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Abstract

Let G be a linear algebraic group over a field F and X be a pro-
jective homogeneous G-variety such that G splits over the function
field of X. In the present paper we introduce an invariant of G called
J-invariant which characterizes the motivic behaviour of X. This gen-
eralizes the respective notion invented by A. Vishik in the context of
quadratic forms. As a main application we obtain a uniform proof of
all known motivic decompositions of generically split projective homo-
geneous varieties (Severi-Brauer varieties, Pfister quadrics, maximal
orthogonal Grassmannians, G2- and F4-varieties) as well as provide
new examples (exceptional varieties of types E6, E7 and E8). We
also discuss relations with torsion indices, canonical dimensions and
cohomological invariants of the group G.

Introduction

Let G be a simple linear algebraic group over a field F and X be a projective
homogeneous G-variety. In the present paper we address the problem of
computing the Grothendieck-Chow motive M(X) of X or, in other words,
providing a direct sum decomposition of M(X).

When the group G is split, i.e., contains a split maximal torus, the mo-
tive of X has the simplest decomposition – it is isomorphic to a direct sum
of twisted Tate motives. This was first observed by B. Köck in [Kö91].
The next step was done by V. Chernousov, S. Gille and A. Merkurjev (see
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[CGM]). They provided an algorithm of expressing the motive of any ra-
tional projective homogeneous G-variety in terms of motives of anisotropic
G-varieties, i.e., those which have no rational points. Finally, P. Brosnan
(see [Br05]) generalized this result to the case of an isotropic group G and
possibly anisotropic X. In all these proofs one constructs a (relative) cellular
filtration on X, which allows to express the motive of the total space X in
terms of motives of the base. Since the latter consists of homogeneous vari-
eties of anisotropic groups, it reduces the problem to the case of anisotropic
group G.

For anisotropic groups the situation becomes more complicated: only very
few partial results are known. Observe that in this case the components of
a motivic decomposition are expected to have a non-geometric nature, i.e.,
can not be identified with (twisted) motives of some other varieties. The first
examples of such decompositions were provided by M. Rost [Ro98]. He proved
that the motive of a Pfister quadric decomposes as a direct sum of twisted
copies of a certain non-geometric motive R known in the literature as Rost
motive. Motives of Severi-Brauer varieties were described by N. Karpenko
[Ka96]. For exceptional varieties examples of motivic decompositions were
provided by J.-P. Bonnet [Bo03] (varieties of type G2) and by S. Nikolenko,
N. Semenov, K. Zainoulline [NSZ] (varieties of type F4).

In the present paper we provide a uniform proof of all these results.
Observe that in all examples the variety X has the following property: Over
the generic point of X the motive M(X) splits as a direct sum of twisted
Tate motives. Varieties which satisfy this condition will be called generically
split. The main result of the paper says that (see Theorem 5.1)

Theorem. Let G be a simple linear algebraic group of inner type over a
field F and p be a prime integer. Let X be a generically split projective
homogeneous G-variety. Then the Chow motive of X with Z/p-coefficients
is isomorphic to a direct sum

M(X; Z/p) ≃
⊕

i≥0

Rp(G)(i)⊕ai

of twisted copies of a certain indecomposable motive Rp(G), where the inte-
gers ai are coefficients of the quotient of the respective Poincaré polynomials.

Observe that the motive Rp(G) depends only on G and p but not on
the type of a parabolic subgroup defining X. Moreover, considered with
Q-coefficients it always splits as a direct sum of Tate motives.
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Our proof is based on two different observations. The first comes from the
topology of compact Lie groups. Namely, to compute Chow rings of compact
Lie groups V. Kac [Kc85] invented the notion of p-exceptional degrees – num-
bers which encode the information about the Chow ring of a group modulo
p. These numbers can be expressed in terms of degrees of basic polynomial
invariants and, therefore, deal with the combinatorics of the Weyl group.
From the other hand the results of N. Karpenko, A. Merkurjev [KM06] and
K. Zainoulline [Za06] concerning canonical p-dimensions of algebraic groups
tell us that there is a strong interrelation between p-exceptional degrees and
the ‘size’ of the image of the restriction map res : CH∗(X×X) → CH∗(X×X)
to the separable closure of F . To relate this image with a motivic decomposi-
tion of X we use Rost Nilpotence Theorem. It was first proved for quadrics by
M. Rost and lately generalized to arbitrary projective homogeneous varieties
by V. Chernousov, S. Gille and A. Merkurjev (see [CGM, Theorem 8.2]).
Roughly speaking, it says that any decomposition which is given by idempo-
tent cycles from this image, indeed, comes from F .

All this together lead to the notion of J-invariant Jp(G) of a group G
modulo p (see Definition 4.5) which generalizes the respective notion intro-
duced by A. Vishik [Vi05] in the case of quadrics. Our main observation is
that Jp(G) completely characterizes the motive Rp(G) and, hence, the mo-
tivic decomposition of X. Observe that if the J-invariant takes its minimal
possible non-trivial value Jp(G) = (1), then the motive Rp(G) ⊗ Q has the
following recognizable decomposition (cf. [Vo03, §5])

Rp(G) ⊗ Q ≃

p−1
⊕

i=0

Q(i · pn−1−1
p−1

)

where n = 2 or 3 (see the last section).
Apart from the notion of J-invariant we generalize some of the results

of paper [CPSZ]: Using the motivic version of a result of D. Edidin and
W. Graham [EG97] on cellular fibrations we provide a general formulae which
expresses the motive of the total space of a cellular fibration in terms of the
motives of its base (see Theorem 3.8). We also provide several criteria for
the existence of liftings of motivic decompositions via the reduction map
Z → Z/m. We prove that such a lifting always exists if m = 2, 3, 4 or 6 (see
Theorem 2.16).

The paper is organized as follows. In the first section we recall the def-
inition of Chow motives and some properties of generically split varieties.
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Rather technical section 2 is devoted to lifting of idempotents. In section 3
we discuss motives of cellular fibrations. The proof of the main result ac-
tually starts with section 4, where we introduce the notion of J-invariant
and provide a motivic decomposition for the variety of complete flags. In
section 5 we finish the proof and give some properties of the motive Rp(G).
The last two sections are devoted to various applications of J-invariant and
examples of motivic decompositions.

1 Motives of generically split varieties

1.1. In the present paper we will work with Chow motives of smooth projec-
tive varieties over a field F . We will use the following notation (cf. [Ma68],
[CGM, §7] or [EKM, XII])

Given a smooth projective variety X over a field F we denote by M(X)
its Chow motive, and by M(X)(n) = M(X) ⊗ Z(n) the respective twist by
a Tate object. A morphism of motives between M(X)(n) and M(Y )(m),
where X is irreducible, is given by a class φ of rationally equivalent cycles of
dimension dim X + n − m on X × Y . Hence, the group of endomorphisms
End(M(X)) coincides with the Chow group CHdim X(X × X). The element
φ is called a correspondence between X and Y of degree n − m.

Given a correspondence φ of degree d and k ∈ Z the composite

CHk(X)
(prX)∗

// CHk+dimY (X × Y )
−∩φ

// CHk+d(X × Y )
(prY )∗

// CHk+d(Y )

of the pull-back (prX)∗, intersection product with φ and the push-forward
(prY )∗ is called the realization of φ and is denoted by φ⋆. Given correspon-
dences φ ∈ CHdim X+d(X × Y ) and ψ ∈ CHdimY +e(Y × Z) of degrees d and
e respectively the correspondence of degree d + e

(prX×Z)∗((prY ×Z)∗ ∩ (prX×Y )∗) ∈ CHdimX+d+e(X × Z)

is called the correspondence product of φ and ψ and is denoted by ψ ◦ φ. By
definition (ψ ◦ φ)⋆ = ψ⋆ ◦ φ⋆. Given a correspondence φ we denote by φt its
transpose.

The correspondence product endows the group End(M(X)) with the ring
structure. The identity element of this ring is the class of the diagonal ∆X .

Finally, by M(X; Λ), where Λ is a commutative ring, we denote an object
of the category of motives with Λ-coefficients obtained by taking correspon-
dences φ with Λ-coefficients, i.e., replacing CH(X ×Y ) by CH(X ×Y )⊗Z Λ.
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1.2 Definition. Let L/F be a field extension. We say L is a splitting field
of a smooth projective variety X or, equivalently, a variety X splits over L if
the motive M(X) splits over L as a finite direct sum of twisted Tate motives,
i.e.,

M(X)L ≃
⊕

n

ZL(n)

We say a variety X is generically split if it splits over the field of rational
functions F (X).

1.3 Example. A variety X is called generically cellular if it is cellular over
its generic point, i.e., XF (X) = X×F F (X) has a proper descending filtration
by closed subvarieties Xi such that each complement Xi \ Xi+1 is a disjoint
union of affine spaces defined over F (X). According to [EKM, Corollary 67.2]
if X is generically cellular, then X is generically split.

