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Abstract


Constructions of quaternion and octonion algebras, suggested to have new


level and sublevel values, are proposed and justified. In particular, octonion


algebras of level and sublevel 6 and 7 are constructed. In addition, Hoffmann’s


proof of the existence of infinitely many new values for the level of a quaternion


algebra is generalised and adapted.


1 Introduction


In [Lew1], Lewis constructed quaternion algebras of level 2k and 2k + 1, both of


sublevel 2k, for all integers k ≥ 0. Laghribi and Mammone recovered these val-


ues as the level of a quaternion algebra using function field techniques (see [LM]).


Pumplün employed their methodology in [Pu] to construct octonion algebras of level


2k and 2k +1. By constructing a quaternion algebra of sublevel 3, Krüskemper and


Wadsworth produced the first example of a quaternion algebra whose sublevel was


not a power of 2 (see [KW]). This construction was subsequently employed to prove


the existence of an octonion algebra of sublevel 3, and indeed one of sublevel 5 was


also produced (see [O’S]). Heretofore, these remained the only known values for the


level and sublevel of quaternion and octonion algebras.


In Section 3.1, we introduce certain quaternion and octonion algebras, denoted Q(n)


and O(n) respectively, which we conjecture to be of level and sublevel n, for all n.


In Section 3.1.1, we proceed to precisely determine the level and sublevel of these


algebras for certain values of n. In particular, we produce the first example of a


composition algebra whose known level is not equal to 2k or 2k + 1 for some k.
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Section 3.1.2 sees us outline the argument employed by Hoffmann [H3] to bound


the level of Q(n), proving the existence of infinitely many values for the level of


Q(n) which are not of the form 2k or 2k + 1 for some k. We extend this argument


to O(n), and refine these bounds for particular n-values.


We conclude with Section 3.2, wherein we introduce alternative constructions of


quaternion and octonion algebras, which we suggest to be of level and sublevel


l · 2k. Some merits of these constructions are outlined.


2 Preliminaries


Let F denote a field of characteristic 6= 2, F0 a formally real field and C a unital,


not necessarily associative, F -algebra.


A map ∗ is called an involution on C if it is an anti-automorphism of period 2.


We have C = Sym(C, ∗) ⊕ Skew(C, ∗), with Sym(C, ∗) = {x ∈ C|x∗ = x} and


Skew(C, ∗) = {x ∈ C|x∗ = −x}. An involution ∗ is called scalar if x∗x ∈ F and


x∗ + x ∈ F for all x ∈ C. For an algebra C with scalar involution ∗, we call


tC(x) = x+ x∗ the trace of C and the quadratic form TC : C → F, TC(x) = tC(x2)


the trace form.


The Cayley-Dickson doubling process is an algorithm for constructing new algebras


with scalar involution from old ones. Applying the process to an algebra C with


scalar involution ∗, together with a chosen scalar µ ∈ F×, produces a new algebra,


Cay(C, µ), the Cayley-Dickson double of C, whose scalar involution we will also


denote by ∗. We note that Cay(C, µ) is the F -module C × C, with multiplication


defined by (u, v)(u′, v′) = (uu′ +µv′∗v, v′u+ vu′∗) and involution given by (u, v)∗ =


(u∗,−v), for u, u′, v, v′ ∈ C.


An algebra C is a composition algebra if there exists a nondegenerate quadratic


form q on C which allows composition, that is q(xy) = q(x) q(y) for all x, y ∈


C. Composition algebras are of rank 1, 2, 4 or 8. The composition algebras


of rank 2 are the quadratic étale F -algebras; the composition algebras of rank 4


are the (non-commutative) quaternion algebras and those of rank 8 are the (non-


commutative and non-associative) octonion algebras. For a, b ∈ F×, the quaternion


algebra Q =
(


a,b
F


)


over F is a 4-dimensional F -vector space with basis {1, i, j, k},


satisfying i2 = a, j2 = b and ij = −ji = k. For a, b, c ∈ F×, the octonion


algebra
(


a,b,c
F


)


over F is defined as
(


a,b,c
F


)


:= Cay
((


a,b
F


)


, c
)


. We note that
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Cay
((


a,b
F


)


, c
)


=
(


a,b
F


)


⊕
(


a,b
F


)


e is an 8-dimensional F -vector space with basis


{1, i, j, k, e, ie, je, ke}, satisfying i2 = a, j2 = b and e2 = c. Applying the Cayley-


Dickson doubling process to a composition algebra C over F , yields another com-


position algebra (if the dimension of the new algebra is at most 8), or alternatively


what is known as a generalised Cayley-Dickson algebra.


For C =
(


a,b
F


)


, we have TC ≃ 2〈1, a, b,−ab〉, whereas for C =
(


a,b,c
F


)


, TC ≃


2〈1, a, b,−ab, c,−ac,−bc, abc〉. Since we are concerned with the isotropy of trace


forms, we may disregard this scalar factor of 2. We define the pure trace form of a


composition algebra C, denoted TP , via the following relation: TC = 〈1〉 ⊥ TP .


For C a division algebra, we define the level of C, denoted s(C), as the least integer


n such that −1 is a sum of n squares in C. If no such integer exists, we say that


s(C) = ∞. The sublevel of C, denoted s(C), is the least integer n for which 0 is a


sum of n + 1 squares of elements in C. If 0 is not expressible in this manner, we


say that s(C) = ∞. Note that s(C) ≤ s(C).


In [Pf], Pfister showed that the level of a field, if finite, is a power of 2, and more-


over that any prescribed power of 2 may be realised as the level of a field. This


classification extends to the case where C is a quadratic étale F -algebra. A com-


position algebra is split if it contains a composition subalgebra which is isomorphic


to F ⊕F , which is the case if and only if C contains zero divisors. Split quaternion


and octonion algebras have level 1 (a consequence of a split quaternion algebra be-


ing isomorphic to M2F ). Hence, in order to complete the classification of the level


of composition algebras, we consider quaternion and octonion algebras which are


division.


For ϕ a regular n-dimensional quadratic form over F , we can consider ϕ as a ho-


mogeneous polynomial of degree 2, that is ϕ(X) = ϕ(X1, . . . , Xn) =
∑


i,j αijXiXj ,


where αij ∈ F×. For n > 1 and ϕ 6≃ 〈1,−1〉, the function field of ϕ, denoted F (ϕ),


is defined to be the quotient field of the integral domain


F [X ]/(ϕ(X)) = F [X1, . . . , Xn]/(ϕ(X1, . . . , Xn)).


ϕ is said to be isotropic if there exists a non-zero vector x such that ϕ(x) = 0.


