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1 Introduction


The main thrust of this work is the study of two seemingly unrelated questions:
Non-abelian Galois cohomology of Laurent polynomial rings on the one hand, while on
the other, a class of infinite dimensional Lie algebras which, as rough approximations,
can be thought off as higher nullity analogues of the affine Kac-Moody Lie algebras.


Though the algebras in question are in general infinite dimensional over the given
base field (say the complex numbers), they can be thought as being finite provided
that the base field is now replaced by a ring (in this case the centroid of the algebras,
which turns out to be a Laurent polynomial ring). This leads us to the theory of
reductive group schemes as developed by M. Demazure and A. Grothendieck [SGA3].
Once this point of view is taken, Algebraic Principal Homogeneous Spaces1 and their
accompanying non-abelian étale cohomology, arise naturally. It is this geometrical
approach to infinite dimensional Lie theory that is one of the central themes of our
work.


To illustrate these ideas, let us briefly look at the case of affine Kac-Moody Lie
algebras over an algebraically closed field k of characteristic 0. Let L̂ be such an
algebra, and let L be the derived algebra of L̂, modulo its centre. The Lie algebra L̂
can be recovered from L (by taking the universal central extension and then attaching
a derivation), and we will now concentrate on the Lie algebra L itself. Recall that the
centroid of L is the subring Ctdk(L) ⊂ Endk(L) comprised of elements that commute
with the Lie bracket of L. The k–Lie algebra L is infinite dimensional, but by viewing
now L as an algebra over its centroid in the natural way, we find ourselves back on the
finite world: There exists a finite dimensional simple Lie algebra g, and a finite Galois
extension S of Ctdk(L), such that L ⊗Ctdk(L) S and g ⊗k S are isomorphic as S–Lie
algebras. Since the centroid of an affine algebra can be identified with the Laurent
polynomial ring k[t±1], we see that L is a twisted forms, for the étale topology on
Spec(k[t±1]), of the k[t±1]–algebras g ⊗k k[t±1]. Accordingly, we can attach to L a
torsor XL whose isomorphism class lives in H1


ét


(
k[t±1],Aut(g)


)
.


1Also called Torsors. This terminology is due to Giraud.
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More generally, we could take L̂ to be an Extended Affine Lie Algebra (EALA
for short), and L its centreless core ([AABFP], [N1] and [N2]). This is a beautiful
class of infinite dimensional Lie algebras with striking connections to the classical
finite dimensional landscape (simple Lie algebras of course, but also Jordan algebras,
alternative algebras, quadratic forms...). The centroids are now Laurent polynomial
rings Rn = k[t±1


1 , · · · t±1
n ] in finitely many variables. Just as in the affine Kac-Moody


case, the resulting algebras L are twisted forms of algebras of the form g⊗k Rn.
These examples hint towards a possible deep connection between some aspects of


contemporary infinite dimensional Lie theory, and the Galois cohomology of the ring
Rn = k[t±1


1 , · · · t±1
n ]. The present paper sets out to explore this possibility.


1.1 Notation and conventions


To help the reader we list below most of the notation and conventions used
throughout the paper.


k denotes a field which, with the sole exception of §5, is assumed to be of charac-
teristic 0. As usual, k will denote an algebraic closure of k. The tensor product ⊗k
will be denoted by the unadorned symbol ⊗.


k–alg denotes the category of commutative associative unital k-algebras.


Rn = k[t±1
1 , · · · t±1


n ], Rn,d = k[t
± 1


d
1 , t


± 1


d
2 , · · · t±


1


d
n ] and Rn,∞ = lim−→


d


Rn,d.


Kn = k(t±1
1 , · · · t±1


n ), Kn,d = k(t
± 1


d
1 , t


± 1


d
2 , · · · t±


1


d
n ) and Kn,∞ = lim−→


d


Kn,d.


Fn = k((t1))((t2))...((tn)).


π1(Rn) denotes the algebraic fundamental group of Spec(Rn) at the geometric
point Spec(Fn) for some (fixed) algebraic closure Fn of Fn.


(ζn)n≥1 is a set of compatible primitive n-roots of unity, i.e. ζℓℓn = ζn (in the case
when k is algebraically closed of characteristic 0).


For a given R in k–alg, by an R–group we will understand an affine group scheme
over Spec(R). If G is an R–group, the pointed set of non-abelian Čech cohomology
on the étale site of X = Spec(R) with coefficients in G, is denoted by H1


ét(X,G), or
also by H1


ét(R,G) (accordingly with customary usage depending on the context). At
times, specially during proofs in order to cut down on notation, we write H1 instead
of H1


ét. When G is smooth, the set H1
ét(R,G) measures the isomorphism classes of


principal homogeneous spaces (torsors) over X under G (see Ch. IV §1 of [M] for
basic definitions and references).
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Given an R–group G and a morphisms R → S in k–alg, we let GS denote the
S-group G×Spec(R) Spec(S) obtained by base change. For convenience, we will under
these circumstances denote most of the times H1


ét(S,GS) by H1
ét(S,G).


The expression linear algebraic group (defined) over k, is to be understood in
the sense of Borel [Bo]. For a k-group G, this is equivalent to requiring that G be
smooth.2 The connected component of the identity of such group G, will be denoted
by G0.


A reductive R–group is to be understood in the sense of [SGA3]. In particular,
a reductive k–group is a reductive connected algebraic group defined over k in the
sense of Borel.


1.2 Brief description of contents


Section 2. This section is devoted to the étale cohomology of Laurent polynomials
ring k[t±1


1 , t±1
2 ] in two variables, and connections with Serre’s Conjecture II for the


corresponding function field k(t1, t2) (the analogue of Conjecture I was dealt with in
[P2]).


Section 3. Loop torsors, the main topic of this section, are the torsors that are
of interest in infinite dimensional Lie theory. One of the main results of this section
is the existence of an invariant, the Witt-Tits index, that can be attached to loop
torsors. In the case of two variables, we defined another invariant with values in the
Brauer group. One of the major results of the paper (Theorem 3.17) asserts that
this Brauer invariant is fine enough to classify inner loop torsors. It is not however
fine enough to distinguish torsors in general (§3.6), which leads to the failure of the
analogue of Serre’s Conjecture II for the ring k[t±1


1 , t±1
2 ].


Section 4. As explained in the Introduction, the study of Extended Affine Lie
Algebras is intimately related to the study of k[t±1


1 , · · · t±1
n ]–forms of finite dimensional


simple Lie algebras. This section contains general results about forms of arbitrary
finite dimensional algebras (mostly assumed to be central and perfect) over rings.


Section 5. This is detailed study of the nature of forms of algebras in the case
when the base ring is a Laurent polynomial ring in finitely many variables. Particular
emphasis is put on the case when the base algebra is a finite dimensional simple Lie
algebra, and the ensuing connections with Extended Affine Lie Algebras.


Section 6. This section contains several conjectures related to the Galois coho-
mology of k[t±1


1 , t±1
2 ], and the classification of Extended Affine Lie Algebras in


nullity 2.


2A smooth k–group is affine (by our convention on k–groups), and algebraic (since smooth
schemes are by definition locally of finite type).
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2 Torsors over k[t±1
1 , t±1


2 ] and Serre’s Conjecture II


Throughout this section k is assumed to be algebraically closed. Torsors over
k[t±1


1 ] were studied in [P2], and behave according to an analogue of Serre’s Conjecture
I (Steinberg’s theorem). We now look at the case of k[t±1


1 , t±1
2 ]. The situation here


is much more delicate, and some of the results perhaps unexpected. We shall come
back to this section when we look at Extended Affine Lie Algebras of nullity 2 in §6.


We set R = k[t±1
1 , t±1


2 ], K = k(t1, t2), and F = k((t1))((t2)).


2.1 Cohomology of finite modules


We start by collecting some basic facts about the étale cohomology of R.


Proposition 2.1. 1. Gal(F ) ≃ π1(R) ≃ Ẑ× Ẑ.


2. H1
ét(R,µµµn) ≃ H1


ét(F,µµµn) ≃ (Z/nZ)2.


3. H2
ét(R,µµµn) ≃ H2


ét(F,µµµn) ≃ Z/nZ.


4. Br(R) ≃ Q/Z and n Br(R) ≃ Z/nZ. The canonical maps Br(R) → Br(F ) and


nBr(R)→n Br(F ) are isomorphisms.


5. Let S/R be a finite connected étale cover of degree d. The restriction map
ResS/R : H2(R,µµµn)→ H2(S,µµµn) is mutiplication by d, and the corestriction map
CorS/R : H2(S,µµµn)→ H2(R,µµµn) is the identity.


6. Given i ∈ Z, the class [i] ∈ Z/nZ ∼=n Br(R) is represented by the R–Azumaya
algebra A(i, n) with presentation


T n1 = t1, T
n
2 = ti2, T2T1 = ζn T1T2.


Proof. (1) Consider the Galois covering R2,d = R[t
±1/d
1 , t


±1/d
2 ] of R = R2, with Galois


group (Z/dZ)2 generated by τi (i = 1, 2) defined by


τi(t
1/d
j ) = (ζd)


δi,j t
1/d
j .


The crucial point is that every connected finite étale cover of R is dominated by one
of these Galois extensions. Thus π1(R2) = lim←−d Gal(R2,d/R) = lim←−d (Z/dZ)2 = (Ẑ)2


(see [GP1, cor. 3.2] and [GP2] for details).


(2) , (3) and (4) : see [GP2, §3 and §4.2]. Because of (4), the calculations of (5) can
be carried on F instead of R. One can now reason as in proposition 6.3.9 of [GS].
By (3) and (4) we have Z/nZ ≃ H2(R,µµµn) ≃ n Br(R) ≃ n Br(F ). So for establishing
(6), it suffices to show that the element [i] ∈ Z/nZ is represented by the F–algebra
A(i, n)⊗R F . But this is Proposition 5.7.1 of [GS].
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Remark 2.2. Note that the isomorphisms of (1) and (2) above depend on the choice
of a compatible set of primitive roots of unity (ζn)n≥1.


Remark 2.3. Let Inv : Br(R) → Q/Z be the group isomorphism constructed in
Part (4) of the above Proposition. Let A be an R–Azumaya algebra of degree n, and
write Inv(A) = p


q
with p, q coprime. Then the R–algebras A and A(p, q) are Brauer


equivalent. We claim that q divides n. Since Br(R) ≃ Br(F ), the statement can be
checked for A⊗R F . But this central simple F -algebra has period (exposant) q, and
we do know that q divides the degree n of A⊗R F (cf. [GS], § 4.5).


Remark 2.4. The class of 1 ∈ Z/nZ ≃ H2(R,Z/nZ) ≃ nBr(R) is nothing but the


cup–product χ1 ∪ χ2, where χi : Ẑ × Ẑ → Z/nZ stand for the unique continuous
character satisfying χi(n1, n2) = ni mod (n), for all n1, n2,∈ Z ([GS] Remark 6.3.8).


2.2 Serre’s conjecture II


By theorem 2.1 of [CTGP], the cohomology and classification of semisimple groups
over a two-dimensional geometric field with no factors of type E8, is known. By adding
some extra assumptions to the nature of the geometric field (assumptions which hold
in the case of k(t1, t2) that we are interested in), the groups with factors of type E8


can also be covered. More precisely:


Theorem 2.5. Let K be a two-dimensional function field over k. Let G be a semisim-


ple, simply connected K–group, and G =
r∏
i=1


RKi/K(Gi) the decomposition of G in


almost simple factors. Assume that Ki = Li(xi), where Li is a field of transcendence
degree one over k for all i = 1, ..., r. Let


1→ µµµ→ G→ Gad → 1


be the central isogeny associated to the centre µµµ of G. Then the boundary map


δ : H1(K,Gad)→ H2(K,µµµ)


is bijective.


Proof. Since groups of type E8 have trivial centre, we can consider separately groups
with no E8 factors, and groups of type E8. As it has already been mentioned, for
groups G with no E8 factors, the Theorem at hand is a special case of theorem 2.1 of
[CTGP]. Let E8 be the Chevalley k–group of type E8. This group is simply connected
and we have E8


∼= Aut(E8). Therefore by Shapiro’s formula, it will suffice to show
that H1(Ki,E8) = 1. Let L be an extension of k of transcendence degree one. For
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any closed point x of the projective line P1
L, the completion of L(t) at x is isomorphic


to L(x)((πx)). The field L(x) is a finite extension of L, so cd(L(x)) ≤ 1. By Bruhat-
Tits theory, we have H1(L(x)((πx)),E8) = 1 ([BT], théorème 4.7). In other words,
all classes of H1(L(t),E8) are unramified with respect to the closed points of the
projective line P1


L. By Harder’s lemma ([H], Lemma 4.1.3), the map H1(P1
L,E8) →


H1(L(t),E8) is then surjective. According to the theorem of Grothendieck-Harder
(cf. [Gi1], th. 3.8.a), we have the following exact sequence of pointed sets


1→ H1
Zar(P


1
L,E8)→ H1(P1


L,E8)
ev∞−→ H1(L,E8),


where ev∞ stands for the pull-back map defined by the point at infinity. ButH1(L,E8) =
1 by Steinberg’s theorem. This implies that H1


Zar(P
1
L,E8) ∼= H1(P1


L,E8). As Zariski
torsors are rationally trivial, we conclude that H1(L(t),E8) = 1 as desired.


Based on this last Theorem, an optimistic outcome for the G–cohomology of R
takes the following form.


Question 2.6. Let G be a semisimple R–group. Let 1 → µµµ → G̃ → G → 1 be its
universal covering. Is the boundary map H1


ét(R,G)→ H2
ét(R,µµµ) bijective ?


In particular, if G is simply connected, the question is whether H1
ét(R,G) vanishes,


namely a variant of Serre’s conjecture II.


2.3 Some evidence


Theorem 2.7. Let G be a semisimple R–group, and 1 → µµµ → G̃ → G → 1 its
universal covering.


1. The boundary map H1
ét(R,G)→ H2


ét(R,µµµ) is surjective.


2. If G is split, then H1
ét(R, G̃) = 1.


Proof. (1) Let α ∈ H2(R,µµµ). We consider the restriction maps


H2(R,µµµ)→ H2(K,µµµ)→ H2(F,µµµ).


By Theorem 2.5 δK : H1(K,G)→ H2(K,µµµ) is an isomorphism, so there exist a non-
empty open subvariety U ⊂ Spec(R), and a γ ∈ H1(U,G), such that δU(γ) = αU ∈
H2(U,µµµ). For every point x ∈ Spec(R)(1) \ U , the completed field K̂x is a field of
Laurent series over the residue field k(x), which is the field of functions of a k–curve.
So


H1(K̂x,G) ∼= H2(K̂x,µµµ)
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(Theorem 2.5). On the other hand, consider the residue map


∂x : H2(K̂x,µµµ)→ H1(k(x),µµµ(−1))


where µµµ(−1) stands for the Tate twist µµµ(−1) = Hom(Ẑ,µµµ) ≃ Hom(µµµd,µµµ) for some
d >> 0 (see [GMS] §I.7.8). Since cd(k(x)) = 1, ∂M is an isomorphism. We summarize
the previous facts in the commutative diagram


H1(U,G)
δ−−−→ H2(U,µµµ)y


y


H1(K̂x,G)
δ−−−→
≃


H2(K̂x,µµµ)
∂x−−−→
≃


H1(k(x),µµµ(−1)).


