF/p 6= 0 for all n ∈ N.
Does there exist a sequence (an)n∈N ⊂ F× such that {a1, · · · , an} 6= 0 for
every n ∈ N?


Let us first consider the case where char(F ) = p. Then the answer to the
above question is positive by the following:


6.8 Proposition. Let F be a field of charateristic p > 0. Then the following
are equivalent:


(i) [F : F p] = ∞.


(ii) KnF/p 6= 0 for all n ∈ N.


(iii) There exists a sequence (an)n∈N ⊂ F× such that {a1, · · · , an} 6= 0 for
every n ∈ N.


For p = 2, the above statements are further equivalent to any of the following:
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(iv) û(F ) = ∞.


(v) sup {dim(b) | b anisotropic symmetric bilinear form over F} = ∞.


(vi) There exists an infinite-dimensional anisotropic quadratic space over
F .


(vii) There exists an infinite-dimensional anisotropic symmetric bilinear
space over F .


Proof: Recall that a subset T ⊂ F is called p-independent if, for any finite
subset {a1, · · · , an} ⊂ T , one has [F p(a1, · · · , an) : F p] = pn, and that T ⊂ F
is called a p-basis of F if T is a minimal generating set of the extension F/F p,
i.e. F = F p(T ) and T is p-independent.


The key observation here is the fact that for a1, · · · , an ∈ F× we have that
{a1, · · · , an} 6= 0 if and only if a1, · · · , an are p-independent, in other words
[F p(a1, · · · , an) : F p] = pn. This is an immediate consequence of the Bloch-
Kato-Gabber Theorem (see [6], Theorem 2.1, or Appendix 2 by Fesenko in
[17]). The equivalence of the first three statements is now immediate and we
leave the details to the reader.


For p = 2 it readily follows from (5.3) and (5.4) that (i) is equivalent to
any of the statements (iv) to (vii). ¤


Let us now turn to the case char(F ) 6= p. For p = 2, the answer to the
above question will be negative in general, i.e. there are fields such that
KnF/2 6= 0 for all n ∈ N, but for any sequence (an)n∈N ⊂ F× one has
{a1, · · · , am} = 0 for sufficiently large m.


Indeed, any field as constructed in Theorem I will do. To see this, it
suffices to note that the map from PnF , the set of isometry classes of n-fold
Pfister forms over F , into KnF/2 defined by 〈〈a1, · · · , an〉〉 7→ {a1, · · · , an} is
well-defined and injective (mapping a hyperbolic Pfister form to zero), see
[8], Main Theorem 3.2 (here, we do not need the full thrust of the Milnor
Conjecture). We leave the details to the reader.


Now if p 6= 2 (and char(F ) 6= p), we believe (but have not checked) that
in general the answer to the above question should be negative as well. To
construct counterexamples, it seems reasonable to try a similar approach as in
our other constructions using a tower of iterated function fields. Candidates
for these functions fields will naturally be function fields of (generic) splitting
varieties of symbols in Milnor K-theory modulo p. The norm varieties as
constructed by Rost (see [33], also [18]) provide examples for such splitting
varieties.
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[28] J. Mináč, A. Wadsworth, The u-invariant for algebraic extensions, K-
theory and algebraic geometry: connections with quadratic forms and di-
vision algebras (Santa Barbara, CA, 1992), AMS, Providence, RI, 1995,
333–358.


[29] D. Orlov, A. Vishik, V. Voevodsky, An exact sequence for Milnor’s K-
theory with applications to quadratic forms. K-theory Preprint Archives,
http://www.math.uiuc.edu/K-theory/0454/ (2000).


[30] A. Pfister, Quadratic forms with applications to algebraic geometry and
topology. London Mathematical Society Lecture Notes series, vol. 217,
Cambridge University Press, Cambridge, 1995.


[31] R.S. Pierce, Associative algebras. Graduate Texts in Mathematics 88,
Springer-Verlag, New York, 1982.


[32] A. Prestel, Lectures on formally real fields. Lecture Notes in Mathe-
matics 1093, Springer-Verlag, Berlin, 1984.


[33] M. Rost, Norm varieties and algebraic cobordism. Proceedings of the In-
ternational Congress of Mathematicians, Vol. II (Beijing, 2002), 77–85,
Higher Ed. Press, Beijing, 2002. (Errata: Proceedings of the Interna-
tional Congress of Mathematicians, Vol. I (Beijing, 2002), 649, Higher
Ed. Press, Beijing, 2002.)


[34] W. Scharlau, Quadratic and Hermitian forms. Grundlehren 270,
Springer-Verlag, Berlin, 1985.


[35] A. Schofield, M. van den Berg, The index of a Brauer class on a Brauer-
Severi variety. Trans. Amer. Math. Soc. 333 (1992), 729–739.


[36] A. Schofield, M. van den Berg, Division algebra coproducts of index n.
Trans. Amer. Math. Soc. 341 (1994), 505–517.


[37] J.-P. Serre, Galois Cohomology. Springer-Verlag, Berlin Heidelberg,
1997.


36
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