By construction, every quadratic form is isotropic over its function field. The Witt


index of ϕ, denoted iW (ϕ), is the dimension of a maximal totally isotropic subform


of ϕ. The first Witt index of ϕ, denoted i1(ϕ), is the Witt index of ϕ over its


function field. The essential dimension of ϕ is given by the following relation:
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dimes(ϕ) = dim(ϕ) − i1(ϕ) + 1. The value set of ϕ, denoted DF (ϕ), is the set of


elements of F× which are represented by ϕ. By DF (ϕ)DF (ψ) we will denote the


usual set product of DF (ϕ) and DF (ψ).


We highlight the following recent progress towards classifying when one quadratic


form becomes isotropic over the function field of another:


Theorem 2.1. [I, Lemma 5.3] Let ψ0, ψ1, ϕ0, ϕ1 be anisotropic quadratic forms


over F . For ψ := ψ0 ⊥ Tψ1 and ϕ := ϕ0 ⊥ Tϕ1, the following are equivalent:


• ψ isotropic over F (T )(ϕ).


• ψ isotropic over F ((T ))(ϕ).


• DF ′(ϕ0)DF ′(ϕ1) ⊆ DF ′(ψ0)DF ′(ψ1) for every extension F ′ of F .


Theorem 2.2. [R, Theorem 5.1.5] ψ is isotropic over F (ϕ) ⇐⇒ DF ′(ϕ)DF ′(ϕ) ⊆


DF ′(ψ)DF ′(ψ) for every extension F ′ of F .


In addition, Karpenko and Merkurjev employed advanced algebro-geometric tech-


niques involving Chow groups to prove the following powerful result:


Theorem 2.3. [KM, Theorem 4.1] Let ϕ and ψ be anisotropic over F and suppose


that ψ is isotropic over F (ϕ). Then


(i) dimes(ϕ) ≤ dimes(ψ);


(ii) moreover, the equality dimes(ϕ) = dimes(ψ) holds if and only if ϕ is isotropic


over F (ψ).


For an overview of function fields of quadrics or for further definitions and notation


regarding quadratic forms, we refer the reader to [Lam].


3 Results


3.1 Q(n) and O(n)


In this section, we will introduce certain families of quaternion and octonion al-


gebras, before proceeding to investigate what values their level and sublevel may


take.
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3.1.1 Introducing Q(n) and O(n)


As motivated above, we will alternate between considering quaternion and octonion


algebras which are division. We will let C denote a quaternion or octonion algebra


which is division. For those occasions in which we will need to discriminate between


these alternatives, we will use Q to denote a quaternion division algebra and O an


octonion division algebra. By TP we will denote the pure trace form of the algebra


in question, which should be clear from the context.


Since DF (n× TP ) = {
∑n


i=1 pi
2|pi ∈ Skew(C, ∗)} for ∗ given by conjugation, if


〈1〉 ⊥ n × TP is isotropic then −1 is expressible as a sum of n squares of pure


elements in C, yielding that s(C) ≤ n.


For n = 2k−1, Lewis stated that the converse holds for quaternion division algebras


(see [Lew2]). This result extends to composition algebras (see [O’S, Lemma 3.9]),


allowing us to conclude that


s(C) ≤ n ⇐⇒ 〈1〉 ⊥ n× TP is isotropic for n = 2k − 1.


Furthermore, for n = 2k Lewis showed that s(Q) ≤ n implies that 〈1〉 ⊥ n× TP or


(n+ 1)× 〈1〉 ⊥ (n− 1)× TP is isotropic (see [Lew2, Lemma 3]), with Leep proving


the converse in [Le, Theorem 2.2]. This equivalence also admits generalisation to


the class of composition algebras:


s(C) ≤ 2k ⇐⇒ 〈1〉 ⊥ 2k ×TP or (2k +1)×〈1〉 ⊥ (2k −1)×TP is isotropic(1)


In light of the above results, a natural question which then arose was whether


s(C) ≤ n implies that 〈1〉 ⊥ n×TP is isotropic for all n. By producing a quaternion


algebra of level 2k such that 〈1〉 ⊥ 2k ×TP is anisotropic for all k, Koprowski [Kop]


answered this question in the negative. Pumplün later showed that there also exist


octonion algebras of level 2k such that 〈1〉 ⊥ 2k × TP is anisotropic for all k (see


[Pu]).


More specifically, Koprowski’s example and its octonion algebra analogue are di-


rectly relevant to (1), proving that if s(C) ≤ 2k it remains necessary, for all values


of k, to consider whether (2k + 1) × 〈1〉 ⊥ (2k − 1) × TP becomes isotropic in


consequence. As an interesting aside, we note that if s(C) ≤ 2k, it is actually


the consideration of the isotropy of 〈1〉 ⊥ 2k × TP which becomes redundant for k


sufficiently large, as the following attests:
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Theorem 3.1. For Q a quaternion division algebra, s(Q) ≤ 2k ⇐⇒ (2k + 1) ×


〈1〉 ⊥ (2k − 1) × TP is isotropic, where k ≥ 2. For O an octonion division algebra,


s(O) ≤ 2k ⇐⇒ (2k + 1) × 〈1〉 ⊥ (2k − 1) × TP is isotropic, where k ≥ 3.


Proof. Since s(C) ≤ 2k ⇐⇒ (2k + 1) × 〈1〉 ⊥ (2k − 1) × TP or 〈1〉 ⊥ 2k × TP


is isotropic, it suffices to prove that the isotropy of 〈1〉 ⊥ 2k × TP implies that of


(2k + 1) × 〈1〉 ⊥ (2k − 1) × TP , for k as above. Suppose 〈1〉 ⊥ 2k × TP is isotropic,


implying that 2k×TC ≃ (2k×〈1〉)⊗TC is isotropic. We know that iW (2k×TC) ≥ 2k


by [EL, Proposition 1.4]. For k as above, 2k × 〈1〉 ⊥ (2k − 1) × TP is a subform of


2k × TC of codimension < 2k, and thus is also isotropic.


Since s(C) = 2k ⇒ s(C) = 2k ([Le, Theorem 2.5] for C = Q and [O’S, Theorem


3.11] for C = O), Koprowski’s example and its octonion algebra analogue prove


that neither s(C) = n nor s(C) = n implies that 〈1〉 ⊥ n× TP is isotropic for all n.


Of course, this does not preclude the existence of composition algebras of level and


sublevel n such that 〈1〉 ⊥ n× TP is isotropic, for all values of n.


As we have seen, the isotropy of 〈1〉 ⊥ n × TP encodes n as an upper bound


for the level and sublevel of a composition algebra. Indeed, since DF (n× TP ) =


{
∑n


i=1 pi
2|pi ∈ Skew(C, ∗)}, 〈1〉 ⊥ n×TP is the most natural quadratic form whose


isotropy bounds the level. Thus it seems reasonable to suggest that if one were


to construct composition algebras, subject to 〈1〉 ⊥ n × TP being isotropic, in a


suitably general fashion, then their level and sublevel might actually equal n.