1.4 Example. Let G be a semisimple linear algebraic group over a field F
and X be a projective homogeneous G-variety. Let L/F be a field extension.
If the group G splits over L, i.e., GL = G×F L contains a split maximal torus
defined over L, then XL is cellular and, hence, L is a splitting field of X. In
particular, if G splits over the function field of X, then X is generically split.
Many examples of such varieties can be provided investigating Tits indices
of G (see Example 3.7).

1.5. Assume X has a splitting field L. We will write CH(X; Λ) for CH(XL; Λ)
and CH(X; Λ) for the image of the restriction map CH(X; Λ) → CH(X; Λ)
(cf. [KM06, 1.2]). Similarly, by M(X) we denote the motive of X considered
over L. If M is a direct summand of M(X)(n), by M we denote the motive
ML. Elements of CH(X) will be called rational cycles on XL with respect to
the field extension L/F . If L′ is another splitting field of X, then there is
a chain of canonical isomorphisms CH(XL) ≃ CH(XLL′) ≃ CH(XL′), where
LL′ is the composite of L and L′. Hence, the groups CH(X) and CH(X) do
not depend on the choice of L.

There is the Künneth decomposition End(M(X)) = CH(X × X) =
CH(X) ⊗ CH(X) and Poincaré duality. The latter means that given a
basis of CH(X) there is a dual one with respect to the pairing (α, β) 7→
deg(α · β), where deg is the degree map. In view of the Künneth decom-
position the correspondence product of cycles in on CH(X × X) is given by
the formula (α1 × β1) ◦ (α2 × β2) = deg(α1β2)(α2 × β1), the realization by
(α × β)⋆(γ) = deg(αγ)β and the transpose by (α × β)t = β × α. Since
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CH∗(X) is a free graded Z-module, we may define its Poincaré polynomial
as P (CH∗(X), t) =

∑

i≥0 rkZ CHi(X) · ti.
Sometimes we will use contravariant notation CH∗ for Chow groups,

where CHk(X) = CHdim X−k(X) for irreducible X.

1.6 Lemma. Let X and Y be two smooth projective varieties such that F (Y )
is a splitting field of X and Y has a splitting field. Consider the projection
in the Künneth decomposition

pr0 : CHr(X × Y ) =
r

⊕

i=0

CHr−i(X) ⊗ CHi(Y ) → CHr(X).

Then for any ρ ∈ CHr(X) we have pr−1
0 (ρ) ∩ CHr(X × Y ) 6= ∅.

Proof. Let L be a common splitting field of X and Y . Lemma follows from
the commutative diagram

CHr(X ×F Y )
resL/F

//

²²
²²

CHr(XL ×L YL)

²²
²²

pr0

((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

CHr(XF (Y ))
≃

// CHr((XL)L(YL))
≃

// CHr(XL)

where the left square is obtained by taking the generic fiber of the base
change morphism XL → X; the vertical arrows are taken from the localiza-
tion sequence for Chow groups and, hence, are surjective; and the bottom
horizontal maps are isomorphisms since L is a splitting field.

We will extensively use the following version of Rost Nilpotence Theorem.

1.7 Lemma. Let X be a smooth projective variety such that it splits over
any field K over which it has a rational point. Then for any α in the kernel
of the natural map End(M(X)) → End(M(X)) we have α◦(dim X+1) = 0.

Proof. See [EKM, Theorem 68.1].

2 Lifting of idempotents

2.1 Definition. Given a Z-graded ring A∗ and two idempotents φ1, φ2 ∈ A0

we say φ1 and φ2 are orthogonal if φ1φ2 = φ2φ1 = 0. We say an element
θ12 provides an isomorphism of degree d between idempotents φ1 and φ2 if
θ12 ∈ φ2A

−dφ1 and there exists θ21 ∈ φ1A
dφ2 such that θ12θ21 = φ2 and

θ21θ12 = φ1.
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2.2 Example. Let Λ be a commutative ring. Set A∗ = End∗(M(X; Λ)),
where

Endk(M(X; Λ)) = CHk(X × X; Λ), k ∈ Z

and the multiplication is given by the correspondence product. By definition
End0(M(X; Λ)) is the ring of endomorphisms of the motive M(X; Λ). Note
that a direct summand of M(X; Λ) can be identified with a pair (X, φ),
where φ is an idempotent, i.e., φ ◦ φ = φ (see [EKM, ch. XII]). Then an
isomorphism θ12 of degree d between φ1 and φ2 can be identified with an
isomorphism between the motives (X, φ1) and (X, φ2)(d).

2.3 Definition. Let f : A∗ → B∗ be a homomorphism of Z-graded rings.
We say that f is decomposition preserving if given a family φi ∈ B0 of pair-
wise orthogonal idempotents such that

∑

i φi = 1B, there exists a family of
pair-wise orthogonal idempotents ϕi ∈ A0 such that

∑

i ϕi = 1A and each
f(ϕi) is isomorphic to φi by means of an isomorphism of degree 0. We say f
is strictly decomposition preserving if, moreover, one can choose ϕi such that
f(ϕi) = φi.

We say f is isomorphism preserving if for any idempotents ϕ1 and ϕ2

in A0 and any isomorphism θ12 of degree d between idempotents f(ϕ1) and
f(ϕ2) in B0 there exists an isomorphism ϑ12 of degree d between ϕ1 and ϕ2.
We say f is strictly isomorphism preserving if, moreover, one can choose ϑ12

such that f(ϑ12) = θ12.

2.4. By definition we have the following properties of (strictly) decomposition
and isomorphism preserving morphisms:

(i) Let f : A∗ → B∗ and g : B∗ → C∗ be homomorphisms such that g ◦ f
is decomposition (resp. isomorphism) preserving and g is isomorphism
preserving. Then f is decomposition (resp. isomorphism) preserving.

(ii) Assume we are given a commutative diagram with ker f ′ ⊂ im i

A∗
f

// //
Ä _

i
²²

B∗
Ä _

i′

²²

A′∗
f ′

// // B′∗.

If f ′ is strictly decomposition (resp. strictly isomorphism) preserving,
then so is f .
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2.5 Proposition. Let f : A∗ → B∗ be a surjective homomorphism such that
the kernel of the restriction of f to A0 consists of nilpotent elements. Then f
is strictly decomposition (cf. [EKM, Proposition 95.1]) and strictly isomor-
phism preserving.

Proof. The fact that f is strictly decomposition preserving follows from [AF92,
Proposition 27.4]. The fact that f is strictly isomorphism preserving follows
from Lemma 2.6 below.

2.6 Lemma. Let A, B be two rings, A0, B0 be their subrings, f 0 : A0 → B0

be a ring homomorphism, f : A → B be a map of sets satisfying the following
conditions:

• f(α)f(β) equals either f(αβ) or 0 for all α, β ∈ A;

• f 0(α) equals f(α) if f(α) ∈ B0 or 0 otherwise;

• ker f 0 consists of nilpotent elements.

Let ϕ1 and ϕ2 be two idempotents in A0, ψ12 and ψ21 be elements in A such
that ψ12A

0ψ21 ⊂ A0, ψ21A
0ψ12 ⊂ A0, f(ψ21)f(ψ12) = f(ϕ1), f(ψ12)f(ψ21) =

f(ϕ2). Then there exist elements ϑ12 ∈ ϕ2A
0ψ12A

0ϕ1 and ϑ21 ∈ ϕ1A
0ψ21A

0ϕ2

such that ϑ21ϑ12 = ϕ1, ϑ12ϑ21 = ϕ2, f(ϑ12) = f(ϕ2)f(ψ12) = f(ψ12)f(ϕ1),
f(ϑ21) = f(ϕ1)f(ψ21) = f(ψ21)f(ϕ2).

