Cohomology of buildings and S–arithmetic groups over function fields

Helmut Behr Johann Wolfgang Goethe–Universität Frankfurt am Main

March 2006

Dedicated to Jean-Pierre Serre on the occasion of his eightieth birthday

1 Introduction

This paper is a supplement to the article "Cohomologie d' immeubles et de groupes S-arithméthiques" by A. Borel and J.P. Serre from 1976 (see [BS]). They deal with S-arithmetic subgroups Γ of reductive algebraic groups G in the case of number fields and discrete cocompact groups, so the general case for function fields $F([F:\mathbb{F}_q(t)] < \infty, q = p^r)$ is missing. For a torsion-free group Γ they show that Γ is of type FL, which implies, that Γ is also of type FP_{∞} . For this purpose they compute the cohomology of the spherical Tits-building Y_v of the group $G(F_v)$, where F_v is the completion of F with respect to $v \in S$, providing Y_v with the F_v analytic topology. Using Y_v as a boundary at infinity of the Bruhat-Tits-building X_v of $G(F_v)$, thereby compactifying X_v , they can also compute the cohomology with compact supports of $X = \prod_{v \in S} X_v$ and prove, that it vanishes in all dimensions, except the top dimension d, which is the sum $\sum_{v \in S} \dim X_v$ (in the number field case S contains also archimedean places and X_v is then the corresponding symmetric space with corners); in dimension d the cohomology with coefficients in \mathbb{Z} is free.

On the other hand, U. Stuhler considers in his paper "Homological properties of certain arithmetic groups in the function field case" (see [St]) the groups $\Gamma = \operatorname{PGL}_2(\mathcal{O}_S)$ for $\mathcal{O}_S \subset F$ (S finite) and shows in the second part, that the "finiteness length" of Γ is bounded, more precisely, that Γ is not of type $FP_{|S|}$. Following a remark of J.P. Serre he uses the spectral sequence for the cohomology groups of stabilizers Γ_{σ} (σ a simplex in X/Γ) with coefficients in the finite field \mathbb{F}_p and deduces that the vector spaces $H^r(X/\Gamma; H^s(\Gamma_{\sigma}; \mathbb{F}_p))$ are finite–dimensional for $0 \leq r \leq |S|, 0 \leq s < |S|$, but definitively not for r = 0, s = |S|. As a consequence $H^{|S|}(\Gamma; \mathbb{F}_p)$ has also infinite dimension, thus Γ cannot be of type $FP_{|S|}$. For this result Stuhler employs a filtration of X/Γ and computes step by step.

We shall now combine the methods of these two papers: We observe first, that Borel-Serre's

computation also works for certain subcomplexes of Y_v and X_v which are finite modulo a stabilizer-group Γ_{σ} ($\sigma \in X$), if we assume that Γ_{σ} has only *p*-torsion and moreover consists only of elements contained in the unipotent radical U of a minimal F-parabolic group of G. This can be established by changing from Γ to a (congruence) subgroup Γ_0 of finite index: the existence of Γ_0 follows from reduction theory in the formulation of Harder. In this way we obtain that the cohomology groups of Γ_{σ} vanish with exception of the top dimension, where we have a description as locally constant functions on $\Gamma_{\sigma} \subset U(F)$ — a restriction of the results of Borel– Serve. Consequently Stuhler's spectral sequence degenerates to the isomorphism $H^d(\Gamma; \mathbb{F}_p) \simeq$ $H^0(X/\Gamma; H^d(\Gamma_{\sigma}; \mathbb{F}_p))$ and it remains to prove, that this space is infinite-dimensional. This may again be done by a filtration of X/Γ , but it suffices to find an infinite sequence of vertices σ , where Γ_{σ} becomes bigger and defines new elements of $H^0(X/\Gamma, H^d(\Gamma_{\sigma}; \mathbb{F}_p))$. Thus we can at first generalize Borel–Serre's theorem on the cohomology of S–arithmetic groups Γ with coefficients in $\mathbb{Z}[\Gamma]$ to the function field case, when Γ has only p-torsion and secondly prove that all S-arithmetic subgroups Γ of almost simple groups G, defined over F cannot be of type FP_d , where d is the sum of the local ranks of G over the fields F_v for $v \in S$. (The problem for reductive groups can be reduced to this special case: See [B3], 2.6 c)

Another proof of the last theorem was recently given by K.U. Bux and K. Wortman (see [BW]).

It is conjectured, that these groups are of type FP_{d-1} , which has been shown in special cases or with additional assumptions on the growth of F with respect to the rank: see the precise statements at the end of this paper.

I would like to thank Robert Bieri, Bernd Schulz and Ulrich Stuhler for helpful discussions and critical remarks.

2 Cohomology of spherical buildings

In order to fix the notations and to make clear that Borel–Serre's computations also work for certain subcomplexes of spherical buildings we have to report [BS], §1 and §2.

Let k be a non-archimedean local field, G a connected semi-simple k-group of k-rank l and Y the Tits-building of G(k). It is well known by the Solomon-Tits-theorem, that Y has the homotopy-type of a bouquet of (l-1)-spheres — with respect to its simplicial topology. The first step in [BS] is to provide Y with the analytic topology, induced by the valuation on k and to prove an analogue, by computing the Alexander-Spanier-cohomology.