In defining Q(n) and O(n), we are aiming for just such a construction. In an


attempt to make Q(n) and O(n) suitably general, the better to eradicate factors


which could serve to reduce the level or sublevel below n, we choose the generators


of our algebra to be transcendental over a formally real ground field, and extend to


the function field of 〈1〉 ⊥ n × TP , the natural method of generically encoding its


isotropy. Hence, we let


Q(n) :=
(x, y


F


)


⊗F F (〈1〉 ⊥ n× TP )


and


O(n) :=
(x, y, z


F


)


⊗F F (〈1〉 ⊥ n× TP ) ,


where TP is the pure trace form of
(


x,y
F


)


and
(


x,y,z
F


)


respectively, and F denotes


F0(x, y) and F0(x, y, z) respectively.


We posit the following conjecture:
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Conjecture 3.2. s (Q(n)) = s (Q(n)) = s (O(n)) = s (O(n)) = n for all n.


3.1.2 Determined Values


We begin our investigation of Q(n) and O(n) by noting that if the sublevel of these


algebras equals n, then their level and sublevel must coincide.


We will now proceed to establish the first seven cases of the octonionic component


of Conjecture 3.2. In doing so, we prove that 6 and 7 are realisable as both the


level and sublevel of octonion algebras. We note that these are the first examples


of composition algebras whose level is not of the form 2k or 2k + 1 for some k.


Theorem 3.3. s (O(n)) = s (O(n)) = n, for n ≤ 7.


Proof. For ease of notation we let ϕ := 〈1〉 ⊥ n× TP .


By construction s (O(n)) ≤ n.


Suppose s (O(n)) ≤ n− 1. Hence


n
∑


i=1


ci
2 +


n
∑


i=1


pi
2 = 0 (2)


and


n
∑


i=1


cipi = 0, (3)


where ci ∈ F (ϕ) and pi ∈ P , the F (ϕ)-vector space spanned by the pure octonions.


If ci = 0 ∀ i, (2) implies that n× TP is isotropic over F (ϕ).


Alternatively, if there exists an i such that ci 6= 0, (3) implies the existence of V , an


(n− 1)-dimensional F (ϕ)-subspace of P , containing p1, . . . , pn. Let β : V → F (ϕ),


p 7→ p2. Hence, β is an (n − 1)-dimensional subform of TP and (2) implies that


ϑ := n× (〈1〉 ⊥ β) is isotropic over F (ϕ).


Note that n×TP and 8×(〈−1〉 ⊥ TP ) are anisotropic over F by Springer’s Theorem.


If n × TP becomes isotropic over F (ϕ), then the Pfister form 8 × (〈1〉 ⊥ −TP )


becomes hyperbolic over F (ϕ). Invoking the Cassels-Pfister Subform Theorem


(see [S, p.155]), α(ϕ) should be a subform of 8 × (〈1〉 ⊥ −TP ) for any α ∈


DF (8 × (〈1〉 ⊥ −TP )) . In particular, since −x ∈ DF (8 × (〈1〉 ⊥ −TP )) , −x(ϕ) ≃


〈−x〉 ⊥ n× 〈−1,−xy, y,−xz, z, xyz,−yz〉 should be a subform of 8× (〈1〉 ⊥ −TP ),
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implying that n× 〈−1〉 is also a subform, which is clearly false. Hence, n×TP also


remains anisotropic over F (ϕ).


Thus, ϑ must be isotropic over F (ϕ) . By Theorem 2.2 we must have


DF ′ (ϕ)DF ′ (ϕ) ⊆ DF ′ (ϑ)DF ′ (ϑ) for every extension F ′ of F.


Let F ′ = F .


Since TP ≃ 〈x, y,−xy, z,−xz,−yz, xyz〉, we have x ∈ DF (ϕ)DF (ϕ). Suppose 〈x〉


is not a subform of β. Hence, all multiples of x in DF (ϑ)DF (ϑ) are of the form


−x
(
∑m


i=1 a
2
i


)


, for ai ∈ F (note that 〈(y)(−xy)〉 ≃ 〈(z)(−xz)〉 ≃ 〈(−yz)(xyz)〉 ≃


〈−x〉). If x is positive with respect to some ordering on F , then −x
(
∑m


i=1 a
2
i


)


is nec-


essarily negative, and vice-versa. Thus x /∈ DF (ϑ)DF (ϑ), which is a contradiction.


Hence 〈x〉 is a subform of β.


Note that y ∈ DF (ϕ)DF (ϕ). Now suppose that 〈y〉 is not a subform of β. Hence,


all multiples of y in DF (ϑ)DF (ϑ) are of the form −y
(
∑m


i=1 a
2
i


)


, for ai ∈ F (note


that 〈(x)(−xy)〉 ≃ 〈(z)(−yz)〉 ≃ 〈(−xz)(xyz)〉 ≃ 〈−y〉). Again, if y is positive with


respect to some ordering on F , then −y
(
∑m


i=1 a
2
i


)


is negative, and vice-versa. Thus


y /∈ DF (ϑ)DF (ϑ), which is a contradiction. Hence 〈y〉 is a subform of β.


Similarly, since −xy, z,−xz,−yz and xyz ∈ DF (ϕ)DF (ϕ), 〈−xy〉, 〈z〉, 〈−xz〉, 〈−yz〉


and 〈xyz〉 must also be subforms of β.


Thus, TP ≃ 〈x〉 ⊥ 〈y〉 ⊥ 〈−xy〉 ⊥ 〈z〉 ⊥ 〈−xz〉 ⊥ 〈−yz〉 ⊥ 〈xyz〉 is a subform of β,


which contradicts the fact that β is (n− 1)-dimensional.


Thus s (O(n)) � n− 1, implying that s (O(n)) = n.


Showing that ϑ remains anisotropic over F (ϕ) is a key step in the above proof. The


machinery with which we successfully endeavoured to achieve this end is Roussey’s


Theorem 2.2. Hence, all the ingredients in the above proof lie within the “classical”


theory of quadratic forms.


If we instead choose to invoke Theorem 2.3 of Karpenko and Merkurjev, whose proof


relies upon deep algebro-geometric techniques, in order to prove anisotropy of forms


over F (〈1〉 ⊥ n× TP ), we obtain a more succinct, if less elementary, argument:


Proof. As detailed above, to prove that s (O(n)) � n−1 it suffices to show that n×


TP and n×(〈1〉 ⊥ β) are anisotropic over F (〈1〉 ⊥ n× TP ). Since i1 (〈1〉 ⊥ n× TP ) =
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1 (see Lemma 3.8), the fact that dim (〈1〉 ⊥ n× TP ) > dim (n× TP ) implies that n×


TP is anisotropic over F (〈1〉 ⊥ n× TP ) by Theorem 2.3. Similarly since dim (〈1〉 ⊥ n× TP ) >


dim (n× (〈1〉 ⊥ β)), we can conclude that n × (〈1〉 ⊥ β) is also anisotropic over


F (〈1〉 ⊥ n× TP ) by Theorem 2.3. Hence s (O(n)) � n− 1.