Proof. Since ker f 0 consists of nilpotents, f 0 sends non-zero idempotents in
A0 to non-zero idempotents in B0; in particular, f(ϕ1) = f 0(ϕ1) 6= 0, f(ϕ2) =
f 0(ϕ2) 6= 0. Observe that

f(ψ12)f(ϕ1) = f(ψ12)f(ψ21)f(ψ12) = f(ϕ2)f(ψ12)

and, similarly, f(ψ21)f(ϕ2) = f(ϕ1)f(ψ21). Changing ψ12 to ϕ2ψ12ϕ1 and
ψ21 to ϕ1ψ21ϕ2 we may assume that ψ12 ∈ ϕ2Aϕ1 and ψ21 ∈ ϕ1Aϕ2. We
have

f 0(ϕ2) = f(ϕ2) = f(ψ12)f(ψ21) = f(ψ12ψ21) = f 0(ψ12ψ21);

therefore α = ψ12ψ21 − ϕ2 ∈ A0 is nilpotent, say αn = 0. Note that ϕ2α =
α = αϕ2. Set α∨ = ϕ2 − α + . . . + (−1)n−1αn−1 ∈ A0; then αα∨ = ϕ2 − α∨,
ϕ2α

∨ = α∨ = α∨ϕ2 and f(ϕ2) = f 0(ϕ2) = f 0(α∨) = f(α∨). Therefore
setting ϑ21 = ψ21α

∨ we have ϑ21 ∈ ϕ1Aϕ2, ψ12ϑ21 = ϕ2 and f(ϑ21) = f(ψ21).
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Now ϑ21ψ12 is an idempotent. We have

f 0(ϕ1) = f(ϕ1) = f(ϑ21)f(ψ12) = f(ϑ21ψ12) = f 0(ϑ21ψ12);

therefore β = ϑ21ψ12 −ϕ1 ∈ A0 is nilpotent. Note that βϕ1 = β = ϕ1β. Now
ϕ1 + β = (ϕ1 + β)2 = ϕ1 + 2β + β2 and therefore β(1 + β) = 0. But 1 + β is
invertible and hence we have β = 0. It means that ϑ21ψ12 = ϕ1 and we can
set ϑ12 = ψ12.

2.7 Corollary. The map End∗(M(X; Z/pn)) → End∗(M(X; Z/p)) is strictly
decomposition (cf. [EKM, Corollary 95.3]) and strictly isomorphism preserv-
ing.

Proof. Apply Proposition 2.5 to the case A∗ = End∗(M(X; Z/pn)), B∗ =
End∗(M(X; Z/p)) and the reduction map f : A∗ → B∗.

2.8 Lemma. Let m = m1m2 be a product of two coprime integers. Then the
map End∗(M(X; Z/m)) → End∗(M(X; Z/m1))×End∗(M(X; Z/m2)) is an
isomorphism.

Proof. Apply Chinese Remainder Theorem.

2.9. From now on assume that X is a smooth projective variety which has
a splitting field such that the kernel of the restriction map

resE : End∗(M(XE; Λ)) → End∗(M(X; Λ))

consists of nilpotent elements for all extensions E/F and all rings of coeffi-
cients Λ. By Lemma 1.7 the latter holds if X splits over any field extension
over which it has a rational point. We denote by End∗(M(X; Λ)) the image
of resF .

2.10 Corollary. The map End∗(M(XE ; Λ)) → End∗(M(XE ; Λ)) is strictly
decomposition and strictly isomorphism preserving for any field extension
E/F .

Proof. Apply Proposition 2.5 to the homomorphism resE : A∗ → B∗ between
the graded rings A∗ = End∗(M(XE ; Λ)) and B∗ = End∗(M(XE; Λ)).

2.11 Definition. We say that a field extension E/F is rank preserving with
respect to X if the restriction map resE/F : CH(X) → CH(XE) becomes an
isomorphism after tensoring with Q.
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2.12 Lemma. Assume X has a splitting field. Then for any rank preserving
finite field extension E/F we have [E : F ] · CH(XE) ⊂ CH(X).

Proof. Let L be a splitting field containing E. Let γ be any element in
CH(XE). By definition there exists α ∈ CH(XE) such that γ = resL/E(α).
Since resE/F ⊗Q is an isomorphism, there exists an element β ∈ CH(X) and
a non-zero integer n such that resE/F (β) = nα. By projection formula

n · coresE/F (α) = coresE/F (resE/F (β)) = [E : F ] · β.

Applying resL/E to both sides we obtain n(resL/E(coresE/F (α))) = n[E : F ]·γ.
Therefore, resL/E(coresE/F (α)) = [E : F ] · α.

2.13 Corollary. Assume X has a splitting field, E/F is a field extension
of degree coprime with m, which is rank preserving with respect to X × X.
Then the map End∗(M(X; Z/m)) → End∗(M(XE ; Z/m)) is decomposition
and isomorphism preserving.

Proof. By Lemma 2.12 we have End∗(M(XE ; Z/m)) = End∗(M(X; Z/m)).
Now apply Corollary 2.10 and 2.4.(i) with A∗ = End∗(M(X; Z/m)), B∗ =
End∗(M(XE; Z/m)) and C∗ = End∗(M(XE; Z/m)).

2.14 Lemma. The map SLl(Z) → SLl(Z/m) induced by the reduction mod-
ulo m is surjective.

Proof. Since Z/m is a semi-local ring, the group SLl(Z/m) is generated by
elementary matrices (see [HOM, Theorem 4.3.9]).

Given a free graded Z-module V ∗ set End−d(V ∗), d ∈ Z, to be the group
of endomorphisms of V ∗ decreasing the degree by d.

2.15 Proposition. (cf. [EKM, §96]) Consider a free graded Z-module V ∗

of finite rank and the reduction map f : End∗(V ∗) → End∗(V ∗⊗Z Z/m). As-
sume that the graded components of the respective im φi (see Definition 2.3)
are free Z/m-modules. Then f is strictly decomposition preserving. More-
over, if (Z/m)× = {±1}, then f is strictly isomorphism preserving.

Proof. We are given a decomposition V k ⊗Z Z/m = ⊕iW
k
i , where W k

i is the
k-graded component of im φi. Present V k as a direct sum V k =

⊕

i V
k
i of

free Z-modules such that rkZ V k
i = rkZ/m W k

i . Fix a Z-basis {vk
ij}j of V k

i .
For each W k

i choose a basis {wk
ij}j such that the linear transformation Dk of
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V k ⊗Z Z/m sending each vk
ij ⊗ 1 to wk

ij has determinant 1. By Lemma 2.14

there is a lifting D̃k of Dk over Z. So we obtain V k =
⊕

i W̃
k
i , where

W̃ k
i = D̃k(V k

i ) satisfies W̃ k
i ⊗Z Z/m = W k

i . Define ϕi on each V k to be the
projection onto W̃ k

i .
Now let ϕ1, ϕ2 be two idempotents in End∗(V ∗). Denote by V k

i the k-
graded component of im ϕi. An isomorphism θ12 between ϕ1 ⊗ 1 and ϕ2 ⊗ 1
of degree d can be identified with a family of isomorphisms θk

12 : V k
1 ⊗Z/m →

V k−d
2 ⊗Z/m. In the case (Z/m)× = {±1} all these isomorphisms are given by

matrices with determinants {±1} and, hence, can be lifted to isomorphisms
ϑk

12 : V k
1 → V k−d

2 by Lemma 2.14.

Now we are ready to formulate and prove the main result of this section

2.16 Theorem. Assume X has a splitting field of degree m which is rank
preserving with respect to X × X. Then the map

End∗(M(X)) → End∗(M(X; Z/m))

preserves decompositions with the property that im res(φi) are free Z/m-modules,
where

res : End∗(M(X; Z/m)) → End∗(M(X; Z/m))

is the restriction. If additionally (Z/m)× = {±1} then this map is isomor-
phism preserving.

Proof. Consider the diagram

End∗(M(X))
f

// //

²²
²²

End∗(M(X; Z/m))

²²
²²

End∗(M(X))
f̄

// //
Ä _

i
²²

End∗(M(X; Z/m))
Ä _

²²

End∗(M(X))
f ′

// // End∗(M(X; Z/m)).

Note that using Poincaré duality (see 1.5) we can identify End−d(M(X)) with
the group of endomorphisms of CH∗(X) which decrease the grading by d. Ap-
plying Proposition 2.15 to the case V ∗ = CH∗(X) we obtain that the map f ′

is strictly decomposition preserving. Moreover, if (Z/m)× = {±1} then f ′ is
strictly isomorphism preserving. By Lemma 2.12 ker f ′ ⊂ im i and, therefore,
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applying 2.4.(ii) we obtain that f̄ is strictly decomposition preserving and,
moreover, f̄ is strictly isomorphism preserving if (Z/m)× = {±1}. Now by
Corollary 2.10 the vertical arrows of the top square are strictly decomposition
and strictly isomorphism preserving. It remains to apply 2.4.(i).

3 Motives of fibered spaces

3.1 Definition. Let X be a smooth projective variety over a field F . We
say a smooth projective morphism f : Y → X is a cellular fibration if it is
a locally trivial fibration whose fiber F is cellular, i.e., has a decomposition
into affine cells (see [EKM, §67]).

3.2 Lemma. Let f : Y → X be a cellular fibration. Then M(Y ) is isomor-
phic to M(X) ⊗M(F).

Proof. We follow the proof of [EG97, Proposition 1]. Define the morphism

ϕ :
⊕

i∈I

M(X)(codim Bi) → M(Y )

to be the direct sum ϕ =
⊕

i∈I ϕi, where each ϕi is given by the cycle
[pr∗Y (Bi) ·Γf ] ∈ CH(X×Y ) produced from the graph cycle Γf and the chosen
(non-canonical) basis {Bi}i∈I of CH(Y ) over CH(X). The realization of ϕ
coincides exactly with an isomorphism of abelian groups CH(X)⊗CH(F) →
CH(Y ) constructed in [EG97, Proposition 1]. Then, by Manin’s identity
principle (see [Ma68, §3]) ϕ is an isomorphism.