2.1 Denote by P a minimal k-parabolic subgroup of G, by T a maximal k-split torus of P, by Δ the basis of simple roots on T, which defines P and by S the associated set of reflections in the Weyl group W of P, W = N(T)/Z(T). We may identify both Δ and S with the index set $\mathbb{N}_l = \{1, \ldots, l\}$, then P_I is the parabolic subgroup generated by P and $Z(T_I)$, T_I the kernel of all $a_i \in \Delta_I$ for $I \subseteq \mathbb{N}_l$, such that $\Delta \setminus \Delta_I$ is the set of simple roots of the semi-simple factor of P_I ; we have $P_{\emptyset} = P$, $P_{\mathbb{N}_l} = G$ and $J \subset I \Leftrightarrow P_J \subset P_I$. Now let C be the closed chamber

of Y, fixed by P(k) and C_I its face fixed by P_I (for proper subsets I of \mathbb{N}_l), then Y can be described as $G(k)/P(k) \times C$ with identifications. Borel–Serre provide G(k)/P(k) = (G/P)(k)with the k–analytic topology, so it is compact, C with its simplicial topology and Y by the quotient topology, defined by $G(k) \times C \longrightarrow G(k)/P(k) \times C \xrightarrow{\lambda} Y$.

2.2 In the next step we use the Bruhat-decomposition $G(k) = \coprod_{w \in W} P(k)wP(k)$, which can be made unique by the refinement $G(k) = \coprod_{w \in W} U_w(k)wP(k)$, where U_w is a connected subgroup of the unipotent radical U of P; for the only element w_0 of maximal length in W one has $U_{w_0} = U$. Thus C(w) := P(k)wP(k)/P(k) is a principal homogenous space over $U_w(k)$, therefore isomorphic to k^{d_w} with $d_w = \dim U_w$, especially $C(w_0) \simeq k^{d_0}$, $d_0 = \dim U$. Using this decomposition and enumeration of the Weyl group $W = \{w_i | 1 \le i \le N\}$, compatible with the length function (i.e. $l(w_i) \le l(w_j)$ for i < j) Borel–Serre construct a filtration of the building as follows: For any $w_m \in W$ define $I_m := \{i \in \mathbb{N}_l | l(w_m s_i) > l(w_m)\}$ for $s_i \in S$, thus $I_1 = \mathbb{N}_l$ (for $w_1 = \mathrm{id}$), $I_N = \emptyset$ and $I_m \notin \{\mathbb{N}_l, \emptyset\}$ for 1 < i < N and setting $L_m := \bigcup_{I \subset I_m} C_I^{\circ}$ (open faces, in particular $C_{\emptyset}^{\circ} = C^{\circ}$), $L'_m := \bigcup_{I \not \subset I_m} C_I$, we see that $w_m L'_m$ is the union of all codimension–1-faces of $w_m C$, which also belong to a chamber which has smaller distance to C than $w_m C$. With $E_m := \bigcup_{1 \le i \le m} C(w_i), Y_m := \lambda(E_m \times C)$ we obtain a filtration of $Y = \bigcup_{1 \le i \le N} Y_i$ with $Y_i \subset Y_j$ for i < j and

- **Lemma 1:** a) $Y_m \setminus Y_{m-1} = \coprod_{I \subset I_m} (\prod_I C(w_m) \times C_I^\circ)$, such that $Y_m \setminus Y_{m-1}$ is homeomorphic to $C(w_m) \times L_m$.
 - b) $\widetilde{H}^{i}(Y; M) = H^{i}_{c}(Y \setminus Y_{N-1}; M)$. (M is a Z-module, \widetilde{H}^{*} the reduced cohomology and H^{*}_{c} cohomology with compact supports.)
 - c) $H^i_c(Y \setminus Y_{N-1}; M) = H^{l-1}_c(C^\circ; M) \otimes H^{i-(l-1)}_c(C(w_N); M)$ which is 0 for all $i \neq l-1$, so $H^i(Y; M)$ vanishes for all $i \neq l-1$ and $\widetilde{H}^{l-1}(Y; M) \simeq \mathbb{Z} \otimes H^0_c(C(w_N); M).$

Remark. It is enough to prove this lemma and the following proposition for $M = \mathbb{Z}$: The results for \mathbb{Z} show that the cohomology modules are 0 or free; therefore the universal coefficient theorem gives the result for a \mathbb{Z} -module M by tensoring (cf. [Br1], 0.8). Moreover this is also true for the set of locally constant functions with compact support over a totally disconnected space $X: C_c^{\infty}(X; M) = C_c^{\infty}(X; \mathbb{Z}) \otimes_{\mathbb{Z}} M$ (see [BS], lemma 2.2).

Proof. b) For 1 < m < N we have $I_m \notin \{\emptyset, \mathbb{N}_l\}$, which implies that L'_m is contractible, as is $C = L_m \stackrel{.}{\cup} L'_m$ and the exact cohomology sequence for $C \mod L'_m$ gives $H^*_c(L_m; \mathbb{Z}) = 0$ and with a) and Künneth's formula $H^*_c(Y_m \setminus Y_{m-1}; \mathbb{Z}) = 0$. Now $Y_1 = C$ is contractible and by induction on m we get b).

c) We already know that $Y \setminus Y_{N-1} = Y_N \setminus Y_{N-1} = C(w_N) \times C^{\circ}$, and C° is isomorphic to \mathbb{R}^{l-1} , oriented by the enumeration of its codimension–1–faces, thus $H^i_c(C^{\circ}; \mathbb{Z}) = 0$ for $i \neq l-1$ and $H^{l-1}_c(C^{\circ}; \mathbb{Z}) = \mathbb{Z}$. The Künneth–formula implies $H^i_c(Y \setminus Y_{N-1}; \mathbb{Z}) = H^{l-1}_c(C^{\circ}; \mathbb{Z}) \otimes H^{i-(l-1)}_c(C(w_N); \mathbb{Z})$, but $C(w_N) = P(k)w_N P(k)/P(k) \simeq k^{d_0}$ is a totally disconnected space, therefore 0–dimensional and has zero cohomology in all dimensions but 0.