We have ∂x(αU) = 0, so δ(γ̂x) = 0. It follows that γ bKx
= 1. By Harder’s lemma


[H, lemma 4.1.3], the class γ extends on codimension 1 points of Spec(R) \ U . The
variety Spec(R) is a smooth affine surface, so γ extends to Spec(R) [CTS, théorème
6.13], i.e there exists some class γ̃ ∈ H1(R,G) such that γ̃U = γ. By construction,
δF (γ̃F ) = αF ∈ H2(F,µµµ). Since the restriction H2(R,µµµ) → H2(F,µµµ) is an isomor-
phism (Proposition 2.1(4)), we conclude that δR(γ) = α.
(2) Assume that G is split and simply connected. In particular, G is defined over
k. We see R as the localisation of k[t1, t2] at t1t2 6= 0. Let γ ∈ H1(R,G). By
Bruhat-Tits ([BT], cor 3.15), we have H1(k(t1)((t2)),G) = 1 and H1(k(t2)((t1)),G)
= 1. Harder’s lemma implies that γ extends at the generic points of the subvarieties
t1 = 0 and t2 = 0 of A2


k. In other words, there exists an open subvariety U ⊂ A2
k


such that codimX(U) = 2 and γ extends to U . Again by [CTS, théorème 6.13], γ
extends to a class γ̃A2


k
. Since H1(A2


k,G) = 1 ([Rg], cf. [CTO], proposition 2.4), it


follows that γ = γ̃U = 1 ∈ H1(R,G) as desired.


Corollary 2.8. Every semisimple R–group scheme G of type E8, F4 or G2 is split.
Furhermore H1(R,G) = 1.


Remark 2.9. Serre’s conjecture on rationally trivial torsors proven by Colliot-Thélène
and Ojanguren ([CTO], théorème 3.2) permits to give a shorter proof of the second
statement of Theorem 2.7. Taking into account Theorem 2.5, all R–torsors under G


are rationally trivial. Thus H1
Zar(R, G̃) = H1(R, G̃), and therefore H1(R, G̃) = 1 by


[GP2, corollary 2.3].


One more piece of evidence towards a positive answer of Question 2.6 comes
from reduced norms (in analogy with the theorem of Merkurjev and Suslin which
characterizes fields of cohomological dimension 2 by the surjectivity of their reduced
norms. See [Se], II.3.2).
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Lemma 2.10. Let A(i, n) be the standard Azumaya R–algebra defined in Proposition
2.1. Then the reduced norm map ([K2], I.7.3.1.5) N : A(i, n)× → R× is surjective.


Proof. The algebra A = A(i, n) has presentation T n1 = t1, T
n
2 = ti2, T2T1 = ζn T1T2.


In particular, it contains R[T1] as a maximal commutative R–subalgebra. As in the
field case, the restriction of the reduced norm to R[T1]


× is nothing but the norm map
N1 : R[T1]


× → R× of the cyclic Galois R–algebra R[T1]. Since N1(T1) = (−1)n−1t1,
we have (−1)n−1t1.R


×n ⊂ N(A×). So the group R×/N(A×) is cyclic generated by the
class of t2. Similarly, R[T2] is also a cyclic Galois R–algebra and N2(T2) = (−1)n−1t2.
We conclude that A(i, n)× → R× is surjective.


3 Loop torsors


Throughout this section the base field k is assumed to be algebraically closed and
of characteristic 0.


Let G be a reductive k–group. We fix a maximal torus T of G, and a base ∆
of the root system Φ = Φ(G,T). Let t denote the Lie algebra of T. For any subset
I ⊂ ∆ ⊂ Φ(G,T) we set


tI =
⋂


a∈I


ker(a) ⊂ t,


and let TI be the subtorus of T with Lie algebra tI . Define LI = ZG(TI); this is a
Levi subgroup of the standard parabolic group PI .


In what follows, we will often encounter the following situation: H is a subgroup
of G, and xxx = (x1, x2, ...., xn) is an n–tuple of elements of H. We summarize this by
simply saying that “xxx lies in H”.3


Let xxx = (x1, x2, ...., xn) be an n–tuple of commuting elements of finite order of G.
Let d be an integer such that xd1 = · · · = xdn = 1. Recall the Galois covering Rn,d =


R[t
±1/d
1 , · · · , t±1/d


2 ] of Rn, with Galois group (Z/mZ)n generated by τi (i = 1, ..., n)
defined by


τi(t
1/d
j ) = (ζd)


δi,j t
1/d
j .


This enables us to define the cocycle α(xxx) ∈ Z1(Gal(Rn,d/Rn),G(Rn,d)) as follows4


α(xxx) : Gal(Rn,d/Rn)→ G(k)→ G(Rn,d), τ
i1
1 · · · τ inn 7→ x−i11 x−i22 · · ·x−inn .


As it is customary, we denote the class of α(xxx) in H1(Rn,G) by [α(xxx)]. Observe that
this class is independent of the choice of the common period d.


3Strictly speaking, the xi are elements of H(k). This abuse of notations, whenever harmless, will
be used throughout.


4The somehow unnatural appearance of inverses in the definition of α(xxx), is consequence of the
way α(xxx) arises from multiloop algebras. See §6 below for details.
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Classes of the form [α(xxx)] as above are called loop classes. They form a subset
H1
loop(Rn,G) ⊂ H1(Rn,G). The elements of these classes are called loop torsors.


There is another useful way of looking at loop torsors in terms of the algebraic
fundamental group of R. Recall that π1(Rn) ≃ (Ẑ)n under our fixed choice of com-
patible roots of unity, and that H1


ct(π1(Rn),G(Rn,∞))
∼−→ H1(Rn,G) (see [GP1, cor.


3.2], or [GP2, cor. 2.15]) The cocycle α(xxx) corresponding to xxx can thus be thought


as the unique (continuous) map α(xxx) : (Ẑ)n → G(k) for which


α(xxx) : (i1, ..., in) 7→ x−i11 x−i22 · · ·x−inn


for all (i1, ..., in) ∈ Zn.


3.1 The Witt-Tits index of a loop torsor


The following Theorem is the crucial ingredient which will allow us to attach an
index set I ⊂ ∆ to a loop torsor. This result is also related to the work of Reichstein-
Youssin [RY] linking non-toral abelian sugroups and the essential dimension of G.
Our proof is a higher dimensional version in characteristic 0 of [Gi2] (e.g. proposition
3).


Theorem 3.1. Let xxx = (x1, x2, ...., xn) be an n–tuple of commuting elements of finite
order of G. For a subset I ⊂ ∆, the following conditions are equivalent:


1. xxx normalizes a parabolic subgroup P of G of type I,


2. [α(xxx)Kn] ∈ im
(
H1(Kn,PI)→ H1(Kn,G)


)
,


2bis. The twisted group α(xxx)GKn
admits a Kn–parabolic subgroup of type I.


3 [α(xxx)Fn] ∈ im
(
H1(Fn,PI)→ H1(Fn,G)


)
,


3 bis. The twisted group α(xxx)GFn
admits a Fn–parabolic subgroup of type I.


In particular, if G is semisimple, then xxx is irreducible (i.e it does not lie in any
proper parabolic subgroup of G), if and only if the corresponding twisted Fn–group


α(xxx)GFn
is anisotropic.


Proof. By a theorem of Chevalley ([Bo] theorem 11.6) PI is its own normalizer in G.
The equivalence (2)⇐⇒ (2bis) and (3)⇐⇒ (3bis) then follows from a classical lemma
([Se], III.2.2, lemme 1).


(1) =⇒ (2): Up to conjugacy by a suitable element g ∈ G(k), we may assume that the
xi’s lie in PI(k). Because Gal(Kn) acts trivially on g, the g−1α(xxx)g define a cocycle
which is cohomologous to α(xxx). Now (2) is clear.


(2) =⇒ (3): Obvious.
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(3) =⇒ (1): Consider the k–variety Y = G/PI of parabolic subgroups of G of type
I, as well as the corresponding twisted Fn–variety


X = α(xxx)YFn.


Our hypothesis is that X(Fn) 6= ∅. We have


X(Fn) =
{
y ∈ Y(Fn,m) | α(xxx)(σ).σy = y for all σ ∈ Gal(Fn,m/Fn)


}
.


Since Y is complete, we have


Y(Fn−1,m[[
m
√
tn]]) = Y(Fn,m).


Now, by specializing at tn = 0, we obtain
{
y ∈ Y(Fn−1,m) | α(xxx)(σ).σy = y for all σ ∈ Gal(Fn,m/Fn)


}
6= ∅,


where the Galois action of Gal(Fn,m/Fn) on Y(Fn−1,m), is induced by the canoni-
cal projection Gal(Fn,m/Fn) → Gal(Fn−1,m/Fn−1). Repeating the same process, we
finally get


{
y ∈ Y(k) | α(xxx)(σ).σy = y for all σ ∈ Gal(Fn,m/Fn)


}
6= ∅,


and therefore
{
y ∈ Y(k) | α(xxx)(σ).y = y ∀σ ∈ Gal(Fn,m/Fn))


}
6= ∅


since Gal(Fn,m/Fn) acts trivially on Y(k). But this means that all of the xi normalize
a k-parabolic subgroup of type I, hence (1).


Example 3.2. For the split group E8 and its standard non-toral abelian subgroup
(Z/2Z)9, the corresponding loop torsor is studied by Chernousov-Serre [CS]. Our
result gives another proof that the associated twisted group defined over k(t1, ..., t9)
is anisotropic.


Since assertions (2) and (3) of Theorem 3.1 are satisfied for a unique maximal
index I, namely the Witt-Tits index 5 of α(xxx)GKn, we get the following interesting
fact.


5Let K/k be a field and [z] ∈ H1(K,G). The twisted group zG admits a single G(K)–conjugacy
classe of minimal parabolic subgroups, and any such minimal P is G(K)–conjugated to a unique
minimal standard parabolic subgroup PI ⊂ G. This I is called the Witt-Tits index of zG, and it
depends only on [z] ∈ H1(K,G) ([BoT], §6.5). In terms of Galois cohomology, PI is the unique
minimal standard parabolic subgroup of G such that [z] ∈ Im(H1(K,PI)→ H1(K,G)).
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Corollary 3.3. The minimal elements (with respect to inclusion) of the set of parabolic
subgroups of G normalized by x1, ..., xn are all conjugate under G(k). The type I(xxx)
of this conjugacy class is the Witt-Tits index of the Fn–group α(xxx)GFn.


We call I(xxx) the Witt-Tits index of xxx. As we shall see later, this invariant plays a
crucial role in the classification of loop torsors.


Remark 3.4. One can also define an index in the linearly reductive case by taking
into account the star action of xxx on ∆. More precisely, assume F is a linear algebraic
group whose connected component F0 := G is reductive. We have an exact sequence
of algebraic groups


1→ Gad → Aut(G)→ Out(G)→ 1


([SGA3] XXV théorème 1.3). Let xxx be an n–tuple of commuting elements of finite
order of F. The above exacts sequence yields an action of < xxx > on Out(G). This
is the first part of the invariant attached to xxx. The second part is defined as in the
connected case, by replacing PI by NF(PI) in Theorem 3.1. If G is semisimple and
adjoint, then Out(G) can be identified with the group Aut(∆) of automorphisms of
∆. By the uniqueness of type for outer forms, the action of xxx on Aut(∆) leaves the
index set I stable.


3.2 Reducibility


Recall that a subgroup H of a reductive k–group G is called G–irreducible if H


is not contained in any proper parabolic subgroup P of G.
Recall also that, by definition, a reductive k–group is connected.6 There is a


weaker notion, that of linearly reductive subgroup H of G, that we now need (see
[BMR] for details). A linear algebraic group H is linearly reductive if every rational
representation of H is semisimple. Because our algebraically closed base field is of
characteristic 0, for H to be linearly reductive it is necessary and sufficient that H0


be reductive.


Lemma 3.5. Let G be a reductive k–group, and H a subgroup of G. If S is a maximal
torus of ZG(H), then S = Z(ZG(S))0 and ZG(S) is a Levi subgroup of a parabolic
subgroup of G.


Proof. Let S′ be the identity component of the centre of ZG(S). Clearly S ⊂ S′.
Since H ⊂ ZG(S), we have S′ ⊂ ZG(H). Since S is a maximal torus of ZG(H), we
have S = S′. So S = Z(ZG(S))0. That ZG(S) is the Levi subgroup of a parabolic
subgroup of G is well known ([Bo] proposition 20.4).


6See the conventions in §1.1
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Recall that if H is linearly reductive, then the centralizer ZG(H) of H in G is
also linearly reductive ([R], proposition 10.1.5). Corollary 3.5 of [BMR] and its proof
state the following.


Theorem 3.6. Let H be a linearly reductive subgroup of a reductive k–group G, and
let S be a maximal torus of ZG(H). Then


1. H is irreducible in ZG(S).


2. If P be a parabolic subgroup of G for which ZG(S) is a Levi subgroup, then P is
a minimal element (with respect to inclusion) of the set of parabolic subgroups
of G that contain H.


3. If P is a minimal element (with respect to inclusion) of the set of parabolic
subgroups of G that contain H, then H is L–irreducible for some Levi subgroup
L of P.


Corollary 3.7. Let H be a linearly reductive subgroup of a reductive k–group G. For
a parabolic parabolic subgroup P of G, the following conditions are equivalent:


1. P is a minimal element of the set of parabolic subgroups containing H.


2. There exists a maximal torus S of ZG(H) such that ZG(S) is a Levi subgroup
of P.


Proof. (2) =⇒ (1): This is given by the second assertion of Theorem 3.6.


(1) =⇒ (2): Let L be a Levi subgroup of P for which H is L–irreducible (Theorem
3.6(3)). For S := Z(L)0, we have L = ZG(S) ([Bo] proposition 11.23 and corollary
14.19), and S ⊂ ZG(H) ( since H ⊂ L). We claim that S is a maximal torus of
ZG(H). Let S′ ⊂ ZG(H) be a torus containing S. Since S commutes with S′, we
have S′ ⊂ ZG(S) = L. If S ( S′, then S′ is not central in L. Thus ZL(S′) is a Levi
subgroup of a proper parabolic subgroup Q of L (ibid. proposition 20.6). But since
H commutes with S′, we have H ⊂ ZL(S′) ⊂ Q. This contradicts our assumption on
L–irreducibility.


The minimality of parabolic subgroups containing H can be tested on elements of
finite order of H.


Corollary 3.8. Let H be a linearly reductive subgroup of a reductive group G. There
exists elements x1, ..., xn ∈ H of finite order such that


1. ZG(H) = ZG(x1, ..., xn).
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2. The abstract group < x1, ..., xn > is linearly reductive (i.e. the Zariski closure
of < x1, ..., xn > in G is linearly reductive).