3.3 Lemma. Let G be a linear algebraic group over a field F , X be a pro-
jective homogeneous G-variety and Y be a G-variety. Let f : Y → X be a
G-equivariant projective morphism. Assume that the fiber of f over F (X) is
isomorphic to FF (X) for some variety F over F . Then f is a locally trivial
fibration with the fiber F .

Proof. By the assumptions, we have Y ×XSpec F (X) ≃ (F×X)×XSpec F (X)
as schemes over F (X). Since F (X) is a direct limit of O(U) taken over all
non-empty affine open subsets U of X, by [EGA IV, Corollaire 8.8.2.5] there
exists U such that f−1(U) = Y ×X U is isomorphic to (F×X)×X U ≃ F×U
as a scheme over U . Since G acts transitively on X and f is G-equivariant,
the map f is a locally trivial fibration.
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3.4 Corollary. Let X be a projective G-homogeneous variety, Y be a projec-
tive variety such that YF (X) ≃ FF (X) for some variety F . Then the projection
map X × Y → X is a locally trivial fibration with the fiber F . Moreover, if
F is cellular, then M(X × Y ) ≃ M(X) ⊗M(F).

Proof. Apply Lemma 3.3 to the projection map X × Y → X and use
Lemma 3.2.

3.5. Let G be a simple (connected) linear algebraic group over a field F , X
be a projective homogeneous G-variety. Denote by D the Dynkin diagram of
G. According to [Ti66] one can always choose a quasi-split group G0 over F
with the same Dynkin diagram, a parabolic subgroup P of G0 and a cocycle
ξ ∈ H1(F, G0) such that G is isogenic to ξG0 and X is isomorphic to ξ(G0/P ).
We will use the following standard notation: If G0 is split, then G is called
to be of inner type over F .

3.6 Lemma. Let G be a semisimple linear algebraic group over F , X and Y
be projective homogeneous G-varieties corresponding to parabolic subgroups
P and Q of G0, Q ⊆ P . Denote by f : Y → X the map induced by the
quotient map G0/Q → G0/P . If G becomes split over F (X) then f is a
cellular fibration with the fiber F = P/Q.

Proof. Since G splits over F (X), the fiber of f over F (X) is isomorphic to
(P/Q)F (X) = FF (X). Now apply Lemma 3.3 and note that F is cellular.

3.7 Example. Let P = PΘ be the standard parabolic subgroup of a split
group G0, corresponding to a subset Θ of the respective Dynkin diagram D
(enumeration of roots follows Bourbaki). In this notation the Borel subgroup
corresponds to the empty set. Let ξ be a cocycle in H1(F, G0). Set G = ξG0

and X = ξ(G0/P ). Denote by q the degree of a splitting field of G0 and by d
the index of associated Tits algebra (for groups of classical types d is given
in [Ti66, Table II]). Analyzing Tits indices of G we see that G becomes split
over F (X) and, therefore, X becomes generically split over F if the subset
D \ Θ contains one of the following vertices k (cf. [KR94, §7]):

G0
1An Bn Cn

1Dn

k gcd(k, d) = 1 k = n; k is odd; k = n − 1;
any k in the k = n if 2 ∤ n or d = 1;
Pfister case any k in the Pfister case

13



G0 G2 F4
1E6 E7 E8

k any k = 1, 2, 3; k = 3, 5; k = 2, 5; k = 2, 3, 4, 5;
any k if k = 2, 4 if d = 1; k = 3, 4 if d = 1; any k if
q = 3 k = 1, 6 if q is odd k 6= 7 if q = 3 q = 5

(here by the Pfister case we mean the case when the cocycle ξ corresponds
to a Pfister form or its maximal neighbor)

Case-by-case arguments of paper [CPSZ] show that under certain condi-
tions the Chow motive of a twisted flag variety X can be expressed in terms
of the motive of a minimal flag. These conditions cover almost all twisted
flag varieties corresponding to groups of types An and Bn together with some
examples of types Cn, G2 and F4. Using the following theorem we provide a
uniform proof of these results as well as extend it to some other types.

3.8 Theorem. Let Y and X be taken as in Lemma 3.6. Then the Chow
motive M(Y ) of Y is isomorphic to a direct sum of twisted copies of the
motive M(X), i.e.,

M(Y ) ≃
⊕

i≥0

M(X)(i)⊕ci,

where
∑

cit
i = P (CH∗(Y ), t)/P (CH∗(X), t).

Proof. Apply Lemmas 3.6 and 3.2.

3.9 Remark. The explicit formula for P (CH∗(X), t) involves the degrees of
basic polynomial invariants of G0 and is provided in [Hi82, Ch. IV, Cor. 4.5].

4 Varieties of complete flags

4.1. Let G0 be a split simple linear algebraic group with a maximal split torus
T and a Borel subgroup B containing T . Let G = ξG0 be a twisted form of
G0 given by a cocycle ξ ∈ H1(F, G0) and X = ξ(G0/B) be the corresponding
variety of complete flags. Observe that the group G splits over any field
K over which X has a rational point, in particular, over the function field
F (X). According to [De74] the Chow ring CH(X) can be expressed in purely
combinatorial terms and, therefore, depends only on the type of G but not
on the base field F .

14



4.2. Let p be a prime integer. To simplify the notation we denote by Ch(X)
the Chow ring of X = ξ(G0/B) with Z/p-coefficients and by Ch(X) the

image of the restriction map CH(X; Z/p) → CH(X; Z/p). Let T̂ denote the
group of characters of T and S(T̂ ) be the symmetric algebra. By R we denote
the image of the characteristic map c : S(T̂ ) → Ch(X) (see [Gr58, (4.1)]).
According to [KM06, Thm.6.4] there is an embedding

R ⊆ Ch(X), (1)

where the equality holds if the cocycle ξ corresponds to a generic torsor.

4.3. Let Ch(G) denote the Chow ring with Z/p-coefficients of the group G0.
Consider the pull-back induced by the quotient map

π : Ch(X) → Ch(G)

According to [Gr58, Rem. 2◦] π is surjective with the kernel generated by
R+, where R+ stands for the subgroup of non-constant elements of R.

The explicit presentation of Ch(G) is known for all types of G and all
torsion primes p of G (see [Gr58, Definition 3]). Namely, by [Kc85, The-
orem 3] it is a quotient of the polynomial ring in r variables x1, . . . , xr of
codimensions d1 ≤ d2 ≤ . . . ≤ dr coprime to p, modulo an ideal generated by

certain p-powers xpk1

1 , . . . , xpkr

r (ki ≥ 0, i = 1, . . . , r)

Ch∗(G) = (Z/p)[x1, . . . , xr]/(xpk1

1 , . . . , xpkr

r ). (2)

In the case p is not a torsion prime of G we have Ch∗(G) = Z/p, i.e., r = 0.
Note that the complete list of numbers {dip

ki}i=1...r called p-exceptional
degrees of G0 was provided in [Kc85, Table II]. Taking the p-primary and
p-coprimary parts of each p-exceptional degree one immediately restores the
respective ki and di.

4.4. We introduce two orders on the set of additive generators of Ch(G), i.e.,
monomials xm1

1 . . . xmr
r . To simplify the notation, we will denote the mono-

mial xm1
1 . . . xmr

r by xM , where M is an r-tuple of integers (m1, . . . , mr). The
codimension of xM will be denoted by |M |. Observe that |M | =

∑r
i=1 dimi.

• Given two r-tuples M = (m1, . . . , mr) and N = (n1, . . . , nr) we say
xM 4 xN (or equivalently M 4 N) if mi ≤ ni for all i. This gives a
partial ordering on the set of all monomials (r-tuples).
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• Given two r-tuples M = (m1, . . . , mr) and N = (n1, . . . , nr) we say
xM ≤ xN (or equivalently M ≤ N) if either |M | < |N |, or |M | = |N |
and mi ≤ ni for the greatest i such that mi 6= ni. This gives a well-
ordering on the set of all monomials (r-tuples) known also as DegLex
order.

4.5 Definition. Let X = ξ(G0/B) be the twisted form of the variety of
complete flags by means of a cocycle ξ ∈ H1(F, G0). Let Ch(G) denote the
image of the composite

Ch(X)
res
−→ Ch(X)

π
−→ Ch(G)

Since both maps are ring homomorphisms, Ch(G) is a subring of Ch(G).
For each 1 ≤ i ≤ r set ji to be the smallest non-negative integer such

that the subring Ch(G) contains an element a with the greatest monomial

xpji

i with respect to the DegLex order on Ch(G), i.e., of the form

a = xpji

i +
∑

xM¯xpji
i

cMxM .