Both of the above methods of proof apply to quaternion algebras as well, yielding:


Theorem 3.4. s (Q(n)) = s (Q(n)) = n for n ≤ 3.


We note that the above results may be extended to their respective next cases.


Indeed, the following result shows that Conjecture 3.2 is true for all n = 2k:


Theorem 3.5. s (Q(n)) = s (Q(n)) = s (O(n)) = s (O(n)) = n, for n = 2k.


Proof. We may assume that k ≥ 2 by Theorem 3.3 and Theorem 3.4.


Suppose s
(


Q(2k)
)


≤ 2k − 1. Thus, 〈1〉 ⊥ (2k − 1) × TP is isotropic over F (ϕ) by


[O’S, Theorem 3.5], where ϕ := 〈1〉 ⊥ 2k × TP . Since ψ〈x〉 := 〈1〉 ⊥ 2k × 〈x〉 is a


subform of ϕ, there exists an F -place from F (ϕ) to F
(


ψ〈x〉


)


, by [K, Theorem 3.3].


Thus 〈1〉 ⊥ (2k −1)×TP is isotropic over F
(


ψ〈x〉


)


, by [K, Theorem 3.3]. Springer’s


Theorem implies that either 〈1〉 ⊥ (2k − 1) × 〈x〉 or (2k − 1) × 〈1,−x〉 is isotropic


over F0(x)
(


ψ〈x〉


)


. However, 〈1〉 ⊥ (2k − 1) × 〈x〉 is anisotropic over F0(x)
(


ψ〈x〉


)


by [H1, Theorem 1]. Hence, (2k − 1)× 〈1,−x〉 must be isotropic over F0(x)
(


ψ〈x〉


)


,


implying that 2k × 〈1,−x〉 is hyperbolic over F0(x)
(


ψ〈x〉


)


. The Cassels-Pfister


Subform Theorem implies that ψ〈x〉 is a subform of 2k × 〈1,−x〉, giving a desired


contradiction. Hence s
(


Q(2k)
)


= 2k.


Now suppose s
(


O(2k)
)


≤ 2k − 1. Thus, 〈1〉 ⊥ (2k − 1) × TP is isotropic over


F
(


〈1〉 ⊥ 2k × TP


)


by [O’S, Theorem 3.5]. Since ψ〈x,y,−xy〉 := 〈1〉 ⊥ 2k ×〈x, y,−xy〉


is a subform of 〈1〉 ⊥ 2k × TP , there exists an F -place from F
(


〈1〉 ⊥ 2k × TP


)


to


F
(


ψ〈x,y,−xy〉


)


, by [K, Theorem 3.3]. Thus 〈1〉 ⊥ (2k − 1) × TP is isotropic over


F
(


ψ〈x,y,−xy〉


)


, by [K, Theorem 3.3]. Springer’s Theorem implies that either 〈1〉 ⊥


(2k−1)×〈x, y,−xy〉 or (2k−1)×〈1,−x,−y, xy〉 is isotropic over F0(x, y)
(


ψ〈x,y,−xy〉


)


.


In proving the quaternion case above, we showed that 〈1〉 ⊥ (2k − 1) × 〈x, y,−xy〉


is anisotropic over F0(x, y)
(


ψ〈x,y,−xy〉


)


. Hence, (2k − 1) × 〈1,−x,−y, xy〉 must


be isotropic over F0(x, y)
(


ψ〈x,y,−xy〉


)


, implying that 2k × 〈1,−x,−y, xy〉 is hyper-


bolic over F0(x, y)
(


ψ〈x,y,−xy〉


)


. The Cassels-Pfister Subform Theorem implies that


ψ〈x,y,−xy〉 is a subform of 2k × 〈1,−x,−y, xy〉, furnishing a contradiction. Hence


s
(


O(2k)
)


= 2k.
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Karpenko and Merkurjev’s result, Theorem 2.3, provides another method of proof:


Proof. Since i1
(


〈1〉 ⊥ 2k × TP


)


= 1 (see Lemma 3.7 and Lemma 3.8), the fact that


dim
(


〈1〉 ⊥ 2k × TP


)


> dim
(


〈1〉 ⊥ (2k − 1) × TP


)


implies that 〈1〉 ⊥ (2k − 1) × TP


remains anisotropic over F
(


〈1〉 ⊥ 2k × TP


)


by Theorem 2.3. Hence s
(


Q(2k)
)


�


2k − 1 and s
(


O(2k)
)


� 2k − 1.


In their construction of a quaternion algebra of level 2k + 1 for k ≥ 1, Laghribi and


Mammone considered Q(2k +1), proving that s
(


Q(2k + 1)
)


= 2k +1 [LM, Theorem


2.1]. Furthermore, Pumplün adapted their argument to show that s
(


O(2k + 1)
)


=


2k + 1 for k ≥ 1 [Pu, Theorem 3.1]. We note that these results extend to the case


where k = 0, as this is merely the level component of Theorem 3.5 when k = 1. We


now present a simplified method of proving these results:


Theorem 3.6. s (Q(n)) = s (O(n)) = n, for n = 2k + 1.


Proof. Suppose s
(


Q(2k + 1)
)


≤ 2k. Hence (2k + 1) × 〈1〉 ⊥ (2k − 1) × TP is


isotropic over F
(


〈1〉 ⊥ (2k + 1) × TP


)


by Theorem 3.1 (we can assume that k ≥ 2 by


Theorem 3.4). Since y(2k+1)×〈1,−x〉 is a subform of 〈1〉 ⊥ (2k+1)×TP , there exists


an F -place from F
(


〈1〉 ⊥ (2k + 1) × TP


)


to F
(


(2k + 1) × 〈1,−x〉
)


, by [K, Theorem


3.3]. Thus (2k+1)×〈1〉 ⊥ (2k−1)×TP is isotropic over F
(


(2k + 1) × 〈1,−x〉
)


, by [K,


Theorem 3.3]. Springer’s Theorem implies that either (2k +1)×〈1〉 ⊥ (2k −1)×〈x〉


or (2k − 1) × 〈1,−x〉 is isotropic over F0(x)
(


(2k + 1) × 〈1,−x〉
)


. However, both


forms are anisotropic by [H1, Theorem 1]. Hence s
(


Q(2k + 1)
)


� 2k.


The same method applies in the octonion case.


The values of n specified in the above results remain the only ones for which we can


precisely determine s (Q(n)) , s (Q(n)) , s (O(n)) or s (O(n)). For other values of n,


bounds may be placed on these quantities via Theorem 2.3, as we will now proceed


to outline.