In this case, the minimal elements of the set of parabolic subgroups containing
H are precisely the minimal elements of the set of parabolic subgroups containing
{x1, ..., xn}.
Proof. Let Hss (respectively Hfin), denote the subset of H(k) consisting of those
elements which are semisimple (respectively of finite order).


We claim that ZG(H) = ∩x∈HssZG(x). For since the finite constant group H/H0


is diagonalizable, there exists a set of coset representatives of H0 in H comprised of
semisimple elements. This, together with the fact that the semisimple elements of
H0 are dense in H0 ([Bo] theorem 11.10), establishes the claim.


If x ∈ Hss, then < x > ⊂ H is a closed subgroup of a torus of G. In particular,
the elements of finite order of < x >, form a dense subset of < x >. Together with
our previous claim, this shows that ZG(H) = ∩x∈Hfin


ZG(x). Given that each ZG(x)
is closed and k[G] is noetherian, we conclude that ZG(H) = ZG(x1)∩....∩ZG(xm) :=
ZG(x1, ..., xm) for some x1, ..., xm ∈ Hfin.


Observe that ZG(x1, ..., xm) = ZG(x1, ..., xm, x) for all x ∈ Hfin. To finish the
proof of (1) and (2) therefore, it will suffice to show that there exists xm+1, ..., xn ∈
Hfin such that the abstract group < x1, ..., xn > is linearly reductive.


Let H1 = < x1, ..., xm >. If H0
1 is reductive we are done. If not, the H0


1 = U1.L1


where 1 6= U1 (resp. L1) is the unipotent radical (resp. a Levi subgroup) of H0
1. Since


H0 has trivial unipotent radical, there exists xm+1 ∈ H0
fin such that xm+1U1x


−1
m+1 6=


U1 (recall that H0
fin is dense in H0). Let H2 = < x1, ..., xm, xm+1 >. If H0


1 = H0
2,


these two groups would have the same unipotent radical, namely U1. But they do
not: xm+1 does not normalize U1. Thus H0


1 ( H0
2. One now considers the unipotent


radical of H0
2 and repeats the above argument. Since the dimension of the resulting


groups H0
1 ( H0


2 ( ... are bounded by H0, there exists elements xm+1, ..., xn ∈ Hfin


as desired.


Finally, let P be a parabolic subgroup of G which is minimal among those con-
taining {x1, ..., xn}. Then P is minimal among those parabolic subgroups containing
the group K = < x1, ..., xn > . Since K is linearly reductive, there exists a maximal
torus S of ZG(K) such that L = ZG(S) is a Levi subgroup of P (Corollary 3.7). By
construction, ZG(K) = ZG(H). In particular, S commutes with H, and therefore
H ⊂ L.


3.3 Almost commutative subgroups


Following [BFM], we say that a subgroup H of G is almost commutative if
(H.Z(G))/Z(G) is abelian. The last assertion of the following result generalises
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lemma 2.1.2 of loc. cit. about compact Lie groups (see also [KS]).


Proposition 3.9. Let H be an almost commutative subgroup of G which is linearly
reductive, and let S be a maximal torus of ZG(H).


1. The k–parabolic subgroups of G which are minimal among those containing H


are all conjugate under G(k). Furthermore, the type I(H) of this conjugacy
class is the Witt–Tits index of some twisted inner form of G.


2. If J ⊂ ∆ is such that S is conjugated to TJ , then J = I(H).


Proof. (1) After replacing G by Gad, we may assume that H is an abelian subgroup
of G. Corollary 3.8 provides an n–tuple xxx = (x1, ..., xn) of elements of finite order of
G, such that the parabolic subgroups which are minimal among those containing H,
are precisely those which are minimal among those containing {x1, .., xn}. We can
now apply Corollary 3.3.1.


(2) Up to conjugacy, we may assume that TJ is a maximal torus of ZG(H). Corollary
3.7 implies that PJ is a minimal parabolic subgroup containing H. By (1), we get
that J = I(H).


Lemma 3.10. Let λ : G̃ → G be an isogeny of reductive k–groups. Let H be an
almost commutative subgroup of G which is linearly reductive, and set H̃ = λ−1(H).
Then


1. H̃ is an almost commutative and linearly reductive subgroup of G̃.


2. The morphism Z eG
(H̃)0 → ZG(H)0 is a central isogeny.


3. Via the natural identification of ∆ with a base of the root system Φ(G̃, T̃), we


have I(H̃) = I(H).


Proof. We begin by recalling certain relevant facts about isogenies (see [Bo]§22 for
details). Because λ is separable, it is central. In particular, for a subgroup S of
G to be a maximal torus, it is necessary and sufficient that λ−1(S) be a maximal


torus of G̃. Let T̃ = λ−1(T). This is a maximal torus of G̃, and the standard map


λ∗ : Φ(G,T)→ Φ(G̃, T̃) is an isomorphism.


(1) The isogeny λ maps the unipotent radical of H̃
0


injectively into the unipotent


radical of H0, which is trivial by assumption. This shows that H̃
0


is reductive, hence
that H is linearly reductive. Given that λ is central, that H̃ is almost commutative
follows from the almost commutativity of H, together with Z(G̃) = ∩T̃ = ∩λ−1(T) =
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λ−1(∩T) = λ−1(Z(G)) (the intersections being taken over all maximal torus of G̃


and G respectively).


(2) The induced map λ : Z eG
(H̃)0 → ZG(H)0 has finite central kernel, so only


surjectivity must be checked. It is enough to do this at the Lie algebra level. But
here the situation is clear. Indeed


Lie(Z eG
(H̃)) = Lie(G̃)Ad eH, Lie(ZG(H)) = Lie(G)AdH,


and


Adλ(x̃)(dλ(ỹ)) = dλ(Ad x̃(ỹ))


for all x̃ and ỹ in G̃, were dλ := Lie(λ) is the differential of λ ([DG] II §4.1 and §5
5.7).


(3) By (2) and the opening remarks on isogenies, the maximal tori of Z eG
(H̃)0 are


precisely of the form λ−1(S) for S a maximal torus of ZG(H)0. Now (3) follows from
Proposition 3.9.


3.4 Almost commuting families of elements of finite order


Recall that an n–tuple xxx = (x1, ..., xn) of elements of G is said to almost commutes
if [xi, xj ] ∈ Z(G) for i, j = 1, .., n. This is equivalent to require that the group < xxx >
generated by the xi be almost commutative. Define the rank of such a family xxx to be
the dimension of the centralizer of ZG(xxx) = ZG(x1, ..., xn) of xxx in G. Notice that xxx
is of rank zero if and only if ZG(xxx) is a finite group.


If in addition the xi are all of finite order, there is a more subtle invariant of xxx
that can be defined in terms of any maximal torus S of ZG(xxx).


Proposition 3.11. Let xxx = (x1, ..., xn) be an almost commuting n–tuple of elements
of finite order of a semisimple k–group G.


1. The group < xxx > generated by the xi is finite. In particular, this group is
linearly reductive and all its elements are semisimple.


2. There is an unique subset I = I(xxx) ⊂ ∆ for which any maximal torus S of
ZG(x) is conjugated to TI .


3. Let S be a maximal torus of ZG(x). Then xxx belongs to ZG(S) and its image in
ZG(S)/S is a rank zero n–tuple of the semisimple k–group ZG(S)/S.
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4. Let G̃→ G be the universal covering of G. There exist liftings x̃xx = (x̃1, ..., x̃n)


of xxx in G̃, i.e. such that λ(x̃i) = xi for i = 1, ..., n. Moreover, < x̃xx > is finite
and I(x̃xx) = I(xxx).


5. If S is a maximal torus of ZG(xxx), there exists a maximal torus T of G containing


S such that < xxx >⊂ NG(T). Furthermore, S =
(
T ∩ ZG(< xxx >)


)0
.


Proof. (1) If G is adjoint, then xxx is a commuting family of elements of finite order, and
the result is clear. The general case follows from the fact the kernel of the canonical
morphism G→ Gad = G/Z(G) is finite and central.


(2) This is nothing but Proposition 3.9 applied to the case H =< xxx >.7


(3) Since S is the connected centre of ZG(S), the group ZG(S)/S is semisimple
(possibly trivial). By construction, any maximal torus of ZG(S)/S containing the
images xiS of the xi’s must be finite. By (2) the resulting n–tuple is of rank zero.


(4) Liftings do exist since the map G̃(k) → G(k) is surjective (k is algebraically


closed). Since the universal covering G̃ → G is an isogeny, the remaining assertions
of (3) follow from (1) and (2) with the help of Lemma 3.10.


(5) We have < xxx >⊂ ZG(S). By the main theorem of [BM], there exists a
maximal torus T of ZG(S) such that < xxx >⊂ NG(T). Since S is the connected
centre of ZG(S), we conclude that T contains S. Finally (T ∩ ZG(< xxx >))0 is a
torus of ZG(< xxx >)0 containing S. But S is a maximal torus of ZG(< xxx >)0, hence
S =


(
T ∩ ZG(< xxx >)0


)
.


3.5 Almost commuting pairs and their invariants


We now concentrate on the case n = 2. For convenience, as in §2, we set R =
k[t±1


1 , t±1
2 ], K = k(t1, t2), F = k((t1))((t2)).


Proposition 3.12. If a semisimple k–group G has a rank zero pair of almost com-
muting elements, then G is of type Ar1 × · · · ×Arl.


Proof. Let xxx = (x1, x2) be an almost commuting rank zero pair of elements of G.
The group ZG(xxx) is finite, both x1, x2 are of finite order. By Lemma 3.11, we may
assume that G is simply connected.


First case: k = C: Let Gan be the real anisotropic form of G. The group Gan(R)
is a maximal compact subgroup of G(C). The finite group ZG(xxx) of G(C) lies in a
maximal compact subgroup of G(C). By Cartan’s theorem, up to conjugacy by an


7According to [BFM], the uniqueness of the index set I “is clear”. This uniqueness is not clear
to us however, at least not without the arguments explained herein.
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element of G(C), we may assume that ZG(xxx) ⊂ Gan(R). Then xxx is a rank zero pair
of commuting elements of the compact Lie group Gan(R). Proposition 4.1.1 of [BFM]
then states that Gan is a product of groups of type A.


Second case : k is a subfield of C: Since the notion of rank zero pair is algebraic, it
follows that the proposition holds also in this case.


General case: The field k contains the algebraic closure Q of Q in k. The group
G is defined over Q. Since the elements of ZG(xxx) are of finite order, it follows that
ZG(xxx) ⊂ G(Q) ⊂ G(k). Therefore xxx is a rank zero pair of G(Q) and the second case
shows that G is product of groups of type A.


For adjoint groups, the last result has the following useful consequence.


Lemma 3.13. Assume that G is adjoint and simple. Let xxx = (x1, x2) be a commuting
pair of elements of G of rank zero. Then G = PGLn, and there exists d ≥ 1 relatively
prime to n for which xxx is G(k)–conjugated to the pair (AdY1,AdY d


2 ), where Y1 and
Y2 in GLn(k) are given by


Y1 =






0 0 · · · 0 1
1 0 0 · · · 0
0 1 · · · 0
· · · 1 0



 , Y2 =






1 0 · · ·
0 ζn 0 · · · 0
0 · · · 0
0 · · · 0 ζn−1


n



 .(3.1)


Proof. The group G is adjoint simple and, by the last Lemma, of type A. Thus
G = PGLn for some n ≥ 2. Let xxx = (x1, x2) be a rank zero pair of PGLn(k). Let
(X1, X2) be any lift of (x1, x2) to a pair of elements of GLn(k). Then the commutator
of these two elements satisfies [X2, X1] = diag(ζn, ..., ζn)


d, for some d ≥ 0.
By looking at the infinitesimal centralizer of x1 and x2 ([Bo], corollary to theorem


9.2), we see that the centraliser (under the adjoint action) of {x1, x2} in sln(k) is
trivial. From this it follows that the centralizer of {X1, X2} in Mn(k) = k Id⊕sln(k)
consists only of the homotheties k Id. So X1 and X2 do not commute (for otherwise
x1 = 1 = x2 and (x1, x2) is not a rank zero pair). This forces d 6∈ nZ. Let m be
the order of d in Z/nZ. We have (ζdn)


m = 1, so [Xm
1 , X2] = 1. Thus Xm


1 commutes
with X1 and X2, and therefore Xm


1 = z1 Id ∈ k× Id. Similarly, Xm
2 = z2 Id ∈ k× Id.


Choose ai ∈ k such that ani = z−1
i , and set Zi = aiXi. Then


Zm
1 = 1, Zm


2 = 1, and Z2Z1 = ωZ1Z2


where ω = ζdn. Since ω is a primitive m–root of unity, the k–algebra {Z1, Z2} is a non
trivial quotient of the standard cyclic central simple k–algebra (1, 1)ω ([GS], §2.5) of
degree m. Since (1, 1)ω is simple, {Z1, Z2} ≃ (1, 1)ω ≃Mm(k). But the centralizer of
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{Z1, Z2} in Mn(k) is k, so m = n by the double centralizer theorem (cf. [Sc], corollary
8.4.8). So d is relatively prime to n. On the other hand, the elements Y1, Y2 of (3.1)
above satisfy


(3.2) Y n
1 = 1, (Y d


2 )m = 1, and Y d
2 Y1 = ζdn Y1 Y


d
2 .


We can now apply lemma 1.2 of [Ro] (with ω = ζdn as primitive n–root of unity), to
conclude that (Z1, Z2) is GLn(k)–conjugated to (Y1, Y


d
2 ). Since AdZi = AdXi, the


Lemma now follows by pushing into PGLn(k).


Remark 3.14. One checks that det(Yi) = (−1)n+1. When n is even, replacing Yi by


Ỹi := ζ2nYi produces elements of SLn(k) with the desired properties.


These examples of pairs enables us to recover the following useful result:


Lemma 3.15. Let G be a semisimple k–group. If c ∈ Z(G), then c = [x1, x2] for
some elements of finite order x1 and x2 of G .


Proof. It is well known that G admits a semisimple subgroup H of type Ar1× ...×Arl
such that rank(H) = rank(G). Such a subgroup H contains a maximal torus of
G, so it contains Z(G). This reduces the problem to the case of a group G of


type Ar1 × ... × Arl . Let G̃ be the simply connected covering of G. Since the map


Z(G̃)→ Z(G) is surjective, it will suffice to establish the Lemma for G̃. Furthermore,


since G̃ is the product of almost simple semisimple simply connected group, we may
also assume that G̃ is almost simple, i.e G̃ = SLn. But then, from the calculations
in the proof of previous Proposition, and with the notation of the last Remark, we
obtain Z(SLn) = {[Ỹ m


1 , Ỹ2] : 0 ≤ m < n}.
Let xxx = (x1, x2) be a commuting pair of elements of finite order of G, and [α(xxx)] ∈


H1(R,G) the corresponding loop class (see the beginning of this section). Consider
now the simply connected covering


1→ µµµ→ G̃
λ−→ G→ 1


of G. By Proposition 3.11(4), any lifting x̃xx = (x̃1, x̃2) of xxx to G̃ is a pair of almost com-


muting elements of finite order. Since the exact sequence 1→ µµµ(k)→ G̃(k)→ G(k)→ 1


is central, the commutator [x̃1, x̃2] ∈ G̃ does not depend on the lifting x̃xx. We denote
this commutator by µ(xxx). As we shall see, µ(xxx) is an important invariant encoded in
the cohomology class α(xxx).