The r-tuple of integers (j1, . . . , jr) will be called J-invariant of G modulo p
and will be denoted by Jp(G).

4.6 Example. From presentation (2) we have ji ≤ ki for all i = 1, . . . , r.
According to (1) the J-invariant takes its maximal value Jp(G) = (k1, . . . , kr)
if the cocycle ξ corresponds to a generic torsor. Later on (see Corollary 6.10)
it will be shown that the J-invariant takes its minimal possible value Jp(G) =
(0, . . . , 0) if and only if the group G splits by a finite field extension of degree
coprime to p.

4.7 Example. If the Chow ring Ch(G) has only one generator, i.e., r = 1,
then the J-invariant is equal to the smallest non-negative integer j1 such that

xpj1

1 ∈ Ch(G).

The next example explains the terminology ‘J-invariant’

4.8 Example. Let φ be a quadratic form with trivial discriminant. In [Vi05,
Definition 5.11] A. Vishik introduced the notion of J-invariant of φ, the tuple
of integers, which describes the subgroup of rational cycles on the respective
maximal orthogonal Grassmannian. This invariant is an important tool in
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studying algebraic cycles on quadrics. An equivalent but ‘dual’ (in terms
of non-rationality of cycles) definition of J(φ) was provided in [EKM, § 88].
Using Theorem 3.8 one can show that J(φ) introduced in [EKM] can be
expressed in terms of J2(O

+(φ)) = (j1, . . . , jr) as follows:

J(φ) = {2ldi | i = 1, . . . , r, 0 ≤ l ≤ ji − 1}.

Since all di are odd, J2(O
+(φ)) is uniquely determined by J(φ) as well.

Now we are ready to formulate and prove the main result of this section

4.9 Theorem. Given G and p with Jp(G) = (j1, . . . , jr) the motive of X is
isomorphic to the direct sum

M(X; Z/p) ≃
⊕

i≥0

Rp(G)(i)⊕ci,

where the motive Rp(G) is indecomposable, its Poincaré polynomial over a
splitting field is equal to

P (Rp(G), t) =
r

∏

i=1

1 − tdip
ji

1 − tdi
, (3)

and the integers ci are the coefficients of the polynomial
∑

i≥0

cit
i = P (Ch∗(X), t)/P (Rp(G), t).

Fix preimages ei of xi in Ch(X). For an r-tuple M = (m1, . . . , mr) set
eM =

∏r
i=1 emi

i . Set K = (k1, . . . , kr) and N = pK −1 = (pk1 −1, . . . , pkr −1).
Set d = dim X − |N | = deg(P (R∗, t)).

4.10 Lemma. The Chow ring Ch(X) is a free R-module with a basis {eM},
M 4 N .

Proof. Note that R+ is a nilpotent ideal in R. Applying Nakayama Lemma
we obtain that {eM} generate Ch(X). By [Kc85, (2)] Ch(X) is a free R-
module, hence, for the Poincaré polynomials we have

P (Ch∗(X), t) = P (Ch∗(G), t) · P (R∗, t).

Substituting t = 1 we obtain that

rk Ch(X) = rk Ch(G) · rk R.

To finish the proof observe that rk Ch(G) coincides with the number of gen-
erators {eM}.
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4.11 Proposition. The pairing R×R → Z/p given by (α, β) 7→ deg(eNαβ)
is non-degenerated, i.e., for any element α ∈ R there exists β such that
deg(eNαβ) 6= 0.

Proof. Choose a homogeneous basis of Ch(X). Let α∨ be the Poincaré dual
of α with respect to this basis. By Lemma 4.10 Ch(X) is a free R-module
with a basis {eM}, hence, expanding α∨ we obtain

α∨ =
∑

M4N

eMβM , where βM ∈ R.

Note that if M 6= N then codim αβM > d, therefore, αβM = 0. So we can
set β = βN .

From now on we fix a homogeneous Z/p-basis {αi} of R and the dual
basis {α#

i } with respect to the pairing introduced in Proposition 4.11.

4.12 Corollary. For |M | ≤ |N | we have

deg(eMαiα
#
j ) =

{

1, M = N and i = j

0, otherwise

Proof. If M = N , then it follows from the definition of the dual basis. As-
sume |M | < |N |. If deg(eMαiβj) 6= 0, then codim(αiβj) > d, a contradiction
with the fact that αiβj ∈ R. Hence, we reduced to the case M 6= N and
|M | = |N |. Since |M | = |N |, codim(αiβj) = d and, hence, R+αiβj = 0.

From the other side there exists i such that mi ≥ pki and epki ∈ Ch(X) ·R+.
Hence, eMαiβj = 0.

4.13 Definition. Given two pairs (L, l) and (M, m), where L, M are r-tuples
and l, m are integers, we say (L, l) ≤ (M, m) if either L ¯ M , or in the case
L = M we have l ≤ m. We introduce the filtration on the ring Ch(X) as
follows:

The (M, m)-th term Ch(X)M,m is the subring generated by the
elements eIα with I ≤ M , α ∈ R, codim α ≤ m.

Define the associated graded ring as follows:

A∗,∗ =
⊕

(M,m)

AM,m, where AM,m = Ch(X)M,m/
⋃

(L,l) (̄M,m)

Ch(X)L,l.
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By Lemma 4.10 if M 4 N the graded component AM,m consists of the classes
of elements eMα with α ∈ R and codim α = m. In particular, rkAM,m =
rk Rm. Comparing the ranks we see that AM,m is trivial when M 64 N .

Consider the subring Ch(X) of rational cycles with the induced filtration.
The associated graded subring will be denoted by A∗,∗

rat. From the definition

of J-invariant it follows that the elements epji

i , i = 1, . . . , r, belong to A∗,∗
rat.

Similarly, we introduce the filtration on the ring Ch(X × X) as follows:

The (M, m)-th term is the subring generated by the elements
eIα×eLβ with I +L ≤ M , α, β ∈ R and codim α+codim β ≤ m.

The associated graded ring will be denoted by B∗,∗. By definition B∗,∗ is
isomorphic to the product of graded rings A∗,∗⊗Z/p A∗,∗. The graded subring

associated to Ch(X × X) will be denoted by B∗,∗
rat.

4.14. The key observation is that due to Corollary 4.12 we have

Ch(X × X)M,m ◦ Ch(X × X)L,l ⊂ Ch(X × X)M+L−N,m+l−d and

(Ch(X × X)M,m)⋆(Ch(X)L,l) ⊂ Ch(X)M+L−N,m+l−d

and, therefore, we have the correctly defined composition law

◦ : BM,m × BL,l → BM+L−N,m+l−d

and realization map (see 1.5)

⋆ : BM,m × AL,l → AM+L−N,m+l−d

In particular, BN+∗,d+∗ can be viewed as a graded ring with respect to the
composition such that (α ◦ β)⋆ = α⋆ ◦ β⋆. Note also that both operations
preserve rationality of cycles.

The proof of the following result is based on the fact that the variety X
is generically split

4.15 Lemma. The elements ei × 1 − 1 × ei, i = 1, . . . , r, belong to B∗,∗
rat.

Proof. The proof is based on the fact that the variety X is generically split.
Fix an i. Since X splits over F (X), by Lemma 1.6 there exists a cycle in

Chdi(X × X) of the form

ξ = ei × 1 +
∑

s

µs × νs + 1 × µ,
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where codim µs, codim νs < di. Then the cycle

pr∗13(ξ) − pr∗23(ξ) = (ei × 1 − 1 × ei) × 1 +
∑

s

(µs × 1 − 1 × µs) × νs

belongs to Ch(X×X×X). Applying Corollary 3.4 to the projection pr3 : X×
X×X → X×X we conclude that the pull-back pr∗3 : Ch(X×X) → Ch(X×
X ×X) has a (non-canonical) section, say, δ3. Since the construction of this
section preserves base change it preserves rationality of cycles. Hence, passing
to a splitting field we obtain a rational cycle

δ3(pr∗13(ξ) − pr∗23(ξ)) = ei × 1 − 1 × ei +
∑

s

(µs × 1 − 1 × µs)δ3(1 × 1 × νs)

whose image in B∗,∗
rat is ei ⊗ 1 − 1 ⊗ ei.

We will write (e×1−1×e)M for the product
∏r

i=1(ei×1−1×ei)
mi . and

(

M
L

)

for the product of binomial coefficients
∏r

i=1

(

mi

li

)

. In the computations
we will extensively use the following two formulas (the first follows directly
from Corollary 4.12 and the second is a well-known binomial identity).

4.16. Let α be an element of R∗ and α# be its dual with respect to the
non-degenerate pairing from 4.11, i.e., deg(eNαα#) = 1. Then we have

((e × 1 − 1 × e)M(α# × 1))⋆(e
Lα) =

(

M

M + L − N

)

(−1)M+L−NeM+L−N

4.17 (Lucas’ Theorem). The following identity holds

(

n

k

)

≡
∏

i≥0

(

ni

ki

)

mod p,

where k =
∑

i≥0 kip
i and n =

∑

i≥0 nip
i are base p presentations of k and n.