2.3 It remains to describe the cohomology for the top dimension. The building Y is the union of all apartments containing C; call this set \mathcal{A} and A_0 the standard apartment, fixed by $Z(T) \subset P$, so $A_0 \in \mathcal{A}$. The correspondence $g \mapsto gA_0$ defines a bijection between $P(k)/Z(T)(k) \simeq U(k)$ and \mathcal{A} , and also $C(w_N) = U(k)w_N P(k)/P(k) \approx U(k)$ is in 1–1–correspondence with \mathcal{A} : consider $C(w_N)$ as the set of chambers in Y, which are opposite to $C: \mathcal{A} \longleftrightarrow U(k) \longleftrightarrow C(w_N)$.

Part c) of the lemma also shows that $\widetilde{H}^{l-1}(Y; M) = H_c^0(\mathcal{A}; M)$ is isomorphic to $C_c^{\infty}(\mathcal{A}; M)$. This isomorphism has an explicit description: The Coxeter-complex Σ_A of each $A \in \mathcal{A}$ is homeomorphic to the sphere \mathbb{S}^{l-1} with orientation, given by the enumeration (Σ_A is a labelled complex). The cycle $\sum_{w \in W} (-1)^{l(w)} wC$ defines for $l \geq 2$ a class [A] in the homology group $H_{l-1}(Y; M)$ — the "fundamental class of the oriented sphere". A given element $h \in H_c^{l-1}(Y; M)$ has by restriction to $H_c^{l-1}(A; M)$ a value h([A]) and by definition of cohomology h([A]) is uniquely determined by its value on the opposite chamber $uw_N C$ for $u \in U(k)$, if $A = uA_0$. So we can summarize as

Proposition 1:

$$\widetilde{H}^{i}(Y;M) = \begin{cases} 0 & \text{for } i \neq l-1 \\ H^{0}_{c}(\mathcal{A};M) \simeq C^{\infty}_{c}(U(k);M) & \text{for } i = l-1 \end{cases}$$

Analyzing the proof above, it is obvious, that it also works for subcomplexes Y' of Y, which are unions of apartments containing a fixed chamber C; especially if $Y' = \bigcup_{u \in U'} uA_0$, where U' is a subgroup of U(k).

Corollary: If U' is a subgroup of U(k), U the unipotent radical of the minimal k-parabolic group P of a semi-simple algebraic k-group G, k a local nonarchimedean field, C the chamber of the Tits-building fixed by P, A_0 an apartment containing C and $Y' = \bigcup_{u \in U'} uA_0$, then

$$\widetilde{H}^i_c(Y';M) \simeq \begin{cases} 0 & \text{for } i \neq l-1 \\ C^\infty_c(U'(k);M) & \text{for } i = l-1 \end{cases}$$

3 Cohomology of affine buildings

3.1 Let X be the affine Bruhat–Tits–building, defined by the group G and the valuation on k. We may suppose that G is semi–simple and simply connected (cf. [BS], 4.1), so G is a direct product of almost simple groups G_j $(1 \le j \le m)$ of k–rank > 0 and a simply connected group G_0 of k–rank 0, such that $G_0(k)$ is compact. Then the double Tits–system has also a product structure, the Tits–building Y is the join of the buildings Y_j of G_j and X is a polysimplicial complex.

The apartments of X are in 1–1–correspondence with those of Y; denote by A_0 the standard apartment in X, stabilized by N(T) ($T \subset P$ as in section 2) and choose an origin O in A_0 as a special point and a sector (simplicial cone) D with vertex O and direction C, C the standard chamber in Y, fixed by P (for buildings cf. [BT], [Br2] and [R]).

A main part of [BS] contains the construction of a compactification of X by adding Y as a boundary at infinity, such that the induced compactification of any apartment of X is the classical one for an affine space by the sphere of half-lines. $Z := X \amalg Y$ is shown to have a topology, which makes Z compact and contractible and the action of G(k) on Z continuous. The contraction of X to O is geodesic, which means along half-lines in an apartment.

3.2 In this section we are interested in finite groups Γ_x , stabilizing a vertex $x \in D \subseteq A_0$ and contained in U(k), $U = \operatorname{rad} P$; as we already know (see 2.3), these elements define bijectively apartments A of X, such that \overline{A} contains C in Y and moreover fix pointwise the sector D_x with direction C and vertex x (if we assume that x is special — which can be done by changing from x to a neighbour x' with $\Gamma_x \subset \Gamma_{x'} - D_x$ is given by $\{x' \in A_0 | \alpha(x') \ge \alpha(x) \forall \alpha \in \Delta\}$).

We consider the subcomplex X' of X, defined by $X' = \bigcup_{\gamma \in \Gamma_x} \gamma A_0$ and denote by $Z' := X' \cup \partial X'$, where $Y' := \partial X'$ is the boundary of X' in Z, so Z' is compact. We now remove a collar from Z', in order to get a complex, which is finite modulo Γ_x : This can be done by retraction along half-lines with vertex x and — since Γ_x is finite — in such a way that different apartments γA_0 remain different. We obtain a complex X'_c , contained in X, homoemorphic to Z', whose boundary Y'_c is homeomorphic to $\partial X'$ and $X'_c \cap D_x$ is still contained in all apartements γA_0 for $\gamma \in \Gamma_x$. Observe that the sectors γD (D with vertex O and $\partial D = C$) do not coincide, but all have the sector D_x in common, which has the same dimension and so D_x has the same set of directions as all γD , which implies that $\partial \gamma D = \partial D_x = C$ for all γ . For any apartment γA_0 the intersection $\gamma A_0 \cap Y'_c$ is homoemorphic to $\gamma A_0 \cap Y$, which is a spherical Coxeter-complex and all these complexes contain the chamber C.