Proposition 3.16. The image of [α(xxx)] under the connecting map


δ : H1
ét(R,G)→ H2


ét(R,µµµ) ∼= µµµ


is given by the formula
δ([α(xxx)]) = µ(xxx)−1.
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Proof. ¿From x̃1x̃2 = µ(xxx)x̃2x̃1 it easily follows that


(3.3) x̃p11 x̃p22 = µ(xxx)p1p2 x̃p22 x̃p11 .


for all p1 and p2 in Z. Let α̃ : π1(R) ≃ Ẑ × Ẑ → µµµ be the unique (continuous) map
satisfying α̃ : (i1, i2) 7→ α̃(i1,i2) = x̃−i11 x̃−i22 for all (i1, i2) ∈ Z×Z. By the consideration
explained in §5 above, we see that δ([α(xxx)]) corresponds, under the connecting map


δ : H1(R,G)→ H2(R,µµµ), to the class of the 2–cocycle c : Ẑ× Ẑ→ µµµ given by


c(i1,i2),(j1,j2) : = α̃(i1,i2)
(i1,i2)α̃(j1,j2)α̃


−1
(i1+j1,i2+j2)


= α̃(i1,i2)α̃(j1,j2)α̃
−1
(i1+j1,i2+j2)


= x̃−i11 x̃−i22 x̃−j11 x̃−j22


(
x̃−i1−j11 x̃−i2−j22


)−1


= x̃−i11 x̃−i22 x̃−j11 x̃i22 x̃
i1+j1
1


= µµµ(xxx)−j1i2 .


The class of this cocycle in H2(Ẑ× Ẑ,µµµ) is precisely the cup product −θ1 ∪ θ2 of the


homomorphisms θ1, θ2 : Ẑ × Ẑ → µµµ given by (i1, i2) 7→ µ(xxx)i1 and (i1, i2) 7→ µ(xxx)i2


respectively (see Remark 2.4). Thus δ(α(xxx)) = µ(xxx)−1 ∈ H2(R,µµµ) ∼= µµµ as stated.


Theorem 3.17. Let 1 → µµµ → G̃
λ−→ G → 1 be the simply connected covering of a


semisimple k–group G. Then the boundary map δ : H1(R,G)→ H2(R,µµµ) induces a
bijection


H1
loop(R,G)


∼−→ H2
ét(R,µµµ).


In other words, to an R–loop torsor X under G, we can attach a “Brauer invariant”
in H2(R,µµµ) ⊂ Br(R) which characterizes the isomorphism class of X. The Brauer
invariant can be easily computed (Proposition 3.16). We will come back to this in §6,
when we classify inner multiloop algebras of nullity 2.


We begin with two preliminary results needed for the proof.


Lemma 3.18. 1. If G = G1 ×G2, Theorem 3.17 holds for G iff it holds for G1


and G2;


2. ker(H1
ét(R,G)→ H2


ét(R,µµµ)) = ker(H1
ét(R,G)→ H2(K,µµµ))


= ker(H1
ét(R,G)→ H1(K,G)).


3. Given [z] ∈ H1
loop(R,G), assume that


(a) H1
loop(R,G


ad)→ H2(R,Z(G̃)) has trivial fiber at [zad];


(b) ker
(
H1(R, zG̃R)→ H1(R, zG


ad
R )


)
= 1.
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Then H1
loop(R,G)→ H2(R,µµµ) has trivial fiber at [z].


Proof. (1) This is obvious.
(2) By Proposition 2.1(1) ( or by general properties of the Brauer group. See [M, Ch.
IV cor 2.6], H2(R,µµµ) injects in H2(K,µµµ). On the other hand, H1(K,G) ≃ H2(K,µµµ)
by Theorem 2.5. Now (2) follows.
(3) Consider the commutative diagram


(3.4)


1
y


1 Z(G)
y


y


1 −−−−→ µµµ −−−−→ G̃
λ−−−−→ G −−−−→ 1


y ≀


y p


y


1 −−−−→ Z(G̃) −−−−→ G̃
ep−−−−→ Gad −−−−→ 1


y
y


Z(G) 1
y


1


Passing to cohomology yields


H1
loop(R,G) ⊂ H1(R,G) −−−→ H2(R,µµµ)


p∗


y p∗


y
y


H1
loop(R,G


ad) ⊂ H1(R,Gad) −−−→ H2(R,Z(G̃)).


By diagram chasing and assumption (a), it will suffice to establish the triviality of
the fiber of p∗ at [z] ∈ H1


loop(R,G). This fiber is controled by the diagram of torsion
maps of the twisted R–group zGR := zG ([DG], III.4.3.4), namely


H1(R,G)
p∗−−−→ H1(R,Gad)


θz


y≀ θz


y≀


H1(R,Z(G)) −−−→ H1(R, zGR)
zp∗−−−→ H1(R, zG


ad
R )


In other words, p−1
∗ ([z]) ∼= zp


−1
∗ (1). Since Z(G̃) and Z(G) are both constant and


finite, the map H1(R,Z(G̃)) → H1(R,Z(G)) is surjective. We then see that in the
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commutative diagram


H1(R,Z(G̃)) −−−→ H1(R, zG̃R)
z ep∗−−−→ H1(R, zG


ad
R )y


y
y≀


H1(R,Z(G)) −−−→ H1(R, zGR)
zp∗−−−→ H1(R, zG


ad
R ).


the map ker(zp̃∗)→ ker(zp∗) is surjective. Since by assumption (b) we have ker(zp̃∗) =
1, we conclude that zp


−1
∗ (1) = 1, hence that p−1


∗ ([z]) = [z] as desired.


We also need the following fairly general cohomological result.


Lemma 3.19. Let I ⊂ ∆ be a subset, and A and object in k–alg. Then.


1. The canonical map H1(A,LI)→ H1(A,PI) is bijective.


2. If Pic(A) = 0, the canonical map H1(A,LI)→ H1(A,LI/TI) is injective.


Proof. (1) This is a special case of corollary 2.3 of exp. XXVI of [SGA3].
(2) The sequence of algebraic groups 1 → TI → LI → LI/TI → 1 is central.
According to § III.4.5.3 of [DG], the fibers of H1(A,LI)→ H1(A,LI/TI) are suitable
quotients of H1(A,TI). Since TI is a split torus, the hypothesis Pic(A) = 0 implies
that H1(A,TI) = 0. Thus the map H1(A,LI) −→ H1(A,LI/TI) is injective.


Proof of Theorem 3.17: We may asume without loss of generality that G 6= 1.
To establish the injectivity of the map H1


loop(R,G) → H2(R,µµµ), we will rea-
son according to the index I of the relevant pairs. Since by Theorem 2.5, the
map H1(K,G) → H2(K,µµµ) is a bijection, it will suffice to show that the map
H1
loop(R,G) → H1(K,G) is injective. Suppose then that we are given two pairs


xxx = (x1, x2) and xxx′ = (x′1, x
′
2) of commuting elements of finite order of G for which


[α(xxx)]K = [α(xxx′)]K ∈ H1(K,G). Since the twisted groups α(xxx)GK and α(xxx′)GK


are then isomorphic, they have same Witt-Tits index I. Theorem 3.1 implies that
I(xxx) = I(xxx′) = I.


Step 1: Injectivity for G adjoint when xxx, xxx′ are of rank zero:
By Lemma 3.18 we reduce to the case of a simple adjoint group. Since G is not


trivial, we have G = PGLn with n ≥ 2. According to Lemma 3.13, we may assume
(up to conjugacy) that xxx = (Ad(Y1),Ad(Y2)


d), xxx′ = (Ad(Y1),Ad(Y2)
d′), with d, d′


prime to n. The corresponding twisted K–algebras A(d, n)⊗R K and A(d′, n)⊗R K
are isomorphic if and only if d′ = d modulo n. Thus Ad(Y2)


d = Ad(Y2)
d′ , and


therefore xxx and xxx′ are conjugated under G(k). Hence [α(xxx)] = [α(xxx′)] ∈ H1
loop(R,G)


as desired.
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Step 2: Injectivity when xxx, xxx′ are of rank zero: Again the simple factors of Gad are
all of type A. Assumption (a) of Lemma 3.18.(4) holds by step 1. Let us check


that assumption (b), namely that H1(R, zG̃R)→ H1(R, zG
ad
R ) has trivial kernel for


any [z] ∈ H1
loop(R,G


ad) corresponding to a rank zero pair. To check this, we may


assume that Gad is simple, i.e. G = PGLn with n ≥ 2. As in Step 1, the class [z]
corresponds to the R–Azumaya algebra A(d, n) for some d prime to n. The corre-
sponding twisted adjoint and simply connected groups are zG


ad
R = PGL1(A(d, n))


and zG̃R = SL1(A(d, n)) respectively (the latter being the R–group scheme of ele-
ments of reduced norm 1 of A(d, n)). The exact sequence of twisted R–groups


1→ µµµn → SL1(A(d, n))→ PGL1(A(d, n))→ 1


gives rise to the exact sequence of pointed sets


1→ µµµn(R)→ SL1(A(d, n))(R)→ PGL1(A(d, n))(R)→


→ R×/(R×)×n → H1(R,SL1(A(d, n)))→ H1(R,PGL1(A(d, n))).


Since Pic(R) = 1, we have PGL1(A(d, n))(R) = GL1(A(d, n))(R)/R×, and the
boundary map PGL1(A(d, n))(R)→ R×/R×n is nothing but the reduced norm mod-
ulo R×n. But since this reduced norm map is surjective (Lemma 2.10), the map
H1(R,SL1(A(d, n)))→ H1(R,PGL1(A(d, n))) is injective. This completes the proof
that assumption (b) of Lemma 3.18 holds, hence also the proof of Step 2. Accord-
ingly, the map H1


loop(R,G)→ H2(R,µµµ) has trivial fiber at loop classes corresponding
to rank zero pairs.


Step 3: Injectivity, the general case: By Proposition 3.11(2) we may assume, after
conjugating xxx and xxx′ by two elements of G(k), that both xxx and xxx′ are pairs of
LI = ZG(TI) inducing rank zero pairs xxx and xxx′ of ZG(TI)/TI . Consider the exact
sequence of groups


1→ TI → LI → LI/TI → 1.


Recall that H1(K,PI) injects in H1(K,G) ([BoT], théorème 4.13.a). The map
H1(K,LI) → H1(K,G) is therefore injective by Lemma 3.19(1). Using again this
same Lemma, but now for R, we obtain the following commutative diagram of pointed
sets.


H1
loop(R,G) ⊂ H1(R,G) −−−→ H1(K,G)x


x ∪
H1
loop(R,LI) ⊂ H1(R,LI) −−−→ H1(K,LI)


∩ ∩ ∩
H1
loop(R,LI/TI) ⊂ H1(R,LI/TI) −−−→ H1(K,LI/TI)
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The elements [α(xxx)] and [α(xxx′)] actually belong to H1
loop(R,LI), and map to [α(xxx)]


and [α(xxx′)] in H1
loop(R,LI/TI). By chasing the above diagram, we see that [α(xxx)]K =


[α(xxx′)]K in H1(K,LI/TI), and that the rank zero pairs xxx and xxx′ of LI/TI have the
same image in H1(K,LI/TI). By Step 2 then [α(xxx)] = [α(xxx′)] in H1


loop(R,LI/TI). A
second diagram chase enables us to conclude that [α(xxx)] = [α(xxx′)] in H1


loop(R,LI).


Step 4: surjectivity: Given c ∈ µµµ ≃ H2(R,µµµ), Lemma 3.15 provides an almost


commuting pair xxx = (x1, x2) of elements of finite order of G̃(k) such that µ(xxx) = c−1.
By Proposition 3.16 we have δ


(
α(xxx)


)
= µ(xxx)−1 = c. �


3.6 Failure in the anisotropic case


The following example is analogous to the construction by Ojanguren-Sridharan
of reduced rank one projective quaternion modules over the real affine plane, which
are not free [OS].


Proposition 3.20. Let n ≥ 2 be an integer, and let A = A(1, n) the standard Azu-
maya algebra over R = k[t±1


1 , t±1
2 ] with generators T1, T2, and relations T n1 = t1, T


n
2 =


t2 and T2T1 = ζnT1T2. The equation


(1 + T1)λ = (1 + T2)µ


defines an invertible A–module L which is not free. The Azumaya algebra EndA(L)
has same class than A in the Brauer group, but is not isomorphic to A.


The proof is based on a valuation argument on the division algebra AK . We equip
the additive group Γ := R⊕R with the lexicographical order, and define a valuation
v : R \ {0} → Γ by


v
(∑


i,j


ai,j t
i
1t
j
2


)
= MinΓ{ (j, i) | ai,j 6= 0} ∈ Γ.


We denote by P 7→ P the specialisation map k[t1, t2] → k at the point (0, 0). As
before, N : A→ R denotes the reduced norm of A ([K2], I.7.3.1.5).


Lemma 3.21. Given a non zero element


x =
∑


ai,j T
i
1T


j
2 ∈ A, ai,j ∈ k,


define vA(x) = 1
n


MinΓ{ (j, i) | ai,j 6= 0} ∈ Γ.


1. vA is a valuation on A which extends v on R. Furthermore


vA(x) =
1


n
v(N(x)).
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2. If vA(x) ≥ 0, then N(x) = a0,0
n.


For valuation theory on division algebras, we refer the reader to the nice survey
by Wadsworth [W2].


Proof. (1) The completion of K = k(t1, t2) with respect to v is the field F =
k((t1))((t2)). Extend the function vA to A×


F by the formula


w
( ∞∑


j=−p


∞∑


i=pj


ai,jT
i
1T


j
2


)
= InfΓ


{
(j, i) | ai,j 6= 0


}
∈ Γ.


Since AF is a cyclic division algebra, example 2.7 of [W2] states that the map w is
a valuation on AF .8 So vA is a valuation. The formula vA = 1


n
v ◦ N was proven


independently by Ershov [E1][E2] and Wadsworth [W1].
(2) This is a special case of a formula due to Ershov ([E1], Corollary 2).


Proof of Proposition 3.20: Put ζ = ζn and ǫ =
n−1∏
i=0


ζ i = (−1)n−1. The module


L is the kernel of the map f : A ⊕ A → A, (λ, µ) 7→ (1 + T1)λ − (1 + T2)µ. Since
f(1 +T2, 1 +T1) = T1T2− T2T1 = (1− ζ)T1T2 is invertible, f is split surjective. Thus
L is a projective module of reduced rank 1. Assume that L is free, i.e L = (λ0, µ0)A
with (λ0, µ0) ∈ A2. By taking reduced norms, we have


N(λ0)N(1 + T1) = N(µ0)N(1 + T2).(3.5)


For a non zero element a ∈ A, by Galois descent, there exists a unique element
N′(a) ∈ A such that N′(a)a = aN′(a) = N(a) ∈ A. Since


f
(
N′(1 + T1)(1 + T2),N(1 + T1)


)
= N(1 + T1)(1 + T2)− (1 + T2)N(1 + T1) = 0,


we have


(
N′(1 + T1)(1 + T2),N(1 + T1)


)
= (λ0, µ0)α, α ∈ A.(3.6)


By comparing norms on (3.6), we obtain


N(λ0) | N(1 + T1)
n−1N(1 + T2) and N(µ0) | N(1 + T1)


n.