Set for brevity J = Jp(G) = (j1, . . . , jr) and recall that K = (k1, . . . , kr).

4.18 Proposition. Let {αi} be a homogeneous Z/p-basis of R. Then the set
of elements B = {epJLαi | L 4 pK−J − 1} forms a Z/p-basis of A∗,∗

rat.
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Proof. According to Lemma 4.10 the elements from B are linearly indepen-
dent. Assume B does not generate A∗,∗

rat. Choose an element ω ∈ AM,m
rat of

the smallest index (M, m) which is not in the linear span of B. By definition
of AM,m (see Definition 4.13) ω can be written as ω = eMα, where M 4 N ,
α ∈ Rm and M can not be presented as M = pJL′ for an r-tuple L′. The lat-
ter means that in the decomposition of M into p-primary and p-coprimary
components M = pSL, where S = (s1, . . . , sr), L = (l1, . . . , lr) and p ∤ lk
for k = 1, . . . , r, we have J 64 S. Choose an i such that si < ji. Denote
Mi = (0, . . . , 0, mi, 0, . . . , 0) and Si = (0, . . . , 0, si, 0, . . . , 0), where mi and si

stand at the i-th place.
Set T = N − M + Mi. By Lemma 4.15 and 4.16 together with observa-

tion 4.14 the element

((e × 1 − 1 × e)T (α# × 1))⋆(e
Mα) =

(

pki − 1

mi

)

(−1)miemi

belongs to AMi,0
rat . By 4.17 we have p ∤

(

pki−1
mi

)

and, therefore, this element is
non trivial. Moreover, since si < ji, this element is not in the span of B. Since
(M, m) was chosen to be the smallest one and (Mi, 0) ≤ (M, m) we obtain
that (M, m) = (Mi, 0). Repeating the same arguments for T = N −Mi + pSi

we obtain that Mi = pSi, i.e., li = 1.
Now let γ be a representative of ω = epsi

i in Ch(X). Then its image π(γ)
in Ch(G) has the leading term xpsi

i with si < ji. This contradicts to the
definition of J-invariant.

4.19 Corollary. The elements

{(e× 1− 1× e)S(epJLαi × epJ (pK−J−1−M)α#
j ) | L, M 4 pK−J − 1, S 4 pJ − 1}

form a Z/p-basis of B∗,∗
rat. In particular, they form a basis of BN,d

rat if and only
if S = pJ − 1 and L = M .

Proof. According to 4.10 these elements are linearly independent and their
number is p|2K−J |(rk R)2. They are rational according to Definition 4.13 and
Lemma 4.15. Applying Corollary 3.4 we obtain that

rk B∗,∗
rat = rk Ch(X × X) = rk Ch(X) · rk Ch(X),

where the latter coincides with rkA∗,∗
rat·p

|K| rk R = p|2K−J |(rk R)2 by Lemma 4.10
and Proposition 4.18.
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4.20 Lemma. The elements

θL,M,i,j = (e × 1 − 1 × e)pJ−1(epJLαi × epJ(pK−J−1−M)α#
j ), L, M 4 pK−J − 1,

belong to B∗,∗
rat and satisfy the relation θL,M,i,j ◦ θL′,M ′,i′,j′ = δLM ′δij′θL′,M,i′,j.

Proof. Follows from Corollary 4.12.

Proof of Theorem 4.9. Consider the projection map

f 0 : Ch(X × X)N,d → BN,d
rat .

By Lemma 4.20 the elements θL,L,i,j form a family of pairwise-orthogonal
idempotents whose sum is the identity. The kernel of f 0 is nilpotent and,
therefore, by Proposition 2.5 there exist pair-wise orthogonal idempotents
ϕL,i in Ch(X×X) which are mapped to θL,L,i,i and whose sum is the identity.
Their components of codimension |N |+d = dim X have the same properties

and, hence, we may assume that ϕL,i belong to ChdimX(X × X).
We show that ϕL,i are indecomposable. By Corollary 4.19 and Lemma 4.20

the ring (BN,d
rat , ◦) can be identified with a product of matrix rings over Z/p

BN,d
rat ≃

d
∏

s=0

End((Z/p)p|K−J| rkRs

).

By means of this identification θL,L,i,i : epJMαj 7→ δL,Mδi,je
pJLαi is an idem-

potent of rank 1 and, therefore, is indecomposable. Since f 0 preserves iso-
morphisms, ϕL,i are indecomposable as well.

We show that ϕL,i is isomorphic to ϕM,j. In the ring B∗,∗
rat mutually inverse

isomorphisms between them are given by θL,M,i,j and θM,L,j,i. Let

f : Ch(X × X) → B∗,∗
rat

be the leading term map; it means that for any γ ∈ Ch(X × X) we find the
smallest degree (I, s) such that γ belongs to Ch(X×X)I,s and set f(γ) to be

the image of γ in BI,s
rat. Note that f is not a homomorphism but satisfies the

condition that f(ξ)◦f(η) equals either f(ξ◦η) or 0. Choose preimages ψL,M,i,j

and ψM,L,j,i of θL,M,i,j and θM,L,j,i by means of f . Applying Lemma 2.6 we
obtain mutually inverse isomorphisms ϑL,M,i,j and ϑM,L,j,i between ϕL,i and
ϕM,j. It remains to take their homogeneous components of the appropriate
degrees.
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Now applying Lemma 1.7 and Corollary 2.10 to the restriction map

resF : End(M(X; Z/p)) = Ch(X × X) → Ch(X × X) = End∗(M(X; Z/p))

and the family of idempotents ϕL,i we obtain the family of pair-wise orthog-
onal idempotents φL,i ∈ End(M(X; Z/p)) such that

∆X =
∑

L,i

φL,i.

Since resF is isomorphism preserving, for the respective motives we have
(X, φL,i) ≃ (X, φ0,0)(|L| + i) for all L and i (see Example 2.2). Denoting
Rp(G) = (X, φ0,0) we obtain the desired motivic decomposition.

As a direct consequence of the proof we obtain

4.21 Corollary. Any direct summand of M(X; Z/p) is isomorphic to a di-
rect sum of twisted copies of Rp(G).

Proof. Indeed, in the ring BN,d
rat any idempotent is isomorphic to a sum of

idempotents θL,L,i,i, and the map f 0 preserves isomorphisms.

4.22 Remark. Note that Corollary 4.21 can be viewed as a particular case
of the Krull-Schmidt Theorem proven by V. Chernousov and A. Merkurjev
(see [CM06, Corollary 9.7]).

5 Motivic decompositions

In the present section we prove the main result of this paper

5.1 Theorem. Let G be a simple linear algebraic group of inner type over a
field F and p be a prime integer. Let X be a generically split projective homo-
geneous G-variety. Then the motive of X with Z/p-coefficients is isomorphic
to the direct sum

M(X; Z/p) ≃
⊕

i≥0

Rp(G)(i)⊕ai ,

where Rp(G) is an indecomposable motive, whose Poincaré polynomial P (Rp(G), t)
is given by (3) and, hence, depends only on the J-invariant of G, and ai are
the coefficients of the quotient polynomial

∑

i≥0

ait
i = P (CH∗(X), t)/P (Rp(G), t).
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Proof. The variety X is generically split means that the group G becomes
split over F (X). Let Y be the variety of complete G-flags. According to
Theorem 3.8 the motive of Y is isomorphic to a direct sum of twisted copies
of the motive of X. To finish apply Theorem 4.9 and Corollary 4.21.

5.2 Lemma. Let G be a group of inner type, X be a projective homogeneous
G-variety. Then any field extension E/F is rank preserving with respect to
X and X × X.

Proof. By [Pa94, Theorem 2.2 and 4.2] the restriction map K0(X) → K0(XE)
becomes an isomorphism after tensoring with Q. Now the Chern character
ch : K0(X) ⊗ Q → CH∗(X) ⊗ Q is an isomorphism and respects pull-backs,
hence E is rank preserving with respect to X. It remains to note that X×X
is G × G-homogeneous variety.

Now we provide several properties of Rp(G) which will be extensively
used in the applications:

5.3 Proposition. Let G and G′ be two simple groups of inner type, X and
X ′ be the corresponding varieties of complete flags.

• (base change) For any field extension E/F we have

Rp(G)E ≃
⊕

i≥0

Rp(GE)(i)⊕ai ,

where
∑

ait
i = P (Rp(G), t)/P (Rp(GE), t).

• (transfer argument) If E/F is a field extension of degree coprime
to p then Jp(GE) = Jp(G) and Rp(GE) = Rp(G)E. Moreover, if
Rp(GE) ≃ Rp(G

′
E) then Rp(G) ≃ Rp(G

′).