Therefore we can apply the Borel–Serre–method for computing the cohomology of Y'_c in the same way as for Y and use the corollary of proposition 1 (notice that Y is the join $Y_1 * \cdots * Y_m$ and one has the formula dim $Y = \sum_{j=1}^m (\dim Y_j + 1) - 1 = \sum_{j=1}^m \dim X_j - 1 = \sum_{j=1}^m \operatorname{rk}_k G_j - 1$, and $l = \sum_{j=1}^m \operatorname{rk}_k G_j = \operatorname{rk} G$), so we get

Lemma 2: $\widetilde{H}_c^i(Y'_c; M) = 0 \text{ for } i \neq l-1,$

$$\widetilde{H}_c^{l-1}(Y_c';M) \simeq C_c^{\infty}(\Gamma_x;M).$$

3.3 The exact sequence of cohomology for X'_c modulo Y'_c implies (cf. [BS] thm. 5.6)

Proposition 2: $H_c^i(X_c'; M) = 0$ for $i \neq l$ and

$$H_c^l(X_c';M) \simeq C_c^\infty(\Gamma_x;M)$$

for a \mathbb{Z} -module M; if M is free, then also $H^l_c(X'_c; M)$ is a free \mathbb{Z} -module.

4 S-arithmetic groups

4.1 Let *F* be a function field, i.e. $[F : \mathbb{F}_q(t)] < \infty$, $q = p^m$, $p = \operatorname{char} F$, *S* a finite non-empty set of places of *F*, F_v the completion of *F* with respect to $v \in S$, *G* a connected semi-simple algebraic *F*-group of rank r > 0, r_v the F_v -rank of *G*, $L = \prod_{v \in S} G(F_v)$, X_v the Bruhat-Tits-building of $G(F_v)$ with dimension $d_v = r_v$, $X = \prod_{v \in S} X_v$ with dim $X = \sum_{v \in S} d_v =: d$.

We consider S-arithmetic subgroups Γ , which are discrete in L. It is well known, that Γ contains a congruence subgroup Γ_0 of finite index, which has only p-torsion, but we need a little bit more and have to use for this purpose

4.2 (Reduction theory) We use the same notations as in section 2, but with respect to F instead of k: P is a minimal F-parabolic subgroup of G, $P = Z(T) \bowtie U$, $\Delta = \{\alpha_1, \ldots, \alpha_r\}$ the set of simple roots of T, that defines P. We give a list of properties in the version of Harder (see [H1], cf. also [H2], [B2] and for the 1-dimensional case [S2], II.2).

- (i) There is a constant c_1 , such that for any $x \in X$, there exists a minimal P with numerical invariants $\nu_i(P, x) \ge c_1$ for $1 \le i \le r$ ([H1], Satz 2.3.2): "x is reduced with respect to P".
- (ii) There is a constant $c_2 \ge c_1$, such that for x reduced with respect to P and P' and $\nu_i(P, x) \ge c_2 \ \forall i \in I' \subseteq \Delta, P'$ is also contained in P_I for $I = \Delta \setminus I'$ and P_I is uniquely determined ([H1], Satz 2.3.3): "x is close to P_I ".
- (iii) For each constant $c' \ge c_1$ the set

$$X_0 := \{ x \in X \mid c_1 \le \nu_i(P, x) \le c' \text{ for all } i \in \Delta \text{ and all } P \text{ s.t. } x \text{ is } P \text{-reduced} \}$$

is compact modulo Γ (cf. [H1], Satz 2.2.2): "compactness criterion".

- (iv) The number of Γ-conjugation classes of parabolic groups is finite ([B2], Satz 8): "finiteness of class number".
- (v) There exists a constant $c_3 \ge c_2$ (depending on Γ), such that for a *P*-reduced $x \in X$ one has $U_I(F_v) = (U_I(F_v) \cap \operatorname{stab}_G x) \cdot (U_I(F_v) \cap \Gamma)$ for all $v \in S$ (cf. [H2], 1.4.5): "x is very close to P_I , $U_I = \operatorname{rad} P_I$ ".

4.3 ¿From these properties above we deduce the following proposition; for subgroups $H \subseteq G$ we shorten the notation: $F_S := \prod_{v \in S} F_v$ and $H(F_S) := \prod_{v \in S} H(F_v)$.

Proposition 3: For each S-arithmetic group $\Gamma \subset G(F_S)$, there exists a congruence subgroup Γ_0 , finitely many F-parabolic subgroups P_1, \ldots, P_{h_0} of G and a set V of representatives for vertices of X/Γ_0 , such that for all $x \in V$ the stabilizers $(\Gamma_0)_x$ are contained in one of the groups $[R_u(P_j)](F_S)$, $R_u(P_j)$ the unipotent radical of P_j . Moreover, those $x \in V$ which are close to P_j are contained in an apartment, having P_j and a fixed opposite P_j^{op} in its boundary at infinity.