3.1.3 Bounding Undetermined Values


Given the similarities between sums of squares in quaternion and octonion algebras,


that there exist octonion algebras whose level is not of the form 2k or 2k+1, as proved


in Theorem 3.3, suggests that the same is true for quaternion algebras. Indeed,


at a recent seminar in University College Dublin [H2], Detlev Hoffmann kindly
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communicated his method of showing the existence of infinitely many quaternion


algebras whose level is neither 2k nor 2k +1 for some k, answering a question posed


by David Leep in [Le]. The family of quaternion algebras that Hoffmann considers


is {Q(n)}.


A key step in Hoffmann’s argument is the following:


Lemma 3.7. [H3, Lemma 4.1] i1 (〈1〉 ⊥ n× TP ) = 1 for all n, where TP represents


the pure trace form of Q(n).


Employing the same method of proof, one can obtain the corresponding result for


O(n), as we will now proceed to outline:


Lemma 3.8. i1 (〈1〉 ⊥ n× TP ) = 1 for all n, where TP represents the pure trace


form of O(n).


Proof. For P an ordering of F0, let P ′ represent an extension to F such that x, y


and z are negative. Hence, 〈1〉 ⊥ n× TP is indefinite with respect to P ′, implying


that P ′ extends to F (〈1〉 ⊥ n× TP ) by [ELW, Theorem 3.5 and Remark 3.6]. Now,


since 〈1〉 ⊥ n × TP has only one positive coefficient with respect to P ′, we can


conclude that i1 (〈1〉 ⊥ n× TP ) = 1.


Hoffmann invokes Lemma 3.7 to prove the following result:


Theorem 3.9. [H3, Corollary 4.3] For n = m+ 1 + ⌊m
3 ⌋, s (Q(n)) ∈ [m+ 1, n].


The choice of m + 1 + ⌊m
3 ⌋ for n is justifiable since it is the least value which


ensures that the essential dimension of 〈1〉 ⊥ n× TP is greater than or equal to the


dimension of 〈1〉 ⊥ m× TQ, thereby ensuring that s(Q) � m via Theorem 2.3. For


the sake of consistency, we reformulate the above result in the following manner:


s (Q(n)) ∈
[


n−
⌊n


4


⌋


, n
]


for all n.


Of course, we may similarly invoke Lemma 3.8 to the same effect, allowing us to


obtain the analogous bounds for s (O(n)):


Theorem 3.10. s (O(n)) ∈
[


n−
⌊


n
8


⌋


, n
]


for all n.


Proof. Since i1 (〈1〉 ⊥ n× TP ) = 1 for all n, if dim (〈1〉 ⊥ n× TP ) > dim
(


〈1〉 ⊥ m× TO(n)


)


then Theorem 2.3 implies that 〈1〉 ⊥ m×TO(n) remains anisotropic over F (〈1〉 ⊥ n× TP ),
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bounding s (O(n)) in [m + 1, n]. Comparing dimensions, we see that n −
⌊


n
8


⌋


− 1


is the greatest value of m such that dim (〈1〉 ⊥ n× TP ) > dim
(


〈1〉 ⊥ m× TO(n)


)


.


Hence, s (O(n)) ∈
[


n−
⌊


n
8


⌋


, n
]


.


We note that the above result recovers the level component of Theorem 3.3.


In a similar fashion, we may further apply Hoffmann’s methodology to considera-


tions of the sublevel of Q(n):


Theorem 3.11. s (Q(n)) ∈
[


n−
⌊


n+3
4


⌋


, n
]


for all n.


Proof. Since i1 (〈1〉 ⊥ n× TP ) = 1 for all n, if dim (〈1〉 ⊥ n× TP ) > dim
(


(m+ 1) × TQ(n)


)


then Theorem 2.3 implies that (m+1)×TQ(n) remains anisotropic over F (〈1〉 ⊥ n× TP ),


bounding s (Q(n)) in [m+ 1, n]. Comparing dimensions, we see that n−
⌊


n+3
4


⌋


− 1


is the greatest value of m such that dim (〈1〉 ⊥ n× TP ) > dim
(


(m+ 1) × TQ(n)


)


.


Hence, s (Q(n)) ∈
[


n−
⌊


n+3
4


⌋


, n
]


.


The corresponding argument yields the following bounds for the sublevel of O(n):


Theorem 3.12. s (O(n)) ∈
[


n−
⌊


n+7
8


⌋


, n
]


for all n.


Without placing any restrictions on the value that n may take, the above results


represent the sharpest bounds on the level and sublevel of Q(n) and O(n) currently


available. For a large class of values however, we may further reduce the intervals


in which these quantities are known to lie.


We achieve this reduction by exploiting Theorem 2.3 more fully:


For m = 2kd, m×TC ≃ 2k×〈1〉⊗(d×TC). In consequence, i1 (m× TC) ≥ 2k by [EL,


Theorem 1.4]. Thus, invoking Theorem 2.3 in conjunction with this observation,


we may increase the lower bounds on s (Q(n)) and s (O(n)) for certain n, and


consequently those on s (Q(n)) and s (O(n)).


Theorem 3.13. s (Q(n)) and s (Q(n)) ∈ [m,n] for n ≥ m+
⌊


m−2k


3


⌋


+ 1, where k


is the 2-adic order of m.


Proof. [EL, Theorem 1.4] implies that i1
(


m× TQ(n)


)


≥ 2k. Comparing the es-


sential dimensions of 〈1〉 ⊥ n × TP and m × TQ(n), we see that m +
⌊


m−2k


3


⌋


+ 1


is the least value of n such that dim (〈1〉 ⊥ n× TP ) − 1 > dim
(


m× TQ(n)


)


− 2k.


Hence, for n ≥ m+
⌊


m−2k


3


⌋


+ 1, m× TQ(n) is anisotropic over F (〈1〉 ⊥ n× TP ) by


Theorem 2.3, implying that s (Q(n)) ∈ [m,n].


Since s (Q(n)) ≤ s (Q(n)), s (Q(n)) ∈ [m,n] also.
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Arguing in a likewise manner, we obtain the following bounds for the level and


sublevel of O(n):


Theorem 3.14. s (O(n)) and s (O(n)) ∈ [m,n] for n ≥ m+
⌊


m−2k


7


⌋


+ 1, where k


is the 2-adic order of m.


Of course, if n = 2k + h for h ≥ 0 sufficiently small, we may yet again increase the


lower bounds on the levels and sublevels of Q(n) and O(n) relative to those derived


from the above results:


Theorem 3.15. s (Q(n)) , s (Q(n)) , s (O(n)) and s (O(n)) ∈
[


2k, n
]


, where 2k is


the largest 2-power ≤ n.


Proof. In the proof of Theorem 3.5, we showed that 〈1〉 ⊥ (2k−1)×TP is anisotropic


over F
(


〈1〉 ⊥ 2k × TP


)


. For n ≥ 2k, 〈1〉 ⊥ 2k × TP is a subform of 〈1〉 ⊥ n × TP ,


implying the existence of an F -place from F (〈1〉 ⊥ n× TP ) to F
(


〈1〉 ⊥ 2k × TP


)


by [K, Theorem 3.3]. Hence, 〈1〉 ⊥ (2k−1)×TP is anisotropic over F (〈1〉 ⊥ n× TP )


by [K, Proposition 3.1], implying the result.