• (comparison lemma) If G splits over F (X ′) and G′ splits over F (X)
then Rp(G) ≃ Rp(G

′).

Proof. The first claim follows from Theorem 4.9 and Corollary 4.21. To
prove the second claim note that E is rank preserving with respect to X
and X × X by Lemma 5.2. Now Jp(GE) = Jp(G) by Lemma 2.12, and
hence Rp(GE) = Rp(G)E by the first claim. The remaining part of the claim
follows from Corollary 2.13 applied to the variety X

∐

X ′.
Now we prove the last claim. The variety X×X ′ is the variety of complete

G×G′-flags. Applying Corollary 3.4 we can express M(X×X ′; Z/p) in terms
of Rp(G) and Rp(G

′). Now apply Corollary 4.21.
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5.4 Corollary. We have Rp(G) ≃ Rp(Gan), where Gan is the anisotropic
kernel of G.

Let m be a positive integer. We say a polynomial g(t) is m-positive, if
g 6= 0, P (Rp(G), t) | g(t) and the quotient polynomial g(t)/P (Rp(G), t) has
non-negative coefficients for all primes p dividing m.

5.5 Proposition. Let G be a simple linear algebraic group of inner type
over a field F and X be a generically split projective homogeneous G-variety.
Assume that X splits by a field extension of degree m. Let f(t) be an m-
positive polynomial dividing P (M(X), t) which can not be presented as a sum
of two m-positive polynomials. Then the motive of X with integer coefficients
splits as a direct sum

M(X) ≃
⊕

i

Ri(ci), ci ∈ Z,

where Ri is indecomposable and P (Ri, t) = f(t) for all i. Moreover, if m =
2, 3, 4 or 6, then all motives Ri are isomorphic up to twists.

Proof. First, we apply Corollary 2.7 and Lemma 2.8 to obtain a decompo-
sition with Z/m-coefficients. By Lemma 5.2 our field extension is rank pre-
serving so we can apply Theorem 2.16 to lift the decomposition over Z.

6 Properties of J-invariant

6.1. Recall (see [Br03]) that if the characteristic of the base field F is different
from p then one can construct Steenrod p-th power operations

Sl : Ch∗(X) → Ch∗+l(p−1)(X), l ≥ 0

such that S0 = id, Sl restricted to Chl(X) coincides with taking to the p-th
power, and the total operation S• =

∑

l≥0 Sl is a homomorphism of Z/p-
algebras compatible with pull-backs. In the case of varieties over the field of
complex numbers Sl is compatible with its topological counterparts: reduced
power operation P l if p 6= 2 and Steenrod square Sq2l if p = 2 (in this case
Ch∗(X) can be viewed as a subring in H2∗(X, Z/p)).

When X is the variety of complete G-flags the action of Steenrod opera-
tions on Ch∗(X) can be described in purely combinatorial terms (see [DZ07])
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and, hence, doesn’t depend on the choice of a base field. Since Steenrod op-
erations respect pull-back they respect rationality as well.

Over the field of complex numbers Ch∗(G) may be identified with the im-
age of the pull-back map H2∗(X, Z/p) → H2∗(G, Z/p). An explicit description
of this image and formulae describing the action of P l on H∗(G, Z/p) can be
found in [MT91].

The following lemma provides an important technical tool for computing
the possible values of J-invariant of G.

6.2 Lemma. Assume that in Ch∗(G) we have Sl(xi) = xps

m and Sl(xi′) < xps

m

if i′ < m with respect to the DegLex order. Then jm ≤ ji + s.

Proof. By definition there exists a cycle α ∈ Ch(X) such that the leading

term of π(α) is xpji

i . For the total operation we have

S(xpji

i ) = S(xi)
pji = S0(xi)

pji + S1(xi)
pji + . . . + Sdi(xi)

pji .

In particular, Slpji (xpji

i ) = Sl(xi)
pji . Applying Slpji to α we obtain a rational

cycle whose image under π has the leading term xpji+s

m .

6.3. We summarize information about restrictions on J-invariant which can
be obtained using Lemma 6.2 into the following table (numbers di and ki are
taken from [Kc85, Table II]).
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G0 p r di ki ji

SLn /µm, m | n p | m 1 1 pk1 ‖ n any
PGSpn, 2 | n 2 1 1 2k1 ‖ n any
SOn 2 [n+1

4
] 2i − 1 [log2

n−1
2i−1

] ji ≥ ji+l if 2 ∤
(

i−1
l

)

,

ji ≤ j2i−1 + 1
Spinn 2 [n−3

4
] 2i + 1 [log2

n−1
2i+1

] ji ≥ ji+l if 2 ∤
(

i
l

)

,

ji ≤ j2i + 1
PGO2n, n > 1 2 [n+2

2
] 1, i = 1 2k1 ‖ n ji ≥ ji+l if 2 ∤

(

i−2
l

)

,
2i − 3, i ≥ 2 [log2

2n−1
2i−3

] ji ≤ j2i−2 + 1

Ss2n, 2 | n 2 n
2

1, i = 1 2k1 ‖ n ji ≥ ji+l if 2 ∤
(

i−1
l

)

2i − 1, i ≥ 2 [log2
2n−1
2i−1

] ji ≤ j2i−1 + 1

G2, F4, E6 2 1 3 1
F4, Esc

6 , E7 3 1 4 1
Ead

6 3 2 1, 4 2, 1
Esc

7 2 3 3, 5, 9 1, 1, 1 j1 ≥ j2 ≥ j3

Ead
7 2 4 1, 3, 5, 9 1, 1, 1, 1 j2 ≥ j3 ≥ j4

E8 2 4 3, 5, 9, 15 3, 2, 1, 1 j1 ≥ j2 ≥ j3,
j1 ≤ j2 + 1, j2 ≤ j3 + 1

E8 3 2 4, 10 1, 1 j1 ≥ j2

E8 5 1 6 1

We give some applications of J-invariant. First, as a by-product of the
proof of Theorem 4.9 we obtain the following expression for the canonical
p-dimension of the variety of complete flags (cf. [EKM, Theorem 90.3] for
the case of quadrics).

6.4 Proposition. In the notation of Theorem 4.9 we have

cdp(X) =
r

∑

i=1

di(p
ji − 1).

Proof. Follows from Proposition 4.18 and [KM06, Theorem 5.8].

Let X be a smooth projective variety which has a splitting field.

6.5 Lemma. For any φ, ψ ∈ CH∗(X × X) one has

deg((pr2)∗(φ · ψt)) = tr((φ ◦ ψ)∗).
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Proof. Choose a homogeneous basis {ei} of CH∗(X). Let {e∨i } be its Poincaré
dual. Since both sides are bilinear, it suffices to check the assertion for
φ = ei × e∨j and ψ = ek × e∨l . In this case both sides are equal to δilδjk.

Denote by d(X) the greatest common divisor of the degrees of all zero
cycles on X and by dp(X) its p-primary component.

6.6 Corollary. For any φ ∈ CH(X × X; Z/m) we have

g.c.d.(d(X), m) | tr(φ∗).

Proof. Set ψ = ∆X̄ and apply Lemma 6.5.

6.7 Corollary. Assume that M(X; Z/p) has a direct summand M . Then

1. dp(X) | P (M, 1);

2. if dp(X) = P (M, 1) and the kernel of the restriction End(M(X)) →
End(M(X)) consists of nilpotents, then M is indecomposable.

Proof. Set q = dp(X) for brevity. Let M = (X, φ). By Corollary 2.7 there
exists an idempotent ϕ ∈ End(M(X); Z/q) such that ϕ mod p = φ. Then
res(ϕ) ∈ End(M(X); Z/q) is a rational idempotent. Since every projective
module over Z/q is free, we have

tr(res(ϕ)∗) = rkZ/q(res(ϕ)∗) = rkZ/p(res(φ)∗) = P (M, 1) mod q,

and the first claim follows by Corollary 6.6. The second claim follows from
the first, since the second assumption implies that for any nontrivial direct
summand M ′ of M we have P (M ′, 1) < P (M, 1).

6.8. Let G be a group of inner type. Denote by n(G) the greatest common
divisor of degrees of all finite splitting fields of G and by np(G) its p-primary
component. Note that n(G) = d(X) and np(G) = dp(X), where X is the
variety of complete G-flags.

We obtain the following estimate on np(G) in terms of J-invariant (cf.
[EKM, Prop. 88.11] in the case of quadrics).

6.9 Proposition. For a group G of inner type with Jp(G) = (j1, . . . , jr) we
have

np(G) ≤ p
P

i ji.
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Proof. Follows from Theorem 4.9 and Corollary 6.7.

6.10 Corollary. The following statements are equivalent:

• Jp(G) = (0, . . . , 0);

• np(G) = 1;

• Rp(G) = Z/p.