Proof. a) $X_0 := \{x \in X \mid c_1 \leq \nu_i(P, x) \leq c_2 \text{ for all } i \in \Delta \text{ and all } P \text{ s.t. } x \text{ is } P \text{-reduced} \}$ is compact modulo Γ by (iii), thus there exist finitely many vertices in X, which represent the

vertices of X_0 and have finite stabilizers in Γ . Therefore we can find a congruence subgroup Γ_1 of Γ , which has trivial stabilizers for all $x \in X_0$.

b) Now we consider those $x \in X$, which are close to at least one parabolic group Q (but not to $Q' \subset Q$), which means that some $\nu_i(P, x) \geq c_2$ for $P \subseteq Q$. Up to conjugation with Γ_1 we may assume that P belongs to a finite set $\{P_1, \ldots, P_h\}$ by (iv) and $Q = (P_j)_I$ for some j and $I \subseteq \Delta_j$, so there are only finitely many such groups Q. We write $Q = H \ltimes U_Q$ with H = Z(T'), $T' \subseteq T_j$, the maximal split torus of P_j and $U_Q = R_u(Q) \subseteq R_u(P_j)$. We want to "split up" Γ_1 : There is a subgroup Γ_2 of finite index in Γ_1 , such that $\Gamma_2 = (\Gamma_1 \cap H(F_S)) \ltimes (\Gamma_1 \cap U_Q(F_S))$ has finite index in Γ (cf. [Bo], 1.7 and 8.12, which is also valid for function fields, see [B1]). Now H is either of F-rank 0, if $I = \emptyset$ or the numerical invariants $\nu_i(H \cap P, x)$ are bounded by c_2 for all $i \in \Delta \setminus I = I'$ (the set of simple roots of H!), so either $H(F_S)/\Gamma_1 \cap H(F_S)$ is compact or by the same idea as in a) we find a congruence subgroup Γ_3 of Γ_2 , whose stabilizer of $x \in X$ has a trivial semi–simple component in $[\Gamma_3 \cap H(F_S)]$, so $(\Gamma_3)_x \subseteq U_Q(F_S) \subseteq [R_u(P_j)](F_S)$. We can repeat this process for the finite set of groups Q and finally obtain a congruence subgroup Γ_0 of Γ , whose stabilizers have only unipotent elements; a set of representatives can be found in the unipotent radicals $[R_u(P_j)](F_S)$, but now for a bigger set $j = 1, \ldots, h_0$ for the Γ_0 -conjugates of minimal parabolic groups.

At last poperty (v) of 4.2 shows, that we can choose modulo Γ_0 a fixed opposite group P_j^{op} of P_j for all j and this implies the second assertion of proposition 3 – by making Γ_0 smaller and h_0 bigger if necessary.

5 Cohomology of S-arithmetic groups

5.1 Stuhler uses in [St] the following spectral sequence

(*)
$$H^r(X/\Gamma, H^s(\Gamma_{\sigma}; M)) \Longrightarrow H^{r+s}(\Gamma; M)$$

which was introduced by Serre (for a foundation cf. [Br1], VII.5 and VII.7). Stuhler dealt with $\Gamma = \operatorname{SL}_2(\mathcal{O}_S)$, X a product of |S| trees, the Bruhat–Tits–buildings of $\operatorname{SL}_2(F_v)$, $v \in S$ and $M = \mathbb{F}_p$. In our context Γ will be a S–arithmetic subgroup of G(F) and X the polysimplicial product of the Bruhat–Tits–buildings X_v for $G(F_v)$, $v \in S$.

5.2 For the application of the results in section 2 and 3 we have to observe that a minimal parabolic F-subgroup P is in general not minimal over F_v : Denote by Q a minimal F_v -parabolic group, contained in P for some $v \in S$. We have $P = HT \ltimes R_u(P)$ with a maximal split F-torus T and a semi-simple group H of F-rank 0; therefore $H(F_S)/H(F_S) \cap \Gamma$ is compact. There may be infinitely many $Q \subset P$, but since we are interested in vertices x of a set V of representatives for X/Γ with $\Gamma_x \subset [R_u(P)](F)$, where P is one of the minimal parabolic F-subgroups of proposition 3, the compactness above tells us, that we have to consider only finitely many Q's. Moreover $R_u(P) \subseteq R_u(Q)$ (as groups over F_v), but for $R_u(Q) = R_u(P) \cdot U'$, the subgroup U' of H cannot contain unipotent elements of Γ , so $[R_u(P)](F_v) \cap \Gamma = [R_u(Q)](F_v) \cap \Gamma$.

5.3 The building Y_v at infinity of X_v has a chamber C_Q , fixed by $Q(F_v)$ and C_Q has a sidesimplex C_P , fixed by $P(F_v)$ ($C_P = (C_Q)_I$ for $P = Q_I$ in section 2). Consider now a finite stabilizer group $\Gamma_x \subset [R_u(P)](F)$ for $x = (x_v) \in \prod_{v \in S} X_v = X$. In any apartment A of X_v , containing x_v , the group Γ_x fixes a cone in X_v , which is the union of sectors, which all have the "side-direction" Q in common. The construction of the subcomplexes X' and X'_c in section 3 can now be realized simultaneously in all buildings X_v with the same group Γ_x , the stabilizer of a vertex $x = (x_v) \in X = \prod_{v \in S} X_v$ in Γ , which is diagonally imbedded in $\prod_{v \in S} G(F_v)$. We start with a fixed apartment A_0 in X_v and define $X'_v = \bigcup_{\gamma \in \Gamma_x} \gamma A_0$; $\overline{A}_0 \cap Y_v$ may contain several chambers C_Q for $Q \subset P$, but the equation $[R_u(Q)](F_v) \cap \Gamma = [R_u(P)](F_v) \cap \Gamma$ shows that X'_v depends only on P. On the other hand we can use any such chamber C_Q for the computation of the cohomology as in section 2.