8Schilling’s theorem states actually that w is the unique valuation on AF extending v (loc. cit,
corollary 2.2).
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Similarly, since f
(
N(1+T2),N


′(1+T1)(1+T2)
)


= 0, we have N(λ0) | N(1+T2)
n and


N(µ0) | N(1 + T1)N(1 + T2)
n−1. We also have


N(1 + T1) =
∏


i=0,...,n−1


(1 + ζ iT1) = 1 + ǫt1,


and similarly N(1 + T2) = 1 + ǫt2. The above yield the following three identities.


1. N(λ0) (1 + ǫt1) = N(µ0) (1 + ǫt2);


2. N(λ0) | (1 + ǫt2)
n and N(λ0) | (1 + ǫt1)


n−1 (1 + ǫt2);


3. N(µ0) | (1 + ǫt1)
n and N(µ0) | (1 + ǫt1) (1 + ǫt2)


n−1.


Thus N(λ0) = (1 + ǫt2)u and N(µ0) = (1 + ǫt1)u for some u ∈ R×. Since the reduced
norm N : A× → R× is surjective (Lemma 2.10), we may henceforth assume with no
loss of generality that N(λ0) = 1 + ǫt2 and N(µ0) = 1 + ǫt1. We have v(1 + ǫt1) = 0,
so Lemma 3.21 shows that vA(µ0) = 0 and similarly we have vA(λ0) = 0. Hence


λ0 = a0,0 +
∑


(i,j)>(0,0)


ai,j T
i
1T


j
2 , ai,j ∈ k,


µ0 = b0,0 +
∑


(i,j)>(0,0)


bi,j T
i
1T


j
2 , bi,j ∈ k.


with a0,0, b0,0 6= 0. Lemma 3.21(2) enables us to specialize at (0, 0) the equality
N(λ0) = 1+ ǫt2. This yields a0,0


n = 1 and b0,0
n = 1. On the other hand, the equation


(1 + T1)λ0 = (1 + T2)µ0 now implies that a0,0 = b0,0. Thus, after multiplying λ0 and
µ0 by the n–root of unity a−1


0,0, we may assume that a0,0 = b0,0 = 1 while still keeping
the identities N(λ0) = 1 + ǫt2 and N(µ0) = 1 + ǫt1.


We now look at the behavior at infinity by considering the valuation v∞ on R
which is the highest bidegree with respect to t2, t1. We extend v∞ to a valuation
v∞,A on A as in Lemma 3.21. Since v∞(N(λ0)) = v∞(1 + ǫt2) = (1, 0), it follows that
v∞,A(λ0) = 1


n
(1, 0). Hence λ0 = 1 + ζ inT2 for some i. Similarly µ0 = 1 + ζjnT1. In all


cases, we have (1 + T1)λ0 6= (1 + T2)µ0 which is a contradiction.
We conclude that L is not free. The Azumaya algebra EndA(L) has the same


class than A in the Brauer group. Since Pic(R) = 0, lemma 4.1.(3) of [GP2] enables
to conclude that EndA(L) is not isomorphic to A. �


Corollary 3.22. There exists an R–Azumaya algebra9 M which is a non trivial
Zariski form of A(1, n). Moreover, [M] and [A(1, n)] ∈ H1(R,PGLn) have same
connecting invariant 1 ∈ Z/nZ ∼= H2(R,µµµn).


9The Margaux algebra.
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Remark 3.23. By twisting by A the exact sequence 1→ µµµn → SLn → PGLn → 1,
the last assertion can be rephrased by saying that H1


(
R,SL1(A(1, n))


)
6= 1. This


shows that, in contrast to the nullity 1 case of k[t±1
1 ], the analogue of Serre conjecture


II for k[t±1
1 , t±1


2 ] fails (see Question 2.6).


4 Twisted forms of algebras over rings


In this section the base field k is of arbitrary characteristic. Throughout A will de-
note a finite dimensional k–algebra (not necessarily unital or associative; for example
a Lie algebra). All rings are assumed to be commutative and unital.


4.1 Multiplication algebras and centroids


Let R be a ring. For an arbitrary R–algebra L, recall that the multiplication
algebra MultR(L) of L, is the unital subalgebra of EndR(L) generated by {1, lx, rx},
where lx (resp. rx) denotes the left (resp. right) multiplication operator by the element
x ∈ L. The abelian group L has a natural left MultR(L)–module structure, and an
algebra structure thereof if the ring MultR(L) is commutative.


The centroid CR(L) of L, is the centralizer of MultR(L) in EndR(L). Thus CR(L)
is the subalgebra of EndR(L) consists of all the endomorphisms of the R–module L
that commute with right and left multiplication by elements of L, i.e.


CR(L) = {χ ∈ EndR(L) : χ(xy) = χ(x)y = xχ(y) for all x, y in L}.


For r ∈ R, define λr ∈ EndR(L) by λr(x) = rx. Then λr ∈ CR(L), and the map
λL : r → λr is a ring homomorphism from R into CR(L). Recall that L is called
central if λL is an isomorphism. If L is a faithful R–module, the map λL is injective
and we may, and at times will, identify R with a subring λL(R) of CR(L).


Let L′ = {∑xiyi : xi, yi ∈ L} (finite sums of course). L′ is a two-sided ideal of L,
and we recall that L is called perfect if L = L′.


Lemma 4.1. Let L be an R–algebra. Let R0 → R by any (unital) ring homomor-
phism, and denote by L0 the resulting R0–algebra structure on L. Then.


1. L is perfect as an R–algebra if and only if L0 is perfect as an R0–algebra.


2. Assume L is a perfect R–algebra. Then CR(L) is commutative and the canonical
map CR(L)→ CR0


(L0) is a ring isomorphism.
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Proof. (1) is clear. That CR(L) is commutative is proved in[J, Ch. X lemma 1]. The
remaining point is that, because L is perfect, any endomorphism of the additive un-
derlying group of L that commutes with right and left multiplication, is automatically
R–linear (see [ABP2, lemma 4.1] for details).


Remark 4.2. We will be interested in looking at L not only as an R–algebra, but
also as a k–algebra. The loop algebra attached to an affine Kac-Moody case is a
good example to have in mind. These are infinite dimensional algebras over C, but
much can be gained by looking at them as algebras over their centroids (which are
Laurent polynomial rings). In view of this last result, if L is perfect, its centroid is
independent of which of these two base rings one uses.


4.2 Forms of simple algebras over rings


Recall that A is a finite dimensional k–algebra. Throughout R denotes an object
of k–alg.


Definition 4.3. An R–form of A is an algebra L over R for which there exists a
faithfully flat and finitely presented extension S/R in k–alg such that


(4.1) L ⊗R S ≃S A⊗ S


(isomorphism of S–algebras).


Remark 4.4. Since A⊗S ≃ (A⊗R)⊗RS, the R–algebra L is nothing but an R–form
(trivialized by Spec(S) in the f.p.p.f. topology of Spec(R)) of the R–algebra A⊗R.
Since Spec(R) is affine, the isomorphism classes of such R–algebras are parametrized
by H1


fppf(R,Aut(AR)); the pointed set of Čech cohomology on the (small) f.p.p.f.
site of Spec(R) with coefficients on Aut(AR). The R–group sheaf Aut(AR) is in fact
an affine R–group scheme (because A is finite dimensional). We have Aut(AR) =
Aut(A)R. If Aut(A) is smooth (for example if char(k) = 0), then S in (4.1) may be
assumed to be an étale cover. (see [SGA3] and [M] for details).


Example 4.5. (1) If A is the matrix algebra of rank n, the R–forms of A are the
Azumaya algebras over R of constant rank n.


(2) If g is a finite dimensional simple Lie algebra over an algebraically closed field
k of characteristic zero, then the k[t±1]–forms of g are precisely the affine Kac-Moody
Lie algebras (derived modulo their centres) over k. This is consequence of an analogue
of Serre Conjecture I for the Dedekind ring k[t±1]. See [P2] for details.


Lemma 4.6. Let L be an R–form of a finite dimensional perfect and central finite
dimensional k–algebra A.
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1. L is perfect. In particular, its centroid CR(L) is commutative and coincides
with Ck(L).


2. As an R–module, L is faithfully projective (in particular of finite type).


3. The canonical map λL : R→ CR(L) is a ring isomorphism. In particular, L is
central as an R–algebra.


Proof. (1) We have


(L/L′)⊗R S ≃ L⊗R S/L′ ⊗R S ≃ A⊗ S/(L ⊗R S)′


≃ A⊗ S/(A⊗ S)′ = 0


(the first isomorphism because S/R is flat, the last equality because A, hence A⊗ S,
is perfect). Since S/R is faithfully flat, L/L′ = 0. The assertions about the centroid
now follow from Lemma 4.1.


(2) After a faithfully flat base change L becomes free of finite rank. By descent
properties then, L is a projective R–module of finite type. To see that this module
is faithful, observe that if r ∈ R annihilates L, then the image s of r in S annihilates
the S–module L ⊗R S ≃ A⊗ S. Thus s = 0 (the k–algebra A, being central, cannot
be zero dimensional). Since S/R is faithfully flat, r = 0 as desired.


(3) Since L is faithful, the canonical map λL : R→ CR(L) is injective, and we may
thereof identify R with a subring λL(R) of the (commutative) ring CR(L). Since L is
projective of finite type, the canonical map φ : EndR(L) ⊗R S → EndS(L ⊗R S) ≃
EndS(A⊗S) is an S–algebra isomorphism. Clearly φ


(
CR(L)⊗RS


)
⊂ CS(A⊗S) ≃ S


(the latter by [ABP2.5] lemma 2.3(a)). It follows that φ(λL(R)⊗R S) = φ
(
CR(L)⊗R


S
)
. Thus the inclusion λL(R) ⊗R S ⊂ CR(L) ⊗R S is an equality (being an equality


after applying φ). By faithful flatness, λL(R) = CR(L) as desired.


Remark 4.7. Let L1 and L2 be R–forms of a finite dimensional perfect and central
k–algebra A. If φ : L1 → L2 is an isomorphism of k –algebras, then C(φ) : Ck(L1)→
Ck(L2) given by χ 7→ φχφ−1 is an isomorphism in k–alg. By part (3) of the last


Lemma, there exists a unique φ̂ ∈ Autk(R) such that the diagram


R
bφ−→ R


λL1
↓ ↓ λL2


Ck(L1) −→
C(φ)


Ck(L2)


commutes. We have
φ(rx) = φ̂(r)φ(x)
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for all r ∈ R and x ∈ L1. To say that φ is R–linear, is to say that φ̂ = 1. If ψ : L2 → L3


is another isomorphism as above, then ψ̂ ◦ φ = ψ̂ ◦ φ̂.
¿From the foregoing we obtain the following useful exact sequence of groups


(4.2) 1→ AutR(L)→ Autk(L)
∧−→ Autk(R)


for any R–form L of A. This last map need not be surjective, and even when it is,
the sequence need not split. Notwithstanding all of these problems, (4.2) is enough
to completely describe the group Autk(L) of automorphisms of the k–algebra L in
many interesting cases (see Examples 4.11 and 5.5 below, and also [PPS]).


Remark 4.8. Let g be a finite dimensional simple Lie algebra over k, with k alge-
braically closed of characteristic zero. Let Rn = k[t±1


1 , ..., t±1
n ]. As we saw in Example


4.5(2) , the case n = 1 corresponds to the affine Kac-Moody algebras. In general,
there is a delicate connection between Rn–forms of g and centerless cores of Extended
Affine Lie Algebras (EALA’s for short). As their name suggest, these algebras are
higher nullity analogues of the affine algebras (see [AABFP] for details).


Neher has described ([N1] and [N2]) a precise procedure for building up a (tame)
EALA out of centreless cores. It is not our intention to go into details about this
construction, and the affine case will suffice to illustrate the spirit of how this goes.
The centreless core L is in this case a “loop algebra” L(g, σ) (see §6.2). One builds an
EALA out of this by considering the universal central extension of L (which happens
to be one dimensional), and tacking on a degree derivation. The algebra obtained is
in this case an affine Kac-Moody Lie algebra.


The above showcases the crucial role that centreless cores play in the theory of
EALAs. One of the main Theorems of [ABFP] shows that centreless cores which are
finitely generated as modules over their centroids,10 are always k[t±1


1 , ..., t±1
n ]–forms of


a finite dimensional simple Lie algebra g. Centreless cores thus fall within the present
language of forms. We believe that the approach described herewith is a new useful
tool for the study of EALAs.


Our approach also sheds insight into some of the fundamental results of EALA
theory. For example, Neher has shown that the centerless cores L under consideration,
are always free module of finite rank over their centroid. But since L is a form of
some g as above, the previous Lemma tells that the R–module L is finitely generated
and projective. Given that in the present situation R = k[t±1


1 , ..., t±1
n ], freeness follows


from a well-known theorem of Quillen and of Suslin.


10The ones which are not are fully understood.
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4.3 Invariance of type


Let α ∈ Autk(R). Define a new R–module structure on L by r ·x = α(r)x. We de-
note the resulting R–algebra structure by αL to avoid confusion. (The multiplication
in αL coincides with that of L. It is the R–module structure that has changed.)


Assume i : R → S is an fppf base change for which there exists an S–algebra
isomorphism ψ : L ⊗R S ≃ A⊗ S. Then iα = i ◦ α : R → S is also fppf , and there
exists a unique S–algebra isomorphism


ψα : αL ⊗R S → A⊗ S


satisfying ψα(x⊗s) = ψ(x⊗s) (where on the left hand ⊗R we view S as an R–algebra
via iα). Thus αL is also an R–form of A, said to be obtained from L by twisting by


α. Note that id : αL → L is a k–algebra isomorphism, and that îd = α (see Remark
4.7).


Theorem 4.9. [Invariance of type] Let L1 (resp. L2) be an R–form of some finite
dimensional perfect central k–algebra A1 (resp. A2). If L1 and L2 are isomorphic as
k-algebras, there exists a finite field extension K/k for which A1⊗K and A2⊗K are
isomorphic as K–algebras. In particular, if k is algebraically closed then A1 and A2


are isomorphic.


Proof. Let φ : L1 → L2 be a k–algebra isomorphism, and let φ̂ ∈ Autk(R) be the


corresponding automorphism at the centroid level (Remark 4.7). Denote φ̂−1 by α,
and consider the twisted algebra αL1. Then the k–algebra isomorphism φα = φ ◦ id :


αL1 → L2 satisfies φ̂α = id. It follows from this that we may (and henceforth do )
assume with no loss of generality that our φ is an R–algebra isomorphism.