Proof. If Jp(G) = (0, . . . , 0) then np(G) = 1 by Proposition 6.9. If np(G) = 1
then there exists a splitting field L of degree m prime to p and, therefore,
Rp(G) = Z/p by the transfer argument (see Proposition 5.3). The remaining
implication is obvious.

Finally, we obtain the following reduction formula (cf. [EKM, Cor. 88.7]
in the case of quadrics).

6.11 Proposition. Let G be a group of inner type, X be the variety of
complete G-flags, Y be a projective variety such that the map CHl(Y ) →
CHl(YF (x)) is surjective for all x ∈ X and l ≤ n. Then ji(G) = ji(GF (Y )) for
all i such that dip

ji(GF (Y )) ≤ n.

Proof. Indeed, by [EKM, Lemma 88.5] the map CHl(X) → CHl(XF (Y )) is
surjective for all l ≤ n, and therefore ji(G) ≤ ji(GF (Y )). The converse
inequality is obvious.

6.12 Corollary. Jp(G) = Jp(GF (t)).

Proof. Take Y = P1 and apply Proposition 6.11.

7 Examples

In the present section we provide examples of motivic decompositions of
projective homogeneous varieties obtained by applying Theorem 5.1.
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The case r = d1 = 1. According to Table 6.3 this corresponds to the case
when G is of type An or Cn. Let A be a central simple algebra corresponding
to G. We have A = Mm(D), where D is a division algebra of index d ≥ 1 over
a field F . Let p be a prime divisor of d (p = 2 in the case of Cn). Observe
that according to Table 6.3 Jp(G) = (j1) for some j1 ≥ 0. Let XΘ be the
projective homogeneous G-variety given by a subset Θ of vertices of the
respective Dynkin diagram such that p ∤ j for some j /∈ Θ (cf. Example 3.7).
Then by Theorem 5.1 we obtain that

M(XΘ; Z/p) ≃
⊕

i≥0

Rp(G)(i)⊕ai , (4)

where Rp(G) is indecomposable and

Rp(G) ≃

pj1−1
⊕

i=0

(Z/p)(i).

Now we identify Rp(G). Using the comparison lemma (see Proposi-
tion 5.3) we conclude that Rp(G) depends only on D, so we may assume
m = 1. By Table 6.3 we have pj1 | d, but on the other hand by Proposi-
tion 6.9 we have np(G) ≤ pj1. Therefore, pj1 is a p-primary part of d.

We have D ≃ Dp ⊗F D′, where pj1 = ind(Dp) and p ∤ ind(D′). Passing
to a splitting field of D′ of degree prime to p and using Proposition 5.3 we
conclude that the motives of XΘ and SB(Dp) are direct sums of twisted
Rp(G). Comparing the Poincaré polynomials we conclude that

7.1 Lemma. M(SB(Dp); Z/p) ≃ Rp(G).

Applying Proposition 5.5 to X = SB(D) and comparing the Poincaré
polynomials of M(X) and Ri we obtain that

7.2 Corollary. The motive of SB(D) with integer coefficients is indecom-
posable.

7.3 Remark. Indeed, we provided a uniform proof of the results of paper
[Ka96]. Namely, the decomposition of M(SB(A); Z/p) (see [Ka96, Cor. 1.3.2])
and indecomposability of M(SB(D); Z) (see [Ka96, Thm. 2.2.1]).
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The case r = 1 and d1 > 1. According to Table 6.3 this holds if

p = 2: G is a group of type Spinn, n = 7, 8, 9, 10, G2, F4 or E6;

p = 3: G is a group of type F4, E7 or strongly inner form of type E6;

p = 5: G is a group of type E8.

Observe that in all these cases Jp(G) = (0) or (1). Let X be a generically
split projective homogeneous G-variety (cf. Example 3.7). By Theorem 5.1
we obtain the decomposition

M(X; Z/2) ≃
⊕

i≥0

Rp(G)(i)⊕ai , (5)

where the motive Rp(G) is indecomposable and (cf. [Vo03, (5.4-5.5)])

Rp(G) ≃

p−1
⊕

i=1

(Z/p)(i · (p + 1)).

Now we identify Rp(G). Let r be the Rost invariant as defined in [Me03]
and rp denote its p-part.

7.4 Lemma. Let G be a simple linear algebraic group over F satisfying r = 1
and d1 > 1 and p be its torsion prime. Then rp(G) is trivial iff Rp(G) ≃ Z/p.

Proof. According to [Ga01, Theorem 0.5], [Ch94] and [Gi00, Theoreme 10]
the invariant rp(G) is trivial iff there exists a field extension E/F of degree
coprime with p such that the group G splits over E. By Corollary 6.10 the
latter is equivalent to the fact that Rp(G) ≃ Z/p.

7.5 Lemma. Let G and G′ be simple linear algebraic groups over F satisfying
r = 1 and d1 > 1 and p be its common torsion prime. For groups of type
E8 we assume in addition that they are twisted forms by means of cocycles
taken from the image of the twisted map defined in [Ga06, 13.12] (examples
of such groups are provided in [Ga06, 14.7]).

If rp(G) = rp(G
′)c for some c ∈ (Z/p)×, then Rp(G) ≃ Rp(G

′).

Proof. By transfer arguments (see Proposition 5.3) it is enough to prove this
over a p-primary closure of F . Let X and X ′ be the respective varieties of
complete flags. Observe that the invariant rp(G) becomes trivial over the
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function field F (X). Since rp(G) = rp(G
′)c, it becomes trivial over F (X ′) as

well. By triviality of the kernel of the Rost invariant (see [Ga01, Theorem 0.5]
and [Ga06, Theorem 13.14]) this implies that G splits over F (X ′). To finish
the proof we apply the comparison lemma (see Proposition 5.3) to the groups
G and G′.

Z-coefficients. Let G be a group of type F4 or strongly inner form of type
E6 which doesn’t split by field extensions of degrees 2 and 3. Observe that
such a group splits by an extension of degree 6. Let X be a generically split
projective homogeneous G-variety. Then according to Proposition 5.5 the
Chow motive of X with integer coefficients splits as a direct sum of twisted
copies of an indecomposable motive R(G) such that

R(G) ⊗ Z/2 =
⊕

i=0,1,2,6,7,8

R2(G)(i), P (R2(G), t) = 1 + t3,

R(G) ⊗ Z/3 =
⊕

i=0,1,2,3

R3(G)(i), P (R3(G), t) = 1 + t4 + t8,

P (R(G), t) = 1 + t + t2 + . . . + t11.

7.6 Remark. In particular, we provided a uniform proof of the main results
of papers [Bo03] and [NSZ], where the cases of some G2- and F4-varieties are
considered.

The case r > 1. According to Table 6.3 this holds for groups G of types
Bn and Dn and exceptional types E7, E8 for p = 2 and Ead

6 , E8 for p = 3.

Pfister case. Let G = O+(φ), where φ is a k-fold Pfister form or its maximal
neighbor. Assume J2(G) 6= (0, . . . , 0). In view of Corollary 6.10 this holds iff
n2(G) 6= 1. By Springer Theorem the latter holds iff φ is not split. According
to Theorem 5.1 we obtain the decomposition

M(X; Z/2) ≃
⊕

i≥0

R2(G)(i)⊕ai

where R2(G) is indecomposable. Moreover, according to Theorem 2.16 the
similar decomposition exists with Z-coefficients.

Now we compute J2(G). Let Y be a projective quadric corresponding
to φ. Then G splits over F (Y ) and Y splits over F (x) for any x ∈ X.
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It is known that CHl(Y ) for l < 2k−1 − 1 is generated by CH1(Y ) and,
therefore, is rational. By Proposition 6.11 and Table 6.3 we see that ji(G) =
0 for 0 ≤ i < r, where r = 2k−2. Therefore, J2(G) = (0, . . . , 0, 1) and
P (R2(G), t) = 1 + t2

k−1−1. Finally, by Corollary 4.21 the motive R2(G)
coincides with the motive introduced in [Ro98] which is called Rost motive.

In this way we obtain Rost decomposition of the motive of a Pfister
quadric and its maximal neighbor.

Maximal orthogonal Grassmannian Let G = O+(q), where q : V → F is an
arbitrary anisotropic regular quadratic form and X is the respective maxi-
mal orthogonal Grassmannian. The variety X is generically split, hence, by
Theorem 5.1 we have the decomposition

M(X; Z/2) ≃
⊕

i≥0

R2(G)(i)⊕ai ,

where the motive R2(G) is indecomposable. Comparing the Poincaré poly-
nomials of M(X; Z/2) and R2(G) we obtain the following particular cases:

• If the group G corresponds to a generic cocycle (see 4.2), the mo-
tive M(X; Z/2) is isomorphic to R2(G) and, hence, is indecomposable.
This corresponds to the maximal value of the J-invariant.

• If q is a Pfister form or its maximal neighbor, by the previous example
R2(G) coincides with the Rost motive. This corresponds to the minimal
non-trivial value of the J-invariant.
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