5.4 We fix now a vertex $x = (x_v)$ in the polysimplicial complex X and denote by Γ_x its stabilizer in Γ , assuming that Γ is the congruence subgroup of an S-arithmetic group, which has the properties of proposition 3. With this group Γ_x construct the subcomplexes $(X'_v)_c$ as in section 3 for all $v \in S$ and define $X'_c = \prod_{v \in S} (X'_v)_c$.

Proposition 2 gives us the cohomology of $(X'_v)_c$ and the Künneth-formula implies

Proposition 4: $H^i_c(X'_c; M) = 0$ for $i \neq d$,

$$H^d_c(X'_c;M)\simeq \bigotimes_{v\in S} H^{d_v}_c((X'_v)_c;M)$$

for $d = \sum_{v \in S} d_v$, $d_v = \dim X_v = \operatorname{rk}_{F_v} G$ and a \mathbb{Z} -module M.

This proposition allows to deduce the cohomology of the stabilizer groups.

Lemma 3: $H^i(\Gamma_x; \mathbb{Z}[\Gamma_x]) = 0 \text{ for } i \neq d,$ $H^d(\Gamma_x; \mathbb{Z}[\Gamma_x]) \simeq C_c^{\infty}(\Gamma_x; \mathbb{Z}).$

Proof. We use the isomorphism $H^*(\Gamma_x; \mathbb{Z}[\Gamma_x]) \simeq H^*(X'_c, \mathbb{Z})$ (see [Br1], VIII.7, ex. 4), which is valid, since X'_c is contractible and has only finitely many cells mod Γ_x (and of course finite isotropy groups). For the precise description of $H^d(\Gamma_x; \mathbb{Z}[\Gamma_x])$, we have to remember Lemma 1, which says together with the corollary to proposition 1, that $H^{d_v}_c((X'_v)_c; M) \simeq$ $\widetilde{H}^{d_v-1}_c((Y'_v)_c; M) = H^{d_v-1}_c(C^{\circ}_v; M) \otimes H^0(\Gamma_x; M)$, where C°_v denotes the interior of a chamber C_v in Y_v . For X'_c we must consider the chamber $C = *_{v \in S} C_v$ (join) in $Y = *_{v \in S} Y_v$ and so we obtain $H^d(X'_c; M) \simeq H^{d-1}_c(C^{\circ}; M) \otimes H^0(\Gamma_x; M)$, where the first factor is isomorphic to \mathbb{Z} (since $C^{\circ} \simeq \mathbb{R}^{d-1}$) and the second one to $C^{\infty}_c(\Gamma_x; M)$: Set $M = \mathbb{Z}$.

Corollary: a)
$$H^{i}(\Gamma_{x}; \mathbb{Z}[\Gamma]) = 0 \text{ for } i \neq d,$$

 $H^{d}(\Gamma_{x}; \mathbb{Z}) \simeq C_{c}^{\infty}(\Gamma_{x}; \mathbb{Z}) \otimes_{\mathbb{Z}[\Gamma_{x}]} \mathbb{Z}[\Gamma] \simeq C_{c}^{\infty}(\Gamma_{x}; \mathbb{Z}[\Gamma])$
b) $H^{i}(\Gamma_{x}; \mathbb{F}_{p}) = 0 \text{ for } i \neq d,$
 $H^{d}(\Gamma_{x}; \mathbb{F}_{p}) \simeq C_{c}^{\infty}(\Gamma_{x}; \mathbb{Z}) \otimes_{\mathbb{Z}[\Gamma_{x}]} \mathbb{F}_{p} \simeq C_{c}^{\infty}(\Gamma_{x}; \mathbb{F}_{p}).$

Proof. For the second parts see [Br1], VIII.6.8, since Γ_x is of type *FP* and $\operatorname{cd} \Gamma_x = d$.

5.5 For the application of the spectral sequence we have to consider the stabilizers of polysimplices σ , but Γ_{σ} is always the intersection of some Γ_x and we notice that the results above remain valid for Γ_{σ} . On the other side we have to replace the trivial Γ_{σ} -module \mathbb{Z} by the "oriented module" \mathbb{Z}_{σ} , on which Γ_{σ} acts with a sign. Then it is true, that the spectral sequence $H^r(X/\Gamma; H^s(\Gamma_{\sigma}; \mathbb{Z}_{\sigma} \otimes M))$ converges to $H^{r+s}(\Gamma; M)$ (see [S1] 1.6, especially remark 1). The corollary implies, that the spectral sequences degenerate to isomorphisms, so we obtain

Theorem 1: For a *S*-arithmetic subgroup Γ of G(F), *G* a semi-simple algebraic *F*-group with $\operatorname{rk}_F G > 0$, there exists a subgroup Γ_0 of finite index, which has only *p*-torsion, such that for the Γ_0 -modules $M = \mathbb{Z}[\Gamma_0]$ or $M = \mathbb{F}_p$ (with trivial Γ_0 -action) and the Bruhat-Tits-building $X = \prod_{v \in S} X_v$ we have

- (i) $H^i(\Gamma_0; M) = 0$ for $i \neq d = \sum_{v \in S} \operatorname{rk}_{F_v} G$,
- (ii) $H^d(\Gamma_0; M) \simeq H^0(X/\Gamma_0; H^d(\Gamma_0)_{\sigma}; M),$

in particular $H^d(\Gamma_0; \mathbb{Z}[\Gamma_0])$ is free.