Similarly, if n = 2k + h for h ≥ 1 sufficiently small, we may interpret Theorem 3.6


as a further increase to earlier lower bounds on the levels of Q(n) and O(n):


Theorem 3.16. s (Q(n)) and s (O(n)) ∈
[


2k + 1, n
]


, where 2k is the largest 2-


power < n.


Proof. As in the proof of Theorem 3.6, (2k + 1)×〈1〉 ⊥ (2k − 1)×TP is anisotropic


over F
(


〈1〉 ⊥ (2k + 1) × TP


)


. Hence, as in the previous proof, it is also anisotropic


over F (〈1〉 ⊥ n× TP ) for n ≥ 2k + 1.


For certain values of n, the lower bounds obtained for s (Q(n)) , s (Q(n)) , s (O(n))


and s (O(n)) in the above results are actually optimal with respect to the standard


isotropy tests.


For example, if we consider the case where n = 15, we note that s (Q(15)) and


s (Q(15)) ∈ [12, 15] as a consequence of Theorem 3.13. We cannot hope to show


that s (Q(15)) or s (Q(15)) 6= 12 via the standard methodology, since both 〈1〉 ⊥


12 × TQ(15) and 13 × TQ(15) are isotropic over F (〈1〉 ⊥ 15 × TP ), as the following


argument demonstrates:


16 × TQ(15) is clearly isotropic over F (〈1〉 ⊥ 15 × TP ). [EL, Theorem 1.4] im-


plies that iW
(


16 × TQ(15)


)


≥ 16. Since 〈1〉 ⊥ 12 × TQ(15) and 13 × TQ(15) are
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both subforms of 16 × TQ(15) of codimension < 16, they too are isotropic over


F (〈1〉 ⊥ 15 × TP ).


Hence, more refined quadratic form theoretic consequences of the sublevels of Q(n)


and O(n) being bound above by n − 1 are required, if we hope to prove Conjec-


ture 3.2.


3.2 Constructions for the case where n = l · 2k


As outlined in Section 3.1.1, if we seek to construct quaternion and octonion algebras


of level and sublevel n for all values of n, the most natural candidates to consider


are Q(n) and O(n). However, if we restrict our attention to certain values of n,


other constructions appear to be equally, if not more, appropriate.


As a first step in arriving at our constructions of Q(n) and O(n), we observed that


the isotropy of the quadratic form 〈1〉 ⊥ n × TP placed an upper bound on the


level and sublevel of these algebras. Of course, it is possible to find other, though


admittedly less natural, quadratic forms whose isotropy encodes such an upper


bound on the level and sublevel of associated quaternion or octonion algebras.


As highlighted earlier, one such quadratic form is (2k + 1) × 〈1〉 ⊥ (2k − 1) × TP ,


whose isotropy implies that s(C) ≤ 2k ([Le, Theorem 2.2] for the Q case and [Pu,


Proposition 2.12] for the O case). This result, and its method of proof, admit the


following generalisation:


Theorem 3.17. If (2h + 1) × 〈1〉 ⊥ (l · 2k − 1) × TP is isotropic, where h denotes


the 2-adic order of l · 2k, then s(C) ≤ l · 2k.


Proof. Consider the case where C is a quaternion algebra. If (2h + 1) × 〈1〉 ⊥


(l · 2k − 1) × TP is isotropic, then there exists −A ∈ DF


(


〈1〉 ⊥ (l · 2k − 1) × TP


)


for some nonzero A ∈ DF


(


2h × 〈1〉
)


. Hence for some α ∈ F and B,C,D ∈


DF


(


(l · 2k − 1) × 〈1〉
)


∪ {0} we have −A = α2 + aB + bC − abD, that is −1 =


1
A2


(


α2A+ aAB + bAC − abAD
)


. Let A =
∑2h


λ=1 xλ
2. We show that there ex-


ist yλ ∈ F such that
∑l·2k


λ=1 yλ
2 = AB and ~x · ~y = 0, where ~x · ~y represents


the scalar product of the two vectors, and we take x2h+1, . . . , xl·2k = 0 if 2h <


l · 2k. If B = 0, let each yλ = 0. If B 6= 0, then 〈A,AB〉 ∼= A · 〈1, B〉 is


a subform of A · (l · 2k) × 〈1〉 ∼= (l · 2k) × 〈1〉, since B ∈ DF


(


(l · 2k − 1) × 〈1〉
)


and A · 2h × 〈1〉 ∼= 2h × 〈1〉. Therefore such a ~y exists. Similarly ~z, ~w exist


such that
∑l·2k


λ=1 zλ
2 = AC,


∑l·2k


λ=1 wλ
2 = AD and ~x · ~z = ~x · ~w = 0. It follows
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that
∑l·2k


λ=1


(


αxλ


A
+ yλ


A
i+ zλ


A
j + wλ


A
k
)2


= 1
A2


(


α2A+ aAB + bAC − abAD
)


= −1.


Therefore s(C) ≤ l · 2k.


The same method of proof applies in the octonionic case.


As the above form bounds the level of composition algebras, we may adapt our


constructions of Q(n) and O(n) by hardwiring in the isotropy of this form as op-


posed to that of 〈1〉 ⊥ n× TP . We introduce the following notation to signify this


alteration: let


Q′ :=
(x, y


F


)


⊗F F
(


(2h + 1) × 〈1〉 ⊥ (l · 2k − 1) × TP


)


and


O ′ :=
(x, y, z


F


)


⊗F F
(


(2h + 1) × 〈1〉 ⊥ (l · 2k − 1) × TP


)


,


where h is the 2-adic order of l · 2k, TP is respectively the pure trace form of
(


x,y
F


)


and
(


x,y,z
F


)


and F denotes F0(x, y) and F0(x, y, z) respectively.


By design, the level of these constructions is bounded above by l · 2k. There is no


a priori reason why the level or sublevel of either Q′ or O ′ might be strictly less


than l · 2k for any values of l or k. Moreover, given the general fashion of these


constructions, we propose that Q′ and O ′ are actually of level and sublevel l · 2k:


Conjecture 3.18. s (Q′) = s (Q′) = s (O ′) = s (O ′) = l · 2k for all l and k.


In the case where l is a 2-power, Q′ represents a construction of Laghribi and


Mammone (see [LM]), with O ′ coinciding with one of Pumplün (see [Pu]), allowing


us to conclude that s(Q′) = s(O ′) = 2k. Moreover, we yield that s(Q′) = s(O ′) = 2k


immediately for k ≥ 2, by [Le, Theorem 2.5] for the Q case and [O’S, Theorem 3.11]


for the O case, with an ad hoc argument proving the case where k = 1.