Consider the “switch” σ : S1 ⊗ S2 → S2 ⊗ S1. Fix Si–algebra isomorphisms
ψi : Li ⊗R Si → Ai ⊗ Si. The composite map


σψ2 : L2 ⊗R S1 ⊗ S2
id⊗σ−→ L2 ⊗R S2 ⊗ S1


ψ2⊗id−→ A2 ⊗ S2 ⊗ S1
id⊗σ−→ A2 ⊗ S1 ⊗ S2


is an isomorphism of S1 ⊗ S2–algebras. Thus the composite map


ψ : A1 ⊗ S1 ⊗ S2


ψ−1


1
⊗id−→ L1 ⊗R S1 ⊗ S2


φ⊗id⊗id−→ L2 ⊗R S1 ⊗ S2


σψ2−→ A2 ⊗ S1 ⊗ S2


is also an isomorphism of S1 ⊗ S2–algebras.
Let m be a maximal ideal of S1 ⊗ S2, and let F = (S1 ⊗ S2)/m the corresponding


quotient field. Our ψ : A1⊗S1⊗S2 → A2⊗S1⊗S2 induces, upon reduction modulo m,
an F–algebra isomorphism ψ : A1⊗F → A2⊗F . Since the Ai are finite dimensional,
we may replace F by a subfield K which is finite dimensional over k.
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4.4 Twisted automorphism groups


As before, A denotes a finite dimensional k–algebra, and L an R–form of A. Our
next objective is to look in some detail at the group of automorphisms of L. For
simplicity we will henceforth assume that the extension S/R trivializing L is finite
and Galois. By the Isotriviality Theorem of [GP1], this assumption is superfluous in
the case we are interested in, namely Laurent polynomials in finitely many variables
over a field of characteristic zero.11


Let G = Aut(A). This is a linear algebraic group over k whose functor of points
is given by


(4.3) G(S) = Mork−sch
(
Spec(S),G


)
= AutS(A⊗ S),


where the latter is the abstract group of automorphisms of the S–algebra A ⊗ S.
Each γ ∈ Γ = Gal(S/R) induces an automorphism γ∗ of Spec(S) as a scheme over
Spec(R), and a fortiori also as a scheme over Spec(k). For γ ∈ Γ and g ∈ G(S) =
Mork−sch


(
Spec(S),GR


)
, define


(4.4) γg = g ◦ γ∗.


This yields an action of Γ on G(S). (If one thinks of g as a matrix with entries in S,
then γg is nothing but the matrix obtained by applying γ to each entry of g).


We now look at the k–group functor Aut(G) of automorphisms of G. By defini-
tion, for any S in k–alg


(4.5) Aut(G)(S) = Aut(GS).


Some care is needed not to misunderstand this definition. The right hand side is the
(abstract) group of automorphisms of the S–group GS obtained by the base change
S/k, and not the group of automorphisms of the group G(S).


We will henceforth assume that the k–group Aut(G) is representable (for ex-
ample G reductive). Just as in (4.4) above, the group Γ acts on Aut(G)(S) =
Mork−sch


(
Spec(S),Aut(G)


)
by means of Γ∗.


Next consider the group homomorphism


int : G→ Aut(G)


given by conjugation. Fix an element g ∈ G(S). Then the composite sequence


Spec(S)
γ∗−→ Spec(S)


g−→ G
int−→ Aut(G),


11The industrious reader may rewrite this section in the general case.
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together with the definition of the action of Γ on Aut(G)(S), readily yield the equality


(4.6) γint g = int γg for all g ∈ G(S) and γ ∈ Γ.


We now return to our twisted form L. Up to R–isomorphism, we may assume
that


(4.7) L = {x ∈ A⊗ S : uγ
γx = x for all γ ∈ Γ}


for some fixed cocycle u = (uγ)γ∈Γ ∈ Z1
(
Γ,G(S)


)
. From (4.6) it follows that ũγ :=


int uγ defines a cocycle ũ ∈ Z1
(
Γ,Aut(G)(S)


)
. Let euGR be the corresponding twisted


group. This is an affine R–group scheme which becomes GS = Aut(AS) after the
base change S/R.


Proposition 4.10. With the above notation and asumptions we have


AutR(L) = (euGR)(R).


That is, the automorphisms of the twisted R–algebra L, are precisely the R–points of
the corresponding twisted group euGR.


Proof. By definition


(euGR)(R) = {θ ∈ AutS (A⊗ S) : ũγ
γθ = θ for all γ ∈ Γ}.


Thus, if θ ∈ euGR(R) and x ∈ L ⊂ A⊗ S (see (4.7)), we have by (4.4) that


uγ
γ
(
θ(x)


)
= uγ


γθ γx = uγ
γθu−1


γ uγ
γx


= (ũγ
γθ)(x) = θ(x),


thereby showing that θ stabilizes L.
Conversely, let τ ∈ AutR(L). Then θ := τ⊗1 ∈ AutS(L⊗R S) ≃ AutS(A⊗S) =


G(S). For x ∈ L we have as above, that θ(x) = (ũγ
γθ)(x). Thus θ = ũγ


γθ when
restricted to L. Since L spans A⊗ S as an S–module, the result follows.


This last Proposition, together with Remark 4.7, can be put to good use to study
the group of automorphisms of many important families of infinite dimensional Lie
algebras.12 We will illustrate how this goes via two interesting examples; quantum
tori (immediately below) and affine Kac-Moody Lie algebras (Example 5.5).


12Most notably Extended Affine Lie Algebras.
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Example 4.11. (Quantum tori) Assume k contains a primitive n–th root of unity


ζn, and consider the quantum torus Aq where q =


(
1 ζn
ζ−1
n 1


)
. By definition, Aq is


the associative unital k–algebra generated by T±1
1 and T±1


2 subject to the relations


TiT
−1
i = 1 = T−1


i Ti and T2T1 = ζnT1T2.


The center of Aq is R = k[t±1
1 , t±1


2 ] where tı = T ni . Thus Aq, as an R–algebra, is
nothing but the cyclic algebra (t1, t2, ζ)R. In particular, Aq is an R–Azumaya algebra
of constant rank n. Furthermore


Aq ⊗R S ≃Mn(S)


with S = R[T1].
Since the Picard group of R is trivial, every R–linear automorphism of Aq is inner.


By Proposition 4.10, the R–group of such automorphisms is a twisted form eu PGLn,R


of PGLn,R . In particular (euPGLn,R)(R) ≃ A×
q /R


× is a finite group. These are the
R–linear automorphisms of the k–algebra Aq. To complete the picture we can use
Remark 4.7. For example if k×


n
= k×, an easy calculation shows that the canonical


map
̂ : Autk(Aq)→ Autk(R) ≃ (k×)2 ⋊ GL2(Z)


is surjective if n ≤ 2, and has image (k×)2 ⋊ SL2(Z) if n > 2 (cf. [OP] and [N])


4.5 Graded considerations


The material in this section will play a crucial role in the Recognition Theorem
for multiloop algebras in §6.4. The reader may want to postpone reading this section
until then.


Let Λ be an abelian group (denoted additively). A Λ–grading on a k–algebra B is
a collection of subspaces {Bλ}λ∈Λ indexed by Λ such that


(i) The sum
∑
λ∈Λ


Bλ is direct and equals B.


(ii) BλBµ ⊂ Bλ+µ for all λ, µ ∈ Λ.


All of this information will be summarized by the expression “ B is a Λ–graded
k–algebra”. For a Λ–graded k–algebra B, the following two conditions are easily shown
to be equivalent.


(GSI) B 6= {0} and the only homogeneous ideals of B are {0} and B.
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(GSII) B 6= {0} and Multk(B)x = B for all nonzero homogeneous x in B.


We then say that B is graded simple.


Remark 4.12. Let B be graded simple. Then B is a monogenic Multk(B)–module
(in particular, finitely generated). By lemma 4.2.3 of [ABFP], the centroid of B
is also Λ–graded. Thus, if χ ∈ Ck(B)\{0}, there exist unique λ1, . . . , λh ∈ Λ and
χ1, . . . , χh ∈ Ck(B) such that


χ = χ1 + · · ·+ χn, and


χi(Bλ) ⊂ Bλ+λi for all λ ∈ Λ and 1 ≤ i ≤ h.


Definition 4.13. Let S be a Λ–graded object of k–alg. An S/R–form L of A is
said to be Λ–graded, if there exists a Λ–graded structure on the k–algebra L, and an
S–algebra isomorphism ψ : L ⊗R S → A ⊗ S which are compatible with each other,
that is


ψ(Lλ ⊗ 1) ⊂ A⊗ Sλ


for all λ ∈ Λ.


Proposition 4.14. Let A be a finite dimensional central simple k–algebra, and
S = ⊕


λ∈Λ
Sλ a graded simple object of k–alg.


1. With the natural Λ–grading on A⊗S given by (A⊗S)λ = A⊗Sλ, the k–algebra
A⊗ S is graded simple.


2. Let L be a Λ–graded S/R–form of A. Then L is a graded simple k–algebra.
Furthermore, R is naturally identified with a graded k–subalgebra of S, and the
canonical map λL : R→ Ck(L) is a Λ–graded isomorphism.


Proof. (1) Let x ∈ (A⊗ S)λ be a nonzero element, and set M = Multk(A⊗ S)x. We
must show that M = A⊗ S. Write x =


∑
ai ⊗ si with ai ∈ A linearly independent,


and si ∈ Sλ nonzero. By Jacobson’s Density theorem (see the proof of Ch.X, theorem
3 of [J]), there exists α ∈ Multk(A) such that αa1 = a1 and αai = 0 if i > 1. This
shows that a1⊗ s1 ∈M. Let s ∈ S. Since S is graded-simple, there exists s′ ∈ S such
that s′s1 = s. Similarly since A is simple, there exist a′ ∈ A such that a′a1 6= 0. Then


a′a1 ⊗ s = (a′ ⊗ s′)(a1 ⊗ s1) ∈M.


Thus A⊗ s =
(
Multk (A)⊗1


)
(a′a1⊗ s) ⊂M for all s ∈ S. It follows that M = A⊗S


as desired.
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(2) Fix an S–algebra isomorphism ψ : L⊗R S → A⊗S which is compatible with the
Λ–gradings. We begin with three general observations that will be used in the proof.


(a) Let α : R → S be the underlying map to the R–algebra structure of S, and
let β : L → L ⊗ 1 ⊂ L ⊗ S the canonical map. Because α is faithfully flat, both α
and β are injective.


(b) Every element of A⊗S is a sum of elements of the form sψ(y⊗ 1) with y ∈ L
and s ∈ S.


(c) The associative unital k–algebra Multk(L) has a natural Λ–graded structure.
Right and left multiplication by elements of L generate a graded (two-sided) ideal
Multk(L)+ of Multk(L).


Fix a nonzero homogeneous element x of L. Let N = Multk(L)+x. This is a
submodule (in fact an ideal) of the R–algebra L which is graded as a subspace of L.
We claim that N 6= 0. For otherwise, for all s ∈ S and y ∈ L we have


ψ(x⊗ 1)(sψ(y ⊗ 1)) = sψ(xy ⊗ 1) = 0 = sψ(yx⊗ 1) = (sψ(y ⊗ 1))ψ(x⊗ 1).


It now follows from (b) above, that ψ(x⊗ 1) is killed by left and right multiplication
by all elements of A ⊗ S. Thus the one–dimensional space kψ(x ⊗ 1) ⊂ A ⊗ S is a
nonzero graded ideal of A⊗S. By part (1) we obtain kψ(x⊗1) = A⊗S. Since A⊗S
is perfect and nonzero, we must have x2 ⊗ 1 6= 0. By (a) then, x2 6= 0. But this is
impossible since x2 ∈ N . Thus N 6= 0 as claimed.


Let M be the S–submodule of A ⊗ S generated by ψ(N ⊗ 1). We claim that
M = A⊗ S. By part (1), it will suffice to show that M is a nonzero graded ideal of
A ⊗ S. That M 6= 0 follows from (a) and the fact that N 6= 0. Our assumption on
ψ implies that the subspace ψ(N ⊗ 1) of A ⊗ S is graded, hence M is also a graded
subspace of A⊗ S. To show that M is an ideal of A⊗ S, observe that for s ∈ S and
y ∈ L we have


(sψ(y ⊗ 1))ψ(N ⊗ 1) = s
(
ψ(y ⊗ 1)ψ(Multk(L)+x⊗ 1)


)


⊂ s
(
Multk(L)+x⊗ 1


)
= sN ⊂M.


By (b) above M is a left ideal of A ⊗ S. Similarly, M is a right ideal. The claim
follows. As a consequence, we conclude that


ψ(N ⊗R S) = A⊗ S = ψ(L ⊗R S).


Thus the canonical injective map N⊗RS →֒ L⊗RS is in fact an equality. By faithfully
flat descent N = L as desired. This finishes the proof that L is graded–simple.


It remains to show that the induced map at the centroid level preserves the Λ–
gradings (see Remark 4.12). Let r ∈ R. Write α(r) =


∑
si with si ∈ Sλi . For


x ∈ Lλ
ψ(rx⊗ 1) = ψ(x⊗


∑
si) =


∑
siψ(x⊗ 1).
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Since rx ∈ L, we conclude by graded considerations that siψ(L ⊗ 1) ⊂ ψ(L ⊗ 1).
Consider χi : L → L defined by χi(x) = β−1ψ−1λsi


ψβ(x). Then


χi(xy) = β−1ψ−1λsi


(
ψ(x⊗ 1)ψ(y ⊗ 1)


)


= β−1ψ −1
(
ψ(x⊗ 1)siψ(y ⊗ 1)


)


= xχi(y).


Similarly χi(xy) = χi(x)y. Thus χi ∈ Ck(L). By Lemma 4.6.3 there exists a unique
ri ∈ R such that χi = λri. It follows from the definitions that α(ri)−si kills ψ(x⊗1).
Since the S module A⊗S is free, we obtain α(ri) = si. This shows that R is identified,
via α, with a graded k–subalgebra of S. Finally, one checks that RλLµ⊗1 ⊂ Lλ+µ ⊗ 1.
This immediately shows that the isomorphism λL : R→ Ck(L) is Λ–graded.


5 Forms of algebras over Laurent polynomial rings


Throughout this section k is assumed to be algebraically closed and of charac-


teristic 0. Recall that Rn = k[t±1
1 , . . . t±1


n ], that Rn,d = k[t
± 1


d
1 , t


± 1


d
2 , · · · t±


1


d
n ], and


that Rn,∞ = lim−→d
Rn,d. At the field level we have Kn,d = k(t


± 1


d
1 , t


± 1


d
2 , · · · t±


1


d
n ) and


Kn,∞ = lim−→d
Kn,d.


5.1 Multiloop Algebras


.
Throughout this section A is a finite dimensional algebra over k. Recall that


(ζn)n>0 in k× is a compatible family of primitive roots of unity.
We begin by introducing the ingredients needed in the definition of multiloop


algebras. Let σσσ = (σ1, . . . , σn) be a commuting family of finite order automorphisms
of the k–algebra A. Let d be a common period of the σi, i.e. σdi = 1.