Remark. For $\operatorname{rk}_F G = 0$, the "cocompact case", see [BS], thm. 6.2.

6 Finiteness properties of S-arithmetic groups

6.1 In this section we are interested in the finiteness properties FP_n or F_n (see [Br1], VIII.5 and [Br2], VII.2). In contrast to the number field case, where all *S*-arithmetic subgroups of reductive groups are of type F_{∞} (in the general case it is only true for $S = S_{\infty}$), there exist many counter-examples over function fields and a conjecture says, that for almost simple groups Gwith $\operatorname{rk}_F G > 0 \Gamma$ is of type F_{d-1} , but not F_d , where again $d = \sum_{v \in S} \operatorname{rk}_{F_v} G$. This was proved for $\Gamma = \operatorname{SL}_2(\mathcal{O}_S)$ by Stuhler (see [St]), for the classical cases d = 1 (finite generation) and d = 2 (finite presentation)) (see [B3]), for $\Gamma = \operatorname{SL}_n(\mathbb{F}_q[t])$ by Abels and Abramenko under the additional assumption, that q is big enough with respect to n and by the second author also for classical almost simple groups over the polynomial ring and with analogous growth conditions (see [A] and [Ab]) and finally the positive result for Chevalley–groups and arithmetic rings with |S| = 1 without such a condition in [B4].

6.2 There is a necessary cohomological condition for a group Γ to be of type FP_n : For a ring R, which is a \mathbb{Z} -module of finite type, the homology and cohomology groups $H_k(\Gamma; R)$ and $H^k(\Gamma; R)$ have to be finitely generated for $0 \le k \le n$ (see [Bi], prop. 2.15). Stuhler used this criterion for $R = \mathbb{F}_p$ for the group $SL_2(\mathcal{O}_S)$, to show that it is not of type $FP_{|S|}$ (see [St], section 4). We shall generalize his idea for the congruence subgroup Γ_0 of Γ (from proposition 3) in almost simple groups G, using

$$H^{d}(\Gamma_{0};\mathbb{F}_{p}) \simeq H^{0}(X/\Gamma_{0};H^{d}((\Gamma_{0})_{\sigma};\mathbb{F}_{p})) \simeq H^{0}(X/\Gamma_{0};C^{\infty}_{c}((\Gamma_{0})_{\sigma};\mathbb{F}_{p}))$$

(see theorem 1 and the corollary to lemma 3). We prove that the \mathbb{F}_p -dimension of this vectorspace goes to infinity for an infinite sequence of vertices $\sigma = x$ in a set V_P of representatives for X/Γ_0 being very close to a fixed parabolic F-subgroup $P = P_j$ for some $j \in \{1, \ldots, h_0\}$ (see 4.2 (v) and proposition 3). We may also assume that these vertices are contained in polyapartements on which a fixed maximal F-split torus T_0 of P acts. Denote by a_0 the highest F-root on T_0 , that defines a subgroup U_0 of the unipotent radical U of P. Consider a_0 as a linear form with integral values on all these apartements.

By Riemann–Roch $U_0(x) := U_0(F_S) \cap (\Gamma_0)_x$ is for $x = (x_v) \in X$ a \mathbb{F}_q -vector–space. If $a_0(x_v)$ increases by 1 for some v, all others remaining constant, $\dim_{\mathbb{F}_q} U_{0,x}$ increases by $d_v = \dim_{\mathbb{F}_q} \overline{F}_v$ (\overline{F}_v) the residue field of F_v , if U_0 is a 1–dimensional root group and otherwise has moreover to be multiplicated by $\dim_F U_0(F)$. Thus it seems reasonable to define the filtration of V_P by $A_0(x) = \sum_{v \in S} d_v \cdot a_0(x_v), A_0$ is Γ -invariant by the product–formula for valuations. The whole set of representatives for X/Γ_0 consists of a finite complex and finitely many sets, containing the V_{P_i} .

6.3 For the computation of $H^0(X/\Gamma_0; C_c^{\infty}((\Gamma_0)_x; \mathbb{F}_p))$ we must satisfy the condition for 0– cocycles, which means concretely that the values of a function on the vertices x and x' of an edge have to coincide on $(\Gamma_0)_x \cap (\Gamma_0)_{x'}$. We have to consider several cases:

a) If $\operatorname{rk}_F G = \operatorname{rk}_{F_v} G = 1$ for all $v \in S$ we have a cubic complex X (the prototype is Stuhler's SL₂-example) and $U_0 = U_a$ or $U_0 = U_{2a}$. We consider a cube C, whose vertices x and y have maximal resp. minimal A_0 -value; the neighbours of x' being x_i with $a_0[(x_i)_{v_i}] = a_0[(x)_{v_i}] - 1$ and $a_0[(x_i)_{v_k}] = a_0[(x)_{v_k}]$ for all $k \neq i$, setting $S = \{v_1, \ldots, v_s\}$, $i, k \in \{1, \ldots, s\}$.