Since the conjecture is true in the above case, we will restrict our attention to the


situation where l is not a 2-power. Moreover, we will henceforth assume without


loss of generality that l is odd, whereby k is the 2-adic order of l · 2k.


Having introduced Q′ and O ′, it is reasonable to wonder why we might consider


these algebras as opposed toQ(l·2k) and O(l·2k) in seeking quaternion and octonion


algebras of level and sublevel l · 2k.


We begin our justification of this preference by noting that the dimension of (2k +


1)×〈1〉 ⊥ (l · 2k − 1)×TP is greater than that of 〈1〉 ⊥ (l · 2k)×TP for k ≥ 1 in the
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quaternionic case, and for k ≥ 2 in the octonionic case. Clearly, if we can show that


i1
(


(2k + 1) × 〈1〉 ⊥ (l · 2k − 1) × TP


)


= 1, then (2k +1)×〈1〉 ⊥ (l ·2k −1)×TP will


be of greater essential dimension than 〈1〉 ⊥ (l ·2k)×TP for k as above. Theorem 2.3


would then allow for the bounding of s(Q′) and s(O ′) in a smaller interval than


that in which we can currently place s(Q(n)) and s(O(n)).


The suggestion that i1
(


(2k + 1) × 〈1〉 ⊥ (l · 2k − 1) × TP


)


= 1 is an entirely reason-


able one. Consider the form ϕ ≃ π ⊗ ρ, with π isometric to an n-fold Pfister form


where n ≥ 1. Invoking [EL, Theorem 1.4], we yield i1 (ϕ) ≥ dimπ. Theorem 2.3


implies that for ϕ′ a subform of ϕ whose codimension is strictly less than dim π,


we have i1 (ϕ′) > 1. Hence, we know that the class of forms represented by ϕ′ have


first Witt index strictly greater than 1. We suspect that such forms might actually


be the only forms whose first Witt index is strictly greater than 1.


The following theorem, which constitutes the main result of this section, shows that


the first Witt index of (2k + 1) × 〈1〉 ⊥ (l · 2k − 1) × TP does indeed equal 1, as


suspected:


Theorem 3.19. For Q′ and O ′ as above, i1
(


(2k + 1) × 〈1〉 ⊥ (l · 2k − 1) × TP


)


=


1.


Proof. For ease of notation, we let ψ〈x〉 and ψTP
denote (2k+1)×〈1〉 ⊥ (l·2k−1)×〈x〉


and (2k + 1) × 〈1〉 ⊥ (l · 2k − 1) × TP respectively.


Let us first consider the quaternion algebra case. Suppose there exist k and l such


that i1 (ψTP
) > 1. Hence 2k ×〈1〉 ⊥ (l · 2k − 1)×TP is isotropic over F (ψTP


), since


it is a 1-codimensional subform of ψTP
. Since ψTP


is isotropic over F
(


ψ〈x〉


)


, there


exists an F -place from F (ψTP
) to F


(


ψ〈x〉


)


by [K, Theorem 3.3]. Thus 2k × 〈1〉 ⊥


(l ·2k−1)×TP is isotropic over F
(


ψ〈x〉


)


by [K, Proposition 3.1]. Springer’s Theorem


implies that either 2k × 〈1〉 ⊥ (l · 2k − 1) × 〈x〉 or (l · 2k − 1) × 〈1,−x〉 is isotropic


over F0(x)
(


ψ〈x〉


)


.


Suppose (l ·2k−1)×〈1,−x〉 becomes isotropic over F0(x)
(


ψ〈x〉


)


. Hence 2n×〈1,−x〉


becomes hyperbolic over F0(x)
(


ψ〈x〉


)


, where 2n > l · 2k − 1. The Cassels-Pfister


Subform Theorem implies that ψ〈x〉 is a subform of 2n × 〈1,−x〉, which is clearly


false.


Thus 2k × 〈1〉 ⊥ (l · 2k − 1) × 〈x〉 must be isotropic over F0(x)
(


ψ〈x〉


)


. Hence,


dimes


(


2k × 〈1〉 ⊥ (l · 2k − 1) × 〈x〉
)


= dimes


(


ψ〈x〉


)


by Theorem 2.3.


Consider 2k×〈1〉 ⊥ l·2k×〈x〉 ≃ 2k×〈1〉⊗(〈1〉 ⊥ l×〈x〉). Now i1
(


2k × 〈1〉 ⊥ l · 2k × 〈x〉
)


≥


2k by [EL, Theorem 1.4]. In addition, choosing an ordering P of F0(x) such
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that x is negative implies that i1
(


2k × 〈1〉 ⊥ l · 2k × 〈x〉
)


≤ 2k by [ELW, Theo-


rem 3.5 and Remark 3.6]. Thus i1
(


2k × 〈1〉 ⊥ l · 2k × 〈x〉
)


= 2k, implying that


2k × 〈1〉 ⊥ (l · 2k − 1) × 〈x〉 is isotropic over F0


(


2k × 〈1〉 ⊥ l · 2k × 〈x〉
)


and hence


that dimes


(


2k × 〈1〉 ⊥ l · 2k × 〈x〉
)


= dimes


(


2k × 〈1〉 ⊥ (l · 2k − 1) × 〈x〉
)


by Theo-


rem 2.3.


We may therefore conclude that i1
(


ψ〈x〉


)


= 2k. Consequently (2k+1)×〈1〉 ⊥ ((l−1)·


2k)×〈x〉 is isotropic over F0


(


ψ〈x〉


)


, since it is a subform of ψ〈x〉 of codimension 2k−1.


Invoking Theorem 2.3 yields that i1
(


(2k + 1) × 〈1〉 ⊥ ((l − 1) · 2k) × 〈x〉
)


= 1.


However l is odd, since 2k is the highest 2-power dividing l · 2k, whereby 2k+1


divides (l − 1) · 2k. Thus 2k+1 × 〈1〉 ⊥ ((l − 1) · 2k) × 〈x〉 ≃ 2k+1 × 〈1〉 ⊗
(


〈1〉 ⊥ l−1
2 × 〈x〉


)


. Now i1
(


2k+1 × 〈1〉 ⊥ ((l − 1) · 2k) × 〈x〉
)


= 2k+1 by [EL, Theo-


rem 1.4] and [ELW, Theorem 3.5 and Remark 3.6]. Hence (2k + 1) × 〈1〉 ⊥ ((l −


1) · 2k) × 〈x〉 becomes isotropic over F0


(


2k+1 × 〈1〉 ⊥ ((l − 1) · 2k) × 〈x〉
)


, whereby


dimes


(


2k+1 × 〈1〉 ⊥ ((l − 1) · 2k) × 〈x〉
)


= dimes


(


(2k + 1) × 〈1〉 ⊥ ((l − 1) · 2k) × 〈x〉
)


by Theorem 2.3. Therefore we conclude that i1
(


(2k + 1) × 〈1〉 ⊥ ((l − 1) · 2k) × 〈x〉
)


=


2k + 1, contradicting the supposition that 2k × 〈1〉 ⊥ (l · 2k − 1) × 〈x〉 is isotropic


over F0(x)
(


ψ〈x〉


)


.