For each (i1, ..., in) ∈ Zn, consider the simultaneous eigenspaces


Ai1...in := {x ∈ A : σj(x) = ζ
ij
d x for all 1 ≤ j ≤ n}


(which of course depend only on the ij modulo the d). The multiloop algebra associ-
ated to this data is the k–subalgebra L of A⊗ Rn,∞ defined as follows:


(5.1) L = L(A,σσσ) = ⊕Ai1...in ⊗ ti1/d1 . . . tin/dn ⊂ A⊗ Rn,d ⊂ A⊗Rn,∞.


Remark 5.1. Observe that L does not depend on the choice of period d, and that
L has a natural Rn–algebra structure.
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One easily verifies that


L ⊗Rn Rn,d ≃Rn,d
A⊗ Rn,d.


Since Rn,d/Rn is free of finite rank (hence fppf), L is an Rn–form of A which is
trivialized by the extension Rn,d/Rn (in the sense of §5).


From this last Remark it follows that to a multiloop algebra L as above, corre-
sponds an Rn–torsor XL under the group Aut(A).13 By descent theory, XL is rep-
resentable by an affine Rn–scheme. The functor of points of XL is easily described:
For all S ∈ Rn–alg


XL(S) = HomS–alg(L ⊗Rn S, A⊗ S).


The isomorphism class of the Rn–torsor XL will be denoted by
[
XL


]
. Thus


(5.2)
[
XL


]
∈ H1


ét


(
Rn,d/Rn, Aut(A)


)
⊂ H1


ét


(
Rn, Aut(A)


)
.


Recall the exact sequence of algebraic k–groups


(5.3) 1→ Aut0(A)→ Aut(A)
¯→ Out(A)→ 1,


where Out(A) = Aut(A)/Aut0(A) is the finite constant k–group of connected com-
ponents of Aut(A). Let Out(A) = Out(A)(k), and let¯ : Autk(A) = Aut(A)(k) →
Out(A) be the canonical map. The kernel of ¯ is Aut0(A)(k).


The extension Rn,d/Rn is finite Galois. Its Galois group Γn,d is henceforth iden-
tified with (Z/dZ)n acting naturally on Rn,d via our fixed choice of compatible roots


of unity; namely ē(t
1/d
i ) = ζei


d t
1/d
i for all e = (e1, ..., en) ∈ Zn. If we now let Γ acts on


Aut(A)(Rn,d) = AutRn,d−alg(A⊗Rn,d) by conjugation, i.e. γσ = (1⊗γ)σ(1⊗(−γ)), we


have a natural correspondence H1
(
Γn,d,Aut(A)(Rn,d)


)
≃ H1


ét(Rn,d/Rn, Aut(A)
)
. In


terms of H1(Γn,d,Aut(A)(Rn,d)), the loop torsor XL corresponds to the cocycle αL ∈
Z1


(
Γn,d,Aut(A)(Rn,d)


)
given by (αL)ē = σ−e1


1 . . . σ−en
n ⊗ id ∈ AutRn,d–alg (A⊗Rn,d).


We have a natural correspondence ([SGA1, Exp XI.5]).


(5.4) H1
ét


(
Rn,Out(A)


)
≃ H1


ct


(
π1(Rn), Out(A)


)


Remark 5.2. Since the fundamental algebraic group π1(Rn) of Spec(Rn) is identi-


fied with (Ẑ)n via our choice of compatible primitive roots of unity (Corollary 2.11
and Remark 2.13 of [GP2]), the set H1


ct


(
π1(Rn), Out(A)


)
is nothing but the set of


conjugacy classes of commuting n–tuples of elements of finite order automorphisms
of Out(A). This interpretation plays a crucial role in the classification of multiloop
algebras by cohomological methods.


13Strictly speaking, the structure group is the affine Rn–group Aut(A ⊗ Rn). As already men-
tioned, this harmless slight abuse of notation is used throughout.
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Under the canonical map


H1
ét


(
Rn, Aut(A)


) ¯→ H1
ét


(
Rn,Out(A)


)
≃ H1


ct


(
π1(Rn), Out(A)


)


arising from (5.3) and (5.4), our [XL] = [αL] maps to the class [αL] of the unique
cocycle (= continuous homomorphism) αL : π1(Rn)→ Out(A) satisfying


e 7→ σ −e1
1 . . . σ −en


n


for all e = (e1, ..., en) ∈ Zn.
Define an action of the group GLn(Z) on the set of n–tuples of commuting elements


of finite order of Autk(A) as follows: for aaa = (aij) ∈ GLn(Z) and σσσ = (σ1, . . . , σn) as
above, set


(aaaσσσ)i =


n∏


j=1


σ
aij


j and aaaσσσ = ((aaaσσσ)1, . . . , (
aaaσσσ)n).


Non-abelian cohomology allows us to classify isomorphism classes of multiloop
algebras as algebras over Rn. One is however interested in the classification of these
as algebras over k. The following lemma is therefore most useful.


Lemma 5.3. Let A be finite dimensional perfect and central algebra over k. If σσσ =
(σ1, . . . , σn) and τττ = (τ1, . . . , τn) are two n–tuples of commuting automorphisms of
finite order of A, the following conditions are equivalent:


(1) L(A,σσσ) ≃k L(A,τττ ).
(2) L(A,aaaσσσ) ≃Rn L(A,τττ ) for some aaa ∈ GLn(Z).


Proof. Let φ : L(A,σσσ)→ L(A,τττ ) be an isomorphism of k–algebras. Identify Rn with


the corresponding centroids (Lemma 4.6), and consider φ̂ ∈ Autk(Rn) such that


φ(rx) = φ̂(r)φ(x) for all r ∈ Rn and x ∈ A (see Remark 4.7). We have φ̂(ti) =
λit


a1i
1 . . . tani


n for some aaa = (aij) ∈ GLn(Z) and some λi ∈ k×.
Identify L(A,σσσ) with a k–subalgebra of A ⊗ Rn,d for a suitable d (Remark 5.1).


Fix γi ∈ k× such that γdi = λi. Let α be the unique element of Autk(Rn,d) satisfying


t
1/d
i 7→ γit


a1i/d
1 . . . t


ani/d
n . A straightforward calculation shows that the automorphism


ψ = 1⊗α of the k–algebra A⊗Rn,d, induces an isomorphism of L(A,σσσ) onto L(A, aaaσσσ).


At the centroid level we have ψ̂ = φ̂. It follows that the k–linear isomorphism φ◦ψ−1 :
L(A, aaaσσσ)→ L(A,τττ ) is in fact Rn–linear.


The converse is clear since L(A,σσσ) and L(A, aaaσσσ) are evidently isomorphic as
k–algebras as explained above.


Corollary 5.4. Let σ and τ be two finite order automorphisms of a finite dimensional
perfect central k–algebra A. Then L(A, σ) ≃k L(A, τ) if and only if L(A, σ) ≃R1


L(A, τ) or L(A, σ−1) ≃R1
L(A, τ).
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5.2 The case of Lie algebras


The algebra A is now a finite dimensional (split) simple Lie algebra over k. To
follow standard practices, we will denote A by g. The relevant exact sequence of
algebraic groups is


(5.5) 1→ Gad → Aut(g)→ Out(g) → 1,


where Out(g) is the finite constant group corresponding to the (abstract) finite group
Out(g) of automorphisms of the Dynkin diagram of g ([SGA3] Exp. XXV théorème
1.3). The sequence (5.5) is split. We fix a section Out(g) → Aut(g) and identify
thereof in what follows Out(g) with a subgroup of Aut(g)(k) = Autk(g).


Example 5.5. (Affine Kac-Moody Lie algebras) Let L̂ be an affine Kac-Moody Lie


algebra over k, and L be the derived algebra of L̂ modulo its centre. As shown by
Kac, there exists a finite dimensional simple Lie algebra g, and an automorphism π
of the corresponding Dynkin diagram, such that


(5.6) L ≃ L(g, π).


As already mentioned, here and elsewhere π ∈ Out(g) is viewed as an element of
Autk(g) via our fixed section of the split exact sequence (5.5) above. Thus loop
algebras (in nullity 1) provides us with concrete realizations of the affine algebras.14


The structure of the group of automorphisms of an arbitrary symmetrizable Kac-
Moody Lie algebra (derived modulo its centre), was determined in [PK]: It is gener-


ated by the “adjoint” Kac-Moody group, together with a “Cartan-like” subgroup H̃,
the symmetries of the extended Dynkin diagram, and the so-called Chevalley involu-
tion. In the case of an untwisted affine algebra , namely π = 1 in (5.6), it is known
that the adjoint Kac-Moody group is nothing but Gad(k[t±1]) above.


The present cohomological viewpoint yields a new concrete realization of the auto-
morphism group in both the twisted and untwisted affine case. To illustrate, consider
the case of the twisted algebra L of type BC


(2)
n−2, n > 2 (type A


(2)
n−1 in Kac’s nota-


tion). Here g = sln(k), π(X) = −X tr, R = k[t± 1], S = k[t± 1/2]. The Galois group Γ
of the extension S/R will throughout be identified with Z/2Z via 1(t1/2) = −t1/2. The
cocycle u ∈ Z1


(
Γ, AutS(sln⊗ S)


)
defining L is given by u1 = π−1 = π. The R–linear


automorphisms of L are the R–points of the twisted R–group that fits into the split
exact sequence


1→ eu PGLn,R → AutR(L)→ Z/2Z→ 1.


14A priori, the affine algebras are given by generators and relations à la Chevalley. This presen-
tation does not provide much insight into the nature of the algebras.
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This sequence is obtained by first applying the base change R/k to (5.5), and then
twisting by ũ as prescribed by Proposition 4.10.


We can give an explicit description of the R–points of the twisted group euPGLn,R .
Indeed. The exact sequence of R–groups schemes


1→ Gm,R → GLn,R → PGLn,R → 1


can be twisted by ũ. The obstruction to the map euGLn,R(R)→ eu PGLn,R(R) being
surjective lies on H1(R, euGm,R). But this H1 vanishes. One can see by general con-
sideration [P2], or by direct computation by interpreting euGm,R as a kernel of a Weil
restriction, namely


1→ euGm,R →RS/RGm,S


NS/R→ Gm,R → 1,


and then passing to cohomology (NS/R is surjective because k is algebraically closed,
and H1(R,RS/RGm,S) = H1(S,Gm,S) = Pic (S) = 0 by Shapiro’s Lemma).


The outcome is that R–linear inner automorphisms of our Kac-Moody algebra L,
i.e. the R–points of the image of euPGLn,R inside AutR(L), are given by conjugation


by a matrix X ∈ GLn(S) satisfying ũ 1X := u1Xu−1 = X.
It remains to look at the map ̂ : Autk(L)→ Autk(R). By definition


(5.7) L = {X ∈ sln ⊗ S : −(1X)tr = X},
where Γ = Z/2Z acts on the second coordinate of the matrix X ∈ sln ⊗ S. On the
other hand


Autk(R) = Autk(k[t
±1]) ≃ k× ⋊ Z/2Z.


We claim that the map ̂ is surjective. Clearly any element θ of Autk(R) induces


an element θ̃ of Autk(sln ⊗ S). So we must show that θ̃ stabilizes L for θ ∈ k× and
θ ∈ Z/2Z. If θ ∈ k×, this is clear because k is algebraically closed. If θ is the generator


of Z/2Z, we may assume θ(t) = t−1. Again using (5.7) one sees that θ̃(L) = L. We
thus have the split exact sequence


1→ AutR(L)→ Autk(L)→ Autk(R)→ 1.


This finishes the description of the group of automorphisms of the affine Lie algebra
L.


We now return to our general discussion. In terms of cohomology, the affine Lie
algebras as in (5.6) account for H1


(
R1,Out(g)


)
≃ {conjugacy classes in Out(g)}.


The classes of all R1–forms of g on the other hand, are measured by H1
(
R1,Aut(g)


)
.


As it turns out, the canonical map H1
(
R1,Aut(g)


)
→ H1(R1,Out(g)) is bijective.


For this one needs to know thatH1(R1,−) vanishes for quasisplit R1–groups of adjoint
type. This was established in [P1] with the aid of Harder’s work. More generally we
have
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Theorem 5.6. [P2] Let G be a reductive group scheme over k[t±1]. Then
H1(k[t±1],G) = 1.


This Theorem shows that the k[t±1]–forms of g are precisely the affine Kac-Moody
algebras (derived modulo their centres) as it was mentioned in Example 4.5. In
particular over k[t±1], all forms of g are loop algebras. By the invariance of type
(Theorem 4.9), g is unique up to isomorphism. For a fixed g, two k[t±1]–forms are
isomorphic over k if and only if they are isomorphic over k[t±1]. This follows from
Corollary 5.4, together with the fact that in Out(g), every element is conjugate to its
inverse. Combining all of the above we recover, by purely theoretical considerations,
the existence of exactly 16 non-isomorphic classes of affine Lie algebras.15


Similar considerations apply to R1–forms of an arbitrary finite dimensional k–
algebras [P2].


We now turn our attention to the case n = 2. Here we find that some interesting
and unexpected behavior arises. Theorem 5.6 ought to be thought as the validity
of “Serre conjecture I” for R1 = k[t±1


1 ]. Since Serre’s Conjecture II holds for K =
k(t1, t2), one is lead to raise the following inevitable question.


Let G be a semisimple group scheme over R2 = k[t±1 , t
±1
2 ]. Assume G is of simply


connected type. Is H1(R2,G) trivial?


Somehow surprisingly perhaps, the answer to this question is negative (as we have
seen in §4.6). The next example recalls the reason for this failure, and the implications
that this has for the classification of EALA by cohomological methods.


Example 5.7. (sl2 in nullity 2) Let g = sl2 = sl2(k). Then Aut(g) = PGL2 and we
have the exact sequence 1 → µµµ2 → SL2 → PGL2 → 1. Relativizing at R = R2 =
k[t±1


1 , t±1
2 ] and passing to cohomology yields


H1
ét(R,SL2)→ H1


ét(R,PGL2)
δ→ H2


ét(R,µµµ2) ⊂ 2Br(R).


We have H2
ét(R,µµµ2) ≃ Z/2Z = {0, 1} (Proposition 2.1). The kernel of δ is trivial


(straightforward for SL2, but also consequence of Theorem 2.7), so the fiber δ−1(0)
is comprised of one isomorphism class, namely the isomorphism class of the trivial
R–Lie double loop algebra


L0 = sl2 ⊗ R = L(sl2, id, id).


The Lie algebra L0 is the centreless core of an EALA of nullity 2.


15As far as we know, nowhere in the usual Kac-Moody literature it is actually shown that the
algebras of these sixteen families are non isomorphic.


42







Since PGL2 is also the group of automorphisms of the matrix algebraM2(k), there
is a natural correspondence between R–forms of g and M2(k): Given an R–form A
of M2(k), view A as a Lie algebra Lie(A) with bracket given by the commutator
[x, y] = xy − yx. The derived Lie algebra Lie(A)′ is then an R–form of sl2.


We now apply this to the quaternion R–algebra A = A(1, n), to obtain an R–Lie
algebra L1 = Lie (A)′. This is also a double loop algebra. In fact


L1 = L(sl2, σ1, σ2),


where σ1 and σ2 in Aut(sl2)(k) are given by conjugation by


(
1 0
0 −1


)
and


(
0 1
1 0


)


respectively. The Lie algebra L1 has anisotropic generic fiber, hence cannot be the
centreless core of an EALA.