Unfortunately $U_0(x) = \bigcup_{i=1}^s U_0(x_i)$, thus all functions on $U_0(x)$ are uniquely determined by their values on the subgroups $U_0(x_i)$. But functions on the vertices x_{ij} , whose a_0 values differ from those on x for two indices by 1 have different extensions to functions on x_i and x_j . This can be done for all pairs (i, j), which implies that the \mathbb{F}_q -dimension of $U_0(y)$ is smaller than that of $U_0(x)$ and so we obtain more functions on $(\Gamma_0)_x$ than on $(\Gamma_0)_y$ and H^0 becomes larger (cf. [St], prop. 2 and lemma 2). One should observe, that many vertices close to P are Γ -equivalent, since the torus $T_0(F_s) \cap \Gamma_0$ acts on these points as a free abelian group of rank |S| - 1. But the function A_0 is Γ -invariant and obviously $A_0(y) < A_0(x)$, so x and y are different vertices of V_P .

- b) If G is a Chevalley–group of $\operatorname{rk}_F G = \operatorname{rk}_{F_v} G \ge 2$ for all $v \in S$ than in a fixed building X_v the group $U_0(x) = U_0(F_v) \cap (\Gamma_0)_x$ is larger than $U_0(x')$ for all neighbours x' of x, so also $(\Gamma_0)_x$ is larger than the union $\bigcup_{x'}(\Gamma_0)_{x'}$ and we obtain more cochains. For |S| > 1 we use the same technique as in a).
- c) If $\operatorname{rk}_F G < \operatorname{rk}_{F_v} G$ both situations may occur in X_v : $U_0(x) \subset \bigcup_{x'} U_0(x')$ and $U_0(x) = \bigcup_{x'} U_0(x')$ (where x' runs over all neighbours of x). Simple examples are groups G of type $B_{2,1}$ ($G = \operatorname{SO}_5$ with Witt-index 1) or type $A_{3,1}$ ($G = \operatorname{SL}_2(D)$, D central division

algebra of degree 2 over F). For the second case the same trick as in a) works: We have to go one A_0 -level deeper to a common neighbour y of x'_1 and x'_2 . For |S| > 1 use again the procedure of case a).

If the values of A_0 go to infinity we find in any case a sequence of vertices x with increasing \mathbb{F}_p -dimension of $C_c^{\infty}((\Gamma_0)_x; \mathbb{F}_p)$, for which also the \mathbb{F}_p -dimension of H^0 goes to infinity.

6.4 With the criterion of 6.2 we proved, that Γ cannot be of type F_d — for a convenient subgroup of finite index, but this does not change the F_d -property (see [Br1], VIII.5.1) – thus we have

Theorem 2: A S-arithmetic subgroup of an almost simple algebraic group G with $\operatorname{rk}_F G > 0$ over a function field F with $d = \sum_{v \in S} \operatorname{rk}_{F_v} G$ cannot be of type FP_d or F_d .

- Remarks. 1. The direct application of the finiteness criterion to semi-simple groups could provide too large upper bounds, because cohomology groups may vanish if other tensorfactors in Künneth's formula are zero. Thus for semi-simple groups the bound in theorem 2 is given by the minimal d of its simple factors (assuming G simply connected we have a direct product: see [B3] 2.6 c).
 - 2. There exists another proof of theorem 2 by K.U. Bux and K. Wortman (see [BW]), which does not compute cohomology but constructs a sequence of cycles in homology.

References

- [A] H. Abels : Finiteness properties of certain arithmetic groups in the function field case; Israel J. Math 76 (1991), 113–128
- [Ab] P. Abramenko : Twin Buildings and Applications to S-Arithmetic Groups; Springer Lecture Notes in Math. vol 1641 (1996)
- [B1] H. Behr : Zur starken Approximation in algebraischen Gruppen über globalen Körpern;
 J. Reine und Angew. Math. 229 (1968), 107–116
- [B2] H. Behr : Endliche Erzeugbarkeit arithmetischer Gruppen über Funktionenkörpern; Invent. Math. 7 (1969), 1–32
- [B3] H. Behr : Arithmetic groups over function fields I;J. Reine und Angew. Math. 495 (1998), 79–118
- [B4] H. Behr : Higher finiteness properties of S-arithmetic groups in the function field case I; in Groups: Topological, Combinatorical, Arithmetic Aspects; London Math. Soc. Lecture Notes 311 (2004), 27–42
- [Bi] R. Bieri : Homological dimension of discrete groups; Queen Mary College Math. Notes (1976)

- [Bo] A. Borel: Some finiteness properties of adele groups over number fields;
 Publ. IHES 16 (1963), 5–30
- [Br1] K. Brown : Cohomology of groups; Springer GTM 87 (1982)
- [Br2] K. Brown : Buildings; Springer (1989)
- [BS] A. Borel and J. P. Serre : Cohomologie d' immeubles et de groupes S-arithmétiques; Topology 15 (1976) 211–232
- [BT] F. Bruhat and J. Tits: Groupes réductifs sur un corps local I, II; Publ. Math. IHES 41 (1972), 5–251 and 60 (1984), 5–184
- [BW] K.U. Bux and K. Wortman : *Finiteness properties of arithmetic groups over function fields;* to appear in Invent. Math.
- [H1] G. Harder : Minkowskische Reduktionstheorie über Funktionenkörpern; Invent. Math. 7 (1969), 33–54
- [H2] G. Harder : Die Kohomologie S-arithmetischer Gruppen über Funktionenkörpern; Invent. Math. 42 (1977), 135–175
- [R] M. Ronan : Buildings: Main ideas and applications I, II;
 Bull. London Math. Soc. 24 (1992), 1–51 and 97–126
- [S1] J. P. Serre: Cohomologie des groupes discrets; Annals of Math. Studies 70 (1971), 77–169
- [S2] J. P. Serre : *Trees;* Springer (1980)
- [St] U. Stuhler : Homological properties of certain arithmetic groups in the function field case; Invent. Math. 57 (1980), 263–281