Hence 2k × 〈1〉 ⊥ (l · 2k − 1)× TP is in fact anisotropic over F (ψTP
), contradicting


the supposition that there exist k and l such that i1 (ψTP
) > 1.


Next, we prove the result for O ′. In this case, we let ψ〈x,y,−xy〉 denote (2k+1)×〈1〉 ⊥


(l · 2k − 1) × 〈x, y,−xy〉 and ψTP
be defined as above, with TP denoting the pure


trace form of O ′ here.


Again we suppose that there exist k and l such that i1 (ψTP
) > 1. Hence 2k ×〈1〉 ⊥


(l · 2k − 1) × TP is isotropic over F (ψTP
), since it is a 1-codimensional subform


of ψTP
. Since ψTP


is isotropic over F
(


ψ〈x,y,−xy〉


)


, there exists an F -place from


F (ψTP
) to F


(


ψ〈x,y,−xy〉


)


by [K, Theorem 3.3]. Thus 2k × 〈1〉 ⊥ (l · 2k − 1) × TP


is isotropic over F
(


ψ〈x,y,−xy〉


)


by [K, Proposition 3.1]. Springer’s Theorem implies


that either 2k × 〈1〉 ⊥ (l · 2k − 1) × 〈x, y,−xy〉 or (l · 2k − 1) × 〈1,−x,−y, xy〉 is


isotropic over F0(x, y)
(


ψ〈x,y,−xy〉


)


.


Suppose (l · 2k − 1) × 〈1,−x,−y, xy〉 becomes isotropic over F0(x, y)
(


ψ〈x,y,−xy〉


)


.


Hence 2n×〈1,−x,−y, xy〉 becomes hyperbolic over F0(x, y)
(


ψ〈x,y,−xy〉


)


, where 2n >


l ·2k−1. The Cassels-Pfister Subform Theorem implies that ψ〈x,y,−xy〉 is a subform


of 2n × 〈1,−x,−y, xy〉, which is clearly false.


Thus 2k ×〈1〉 ⊥ (l ·2k −1)×〈x, y,−xy〉 must be isotropic over F0(x, y)
(


ψ〈x,y,−xy〉


)


.
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However, we know that i1
(


ψ〈x,y,−xy〉


)


= 1 (this is what we proved in the first half of


the proof), whereby dimes


(


ψ〈x,y,−xy〉


)


> dimes


(


2k × 〈1〉 ⊥ (l · 2k − 1) × 〈x, y,−xy〉
)


.


Hence, 2k × 〈1〉 ⊥ (l · 2k − 1) × 〈x, y,−xy〉 is anisotropic over F0(x, y)
(


ψ〈x,y,−xy〉


)


by Theorem 2.3, contradicting the supposition that there exist k and l such that


i1 (ψTP
) > 1.


Since the above argument relies upon the fact that l is an odd number> 1, we cannot


hope to apply it to determine the first Witt index of (2k + 1)×〈1〉 ⊥ (2k − 1)×TP .


However, we recall that [LM, Proposition 3.4] and [Pu, Proposition 3.5] state that


2k×〈1〉 ⊥ (2k−1)×TP remains anisotropic over F
(


(2k + 1) × 〈1〉 ⊥ (2k − 1) × TP


)


,


where TP respectively represents the pure trace form of
(


x,y
F


)


and
(


x,y,z
F


)


and F


respectively denotes F0(x, y) and F0(x, y, z). Since 2k × 〈1〉 ⊥ (2k − 1) × TP is a


1-codimensional subform of (2k + 1) × 〈1〉 ⊥ (2k − 1) × TP , Theorem 2.3 allows us


to conclude that i1
(


(2k + 1) × 〈1〉 ⊥ (2k − 1) × TP


)


= 1, for all k. Hence, we can


incorporate into Theorem 3.19 the case where l is a 2-power, whereby we obtain:


i1
(


(2h + 1) × 〈1〉 ⊥ (l · 2k − 1) × TP


)


= 1 for all values of l.


As alluded to earlier, as an immediate consequence of Theorem 3.19 we may increase


the lower bounds on the level of our prospective composition algebras of level l ·


2k. As dimes


(


(2k + 1) × 〈1〉 ⊥ (l · 2k − 1) × TP


)


> dimes


(


〈1〉 ⊥ (l · 2k) × TP


)


for


k ≥ 1 in the quaternionic case, and for k ≥ 2 in the octonionic case, employing


Theorem 2.3 allows us to obtain such a reduction.


For example, we know that s(Q(24)) and s (Q(24)) ∈ [18, 24] by Theorem 3.9 and


Theorem 3.11, whereas for l = k = 3 we can say that s(Q′) and s(Q′) ∈ [20, 24]:


Since 20×TQ′ ≃ 4×〈1〉⊗(5 × TQ′), i1 (20 × TQ′) ≥ 4 by [EL, Theorem 1.4]. Hence,


dimes (20 × TQ′) ≤ 76. Theorem 3.19 implies that dimes (9 × 〈1〉 ⊥ 23 × TP ) = 77.


Hence, 20 × TQ′ remains anisotropic over F (9 × 〈1〉 ⊥ 23 × TP ) by Theorem 2.3,


whereby s(Q′) ∈ [20, 24].


Similarly, while we currently cannot make any stronger statement regarding Q(48)


than s (Q(48)) and s (Q(48)) ∈ [36, 48], we have that s (Q′) and s(Q′) ∈ [40, 48] for


l = 3 and k = 4.


As previously noted, Conjecture 3.18 is true in the case where l is a power of 2.


As an additional application of Theorem 3.19, we conclude by resolving one further


case of this conjecture:
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Theorem 3.20. For l = 3 and k = 1, s(O ′) = s(O ′) = l · 2k = 6.


Proof. s(O ′) ≤ l ·2k = 6 by construction. Suppose s(O ′) ≤ 5. Then, as in the proof


of Theorem 3.3, either 6×TP or 6× (〈1〉 ⊥ β) is isotropic over F (3×〈1〉 ⊥ 5×TP ),


where β is some 5-dimensional subform of TP . Hence, either dimes(6 × TP ) or


dimes(6 × (〈1〉 ⊥ β)) ≥ dimes(3 × 〈1〉 ⊥ 5 × TP ) by Theorem 2.3. However,


dimes(6 × TP ) = 32 and dimes(6 × (〈1〉 ⊥ β)) ≤ 35, whereas dimes(3 × 〈1〉 ⊥


5 × TP ) = 37 by Theorem 3.19, yielding a contradiction.
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