Because of the classification of commuting pair of elements of finite order of
PGL2(k), we know that L0 and L1 are the only two k–isomorphism classes of double
loop algebras based on sl2.


Following the same procedure, we can attach to the Margaux algebra M of §4.6
the Lie algebra


L2 = Lie (M)′.


Recall that M = EndA(M), where M is a rank one faithfully projective A–module


which is not free. We haveM⊗R S ≃M2(S) for S = R[t
1/2
1 ]. However A andM are


not isomorphic R–algebras. Thus L1 and L2 are non-isomorphic R–forms of sl2. The
algebra L2 is neither a multiloop algebra, nor the centreless core of an EALA.


The algebras L1 and L2 are part of the fiber δ−1(1) of the boundary map δ :
H1
ét(R,PGL2) → H2


ét(R,µµµ2). This fiber, which is measured by H1
ét


(
R,SL1(A)


)
, has


therefore at least two elements. However L1 is the only class of this fiber which is a
multiloop algebra. In particular, L1 is not isomorphic to L2 as a k–algebra.


Remark 5.8. sl2⊗k[t±1
1 ] corresponds to the affine Kac-Moody Lie algebra L̂ of type


A
(1)
1 . This algebra has Dynkin diagram ◦ <=> ◦. The nontrivial symmetry of this


diagram “lifts” to an automorphism σ̂ of L̂, which in turn induces an automorphism
σ of the k–Lie algebra sl2 ⊗ k[t±1


1 ]. We have L1 ≃ L(sl2 ⊗ k[t±1
1 ], σ). Thus our


double loop algebra L1 = L(sl2, σ1, σ2) can be obtained as a single loop algebra of
an affine algebra, but the automorphism σ of the affine algebra cannot be obtained
from an automorphism of sl2 by the base change k[t±1


1 ]/k. This point of view for the
classification of double loop algebras (i.e. as single loop algebras of affine Kac-Moody
algebras) will be described in [ABP3].


Remark 5.9. It is interesting to observe that unlike the nullity 1 case where inner
automorphisms always lead to trivial loop algebras, two inner automorphisms may
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lead to non-trivial loop algebras. For type E7, Theorem 3.17 shows that there must
necessarily exists two commuting inner automorphisms whose corresponding loop
algebra is not trivial. This was first empirically discovered by van de Leur with the
aid of a computer [vdL].


If xxx = (x1, ..., xn) is an n–tuple of commuting elements of finite order of Gad,
then Adxxx = (Ad x1, ...,Ad xn) is an n–tuple of commuting automorphisms of g. For
convenience, we will denote the corresponding loop algebra L(g,Adxxx) simply by
L(g,xxx).


Theorem 5.10. Let xxx = (x1, x2) and yyy = (y1, y2) be two commuting pairs of elements
of finite order of Gad. Then


1. L(g,xxx) ≃R−Lie L(g, yyy)⇐⇒ µ(xxx) = µ(yyy).


2. L(g,xxx) ≃k−Lie L(g, yyy)⇐⇒ µ(xxx) = µ(yyy)±1.


Proof. (1) This is consequence of the torsor interpretation of L(g,xxx) and L(g, yyy);
namely that the boundary map H1(R,Gad)→ H2(R,µµµ) is bijective (Theorem 3.17),
and determined by µ(xxx)’s (Proposition 3.16).


(2) By Lemma 5.3, we are reduced to comparing µ(xxx) and µ(aaaxxx). Consider then


aaaxxx = (xa111 xa122 , xa211 xa222 ) where aaa =


(
a11 a12


a21 a22


)
∈ GL2(Z).


By definition
x̃a111 x̃a122 x̃a211 x̃a222 = µ(aaaxxx) x̃a211 x̃a222 x̃a111 x̃a122 .


By repeated use of (3.3) we obtain µ(aaaxxx) = µ(xxx) detaaa. Now (2) follows from (1) and
Lemma 5.3.


Remark 5.11. Clearly µ(x1, x2) = µ(x2, x1)
−1. As a consequence we recover the


obvious fact that L(g, x1, x2) ≃k−Lie L(g, x2, x1). By contrast, we also obtain the
following not entirely intuitive result: L(g, x1, x2) ≃R−Lie L(g, x2, x1) if and only if
µ(xxx) is of period 2.


Remark 5.12. Similar considerations apply to any perfect and central finite dimen-
sional algebra A for which Aut(A)0 is semisimple.
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5.3 A characterization of multiloop algebras


The main theorem of [ABFP] asserts that centreless cores of EALAs which are
modules of finite type over their centroids, are always multiloop algebras. The Lie
algebra L2 described in Example 5.7, shows that for n > 1 there exists Rn–forms
which need not be multiloop algebras. It thus seem important to give a criterion that
distinguishes multiloop algebras among all forms.


The k–algebra Rn,∞ has a very natural interpretation: As a k–space Rn,∞ has basis
(tq11 ...t


qn
n )qi∈Q, and the multiplication is given by bilinear extension of tpi t


q
i = tp+qi . We


give Rn,∞ a Qn–grading in a natural fashion, by assigning tq11 . . . tqnn degree (q1, . . . , qn).
Each Rn,d is a graded subalgebra of Rn,∞ whose homogeneous elements have degrees
in 1


d
Zn. Note that a homogeneous element r ∈ Rn, when viewed as an element of


Rn,d, is homogeneous of degree dλ for some λ in the grading group 1
d


Zn of Rn,d.


Theorem 5.13. [Recognition of multiloop algebras] Let A be a finite dimensional
simple algebra over an algebraically closed field k of characteristic 0. Let n ≥ 0 be an
integer. For a k–algebra L the following conditions are equivalent.


1. L ≃k L(A,σσσ) for some n–tuple σσσ = (σ1, . . . , σn) of commuting finite order
automorphisms of A.


2. There exists a Qn–grading of L and an Rn,∞–algebra isomorphism
ψ : L⊗RnRn,∞ → A⊗Rn,∞ which are compatible, namely ψ(Lλ⊗1) ⊂ A⊗Rλ


n,∞


for all λ ∈ Qn.


Proof. A multiloop algebra as in (1) clearly satisfies the conditions of (2). This follows
at once form the very definition (5.1) of L(A,σσσ), and the nature of the gradings.


Assume L and ψ are as in (2). We show that L ≃ L(A, σ1, . . . , σn) by appealing
to the realization theorem 8.3.2 of [ABFP]. To this end, it will suffice to give L a
Λ–grading for which the following three conditions hold.


(a) Λ is finitely generated and torsion free.


(b) L is graded simple.


(c) There exists d > 0 such that C(L) = ⊕
λ∈dΛ


C(L)λ. Furthermore, C(L)0 = k.


Fix an Rn,∞–algebra isomorphism ψ : L⊗Rn Rn,∞ → A⊗Rn,∞ such that ψ(Lλ ⊗
1) ⊂ A⊗Rλ


n,∞ for all λ ∈ Qn.
Since A is finite dimensional, there exists d1 > 0 such that A⊗ 1 ⊂ ψ(L⊗Rn,d1).


On the other hand, since L as an Rn–module is of finite type (Lemma 4.6(2)), there
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exists d2 > 0 such that ψ(L⊗ 1) ⊂ A⊗Rn,d2 . If we now set d = d1d2, the fact that ψ
is Rn,∞–linear shows that ψ induces, by restriction of the base ring, an Rn,d–algebra
isomorphism


ψ : L⊗Rn Rn,d → A⊗ Rn,d


By assumption, for all λ ∈ Qn we have


ψ(Lλ ⊗ 1) ⊂ A⊗ Rλ
n,∞ ∩A⊗ Rn,d.


As a consequence Lλ ⊗ 1 6= {0} =⇒ dλ ∈ Zn. But since the extension Rn,d/Rn is
faithfully flat, the canonical map L → L⊗R Rn,d given by x→ x⊗ 1 is injective. In
particular, then Qn–grading of L has support inside the subgroup Λ = 1


d
Zn.


As a Λ–graded algebra, we may identify L with a graded k–subalgebra of A⊗Rn,d


(where Rn,d is given the standard Λ–grading). Since Rn,d is graded simple, L is graded
simple by Proposition 4.14. This establishes (a) and (b) above.


Since L is graded simple, the centroid Ck(L) of L inherits a Λ–grading


Ck(L) =
⊕


λ∈Λ


Ck(L)λ,


where
Ck(L)λ := {χ ∈ Ck(L) : χ(Lµ) ⊂ Lλ+µ for allµ ∈ Λ}.


(see [ABFP] lemma 4.2.3). Let r ∈ Rn be homogeneous. Then r, as an element of
Rn,d, is homogeneous of degree dλ for some λ ∈ Λ. If x ∈ Lµ we have


ψ(rx⊗ 1) = ψ(x⊗ r) = rψ(x⊗ 1) ∈ r(A⊗ Rµ
n,d) ⊂ A⊗ Rµ+λd


n,d .


This forces rx ∈ Lµ+λd, hence that Ck(L) = ⊕
λ∈Λ


Ck(L)dλ. Finally, if dλ = 0, then r is


a homogeneous element of Rn of degree 0, i.e. r ∈ k. Thus (c) above holds and the
proof of the Theorem is now complete.


Remark 5.14. By the Isotriviality Theorem [GP1, cor. 3.3] every Rn–form of A
is split by Rn,∞. The last Theorem therefore gives a way of recognizing multiloop
algebras among all forms. The crucial ingredient is the existence of a Qn–grading
compatible with that of Rn,∞. Note how the defining relations of the algebra M
of Example 5.7 “breaks” the compatibility between the gradings of the quaternion
algebra A(1, n) and Rn,∞.


6 Conjectures


Throughout this section k is assumed to be algebraically closed and of character-
istic 0. Let R = k[t±1


1 , t±1
2 ], and K = k(t1, t2).
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If the semisimple R–group G is isotropic (after the base change K/R), it is rea-


sonable to expect that H1(R, G̃) = 1. Indeed theorem 2.1 of [CTGP] states that the
anisotropic kernel of a semisimple group defined over K is always of type A. This
is somehow analogous to the fact that almost commuting rank zero pairs only ap-
pear in type A. In the anisotropic case however, this is not true: We have seen that
H1(R,SL1(A(1, n)) 6= 1 (Remark 3.23).


Conjecture 6.1. Let G be a semisimple almost simple R–group with no factors of
type A. Then the connecting map H1(R,G) → H2(R,µµµ) is bijective. In particular,
H1
loop(R,G) = H1(R,G) (see Theorem 3.17).


By Theorem 2.7(2), the conjecture is fully established for groups of type G2, F4


and E8 (because these groups are their own automorphism groups). The case of
special orthogonal groups can be understood from the classification of R–quadratic
forms.


Theorem 6.2. (Parimala, [Pa])


1. Cancellation holds for rational R–isotropic forms : if q1, q2 are rationally
isotropic R–forms such that q1 ⊥ q ∼= q2 ⊥ q for some quadratic R–form q,
then q1 ∼= q2.


2. Let q1, q2 be isotropic quadratic R–forms. If q1 ⊗R K ∼= q2 ⊗R K, then q1 ∼= q2.


3. Let q be a R–quadratic form of rank ≥ 5. Then q is diagonalizable and isotropic.


Proof. 1) This is part of the proof of the classification of isotropic R–forms (proposi-
tion 3.4 of [Pa]).
2) Since the fieldK is of class C2, the quadratic form qK is isotropic. By theorem 3.5 of
loc. cit., there exists two k[t±1


1 ]–quadratic forms q0 and q1 such that q = q0 ⊥ 〈t2〉q1.
Since quadratic forms over k[t±1


1 ] are diagonalizable (Harder, cf. [Kn] §13.4.4), it
follows that q is diagonalisable, i.e is a sum of rank one R–forms in the following
list 〈1〉 〈t1〉, 〈t2〉, 〈t1t2〉. Thus q contains an orthogonal summand 〈z, z〉 which is
hyperbolic. We conclude that q is an isotropic R–quadratic form.


Corollary 6.3. Let q be an R–quadratic form of rank ≥ 5. Then H1
(
R,Spin(q)


)
= 1


and H1
(
R,SO(q)


)
≃ Z/2Z.


Proof. Theorem 6.2 shows that q is diagonalisable and contains an hyperbolic sum-
mand. The exact sequence 1 → µµµ2 → Spin(q) → SO(q) → 1 of reductive R–groups
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induces the following exact commutative diagram of pointed sets


SO(q)(R)
Ns−−−→ R×/(R×)2 −−−→ H1


(
R,Spin(q)


)
−−−→ H1


(
R,SO(q)


)
y


y


1 = H1
(
K,Spin(q)


)
−−−→ H1


(
K,SO(q)


)
.


Recall that H1
(
R,O(q)


)
classifies isomorphism classes of quadratic modules of rank


equal to rank(q). Parimala’s theorem states thatH1
(
R,O(q)


)
injects inH1


(
K,O(q)


)
.


By diagram chasing, it follows that the map


H1
(
R,Spin(q)


)
→ H1


(
R,SO(q)


)
→ H1


(
R,O(q)


)


is trivial. On the other hand, since q is isotropic (over R), the sequence 1→ SO(q)→
O(q) → Z/2Z → 1 is split exact ([K2], proposition 5.2.2 page 225). It follows
that the map H1(R,SO(q)) → H1(R,O(q)) has trivial kernel, hence the triviality
of the map H1(R,Spin(q)) → H1(R,SO(q)). On the other hand, the spinor norm
SO(q)(R) → R×/(R×)2 contains even products of invertible values of q ([K2], page
232). Since q contains a hyperbolic summand, it follows that the spinor norm is
surjective. By diagram chasing, we conclude that H1


(
R,Spin(q)


)
= 1. This implies


that the kernel of the connecting map H1
(
R,SO(q)


)
→ H2(R,Z/2Z) = Z/2Z has


trivial kernel. Now a classical twisting argument shows that the connecting map is
indeed injective. Since it is also surjective by Theorem 2.7.(1), we conclude that
H1


(
R,SO(q)


)
≃ Z/2Z as desired.


In other words, Conjecture 6.1 holds for special orthogonal and spinor groups of
quadratic forms of rank ≥ 5.


Our final conjecture states that, outside of type A, double loop algebras are com-
pletely determined by their Witt-Tits index.


Conjecture 6.4. Let xxx = (x1, x2) and yyy = (y1, y2) be two commuting pairs of auto-
morphisms of a finite dimensional simple Lie algebra g over k. Assume g is not of
type A. Then L(g,xxx)⊗RK is an isotropic finite dimensional simple Lie algebra over
K. Furthermore,


L(g,xxx) ≃k−Lie L(g, yyy)⇐⇒ I(xxx) = I(yyy).


The assumption that g is not of type A is necessary. For in type An, with n >> 1,
there are anisotropic loop algebras which are not isomorphic (Theorem 5.10 and
Proposition 2.1(6)). The conjecture holds if xxx and yyy are in Gad, for in this case the
Brauer invariant and the Witt-Tits index determine each other.
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