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Abstract


We study sums of squares, quadratic forms, and related field invariants


in a quadratic extension of the rational function field in one variable


over a hereditarily pythagorean base field.


1 Introduction


Let be given a field k such that the arithmetic properties of k and of its finite
extensions are well understood. It is natural to consider arbitrary finitely gen-
erated extensions F/k of transcendence degree n and to study the arithmetic
properties of F . Satisfactory answers for this general problem are given by
the Tsen-Lang Theory in those cases where k is finite or algebraically closed.
The kind of arithmetic properties of fields which our work is addressing are
those related to sums of squares and quadratic forms. Important field invari-
ants in this context are the pythagoras number and the u-invariant. In the
case where k is a real closed field there are important results on the values
of these invariants for function fields F/k, due to Pfister and to Elman and
Lam (see [12, Chap. 7 and 8]). These results, however, have also highlighted
some outstanding open problems.


The pythagoras number is the least upper bound on the number of squares
necessary to express an arbitrary element of a field which is positive at all
field orderings as a sum of squares. Assume that there is a common finite
upper bound for the pythagoras number of all finite extensions of the field
k. Then for any function field in one variable F/k, the pythagoras number
of F has to be finite (see (3.6) below). A special case where this applies, is
the situation where the ground field k is hereditarily pythagorean. However,
even in this case, it is an open problem whether there is a common upper
bound on the pythagoras numbers of all function fields in one variable F/k.


In characteristic different from 2, Milnor’s Exact Sequence (cf. [9, Chap.
IX, Sect. 3]) relates the quadratic form theory of the rational function field
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k(X) to the quadratic form theory of all the finite extensions of k. For
instance, this leads to Becker’s result (see (4.1) below) that k is hereditarily
pythagorean if and only if the pythagoras number of k(X) is 2.


The results contained in this article are mostly concerned with function
fields of hyperelliptic curves, that is, with quadratic extensions of a rational
function field. The techniques we use are based on the relation between
quadratic forms in the two fields of a quadratic field extension.


In [16] it is shown that, if k = R((t)) and if F is the function field of
a hyperelliptic curve C with good reduction, then p(F ) = 2. The proof is
based on the calculation of the Brauer group of the curve C. This work
inspired us to look at the problem from a purely quadratic form theoretic
point of view. Appart from giving a different proof for the main result in
[16], we obtain several results for function fields of hyperelliptic curves over a
hereditarily pythagorean field in general. As a consequence of these results,
given a function field F of a hyperelliptic curve over a field k ‘like R((t))’
–namely carrying a henselian valuation k −→ Z ∪ {∞} with hereditarily
euclidean residue field– we are able to decide now in many cases whether
p(F ) is either 2 or larger than 2. Moreover, in most of those cases we are
also able to prove that the u-invariant of such a field F is 4, by extending
a method which before was applicable only in the cases with p(F ) = 2, as
sketched in [16, p. 307].


All fields considered in this article are assumed to be of characteristic
different from 2. In fact, most results on function fields F/k obtained here
are interesting only in the case where at least the ground field k is real, in
which case all fields involved are of characteristic zero. All quadratic forms
occurring in this article are tacitly understood to be regular.


We shall assume that the reader is familiar with the basic theory of
quadratic forms over fields. References for this theory are [9] and [14]. All
information needed on function fields in one variable is largely covered by
[15], for example.


2 Preliminaries


Let K be a field of characteristic different from 2. The set of nonzero sums
of squares in K is denoted by


∑
K2. Given a field K, we denote by WK the


Witt ring of K, by IK its fundamental ideal, and further put InK = (IK)n


for n ∈ N. The torsion ideal in WK is denoted by WtK. Recall that a
quadratic form ϕ over K is torsion, if it represents a torsion element in the
Witt ring WK, which by Pfister’s Local-Global Principle (cf. [9, Chap. VIII,
Sect. 3]) is the case if and only if ϕ has trivial signature with respect to every
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ordering of K. If K is nonreal then every quadratic form over K is torsion.
Given a (regular) quadratic form ϕ over K, we denote by DK(ϕ) the set of
nonzero elements of K represented by ϕ. We say that a quadratic form ϕ
over K is universal if DK(ϕ) = K×.


Field invariants in quadratic form theory


For x ∈ K, we denote by ℓK(x) the least number r ∈ N such that x can be
written as a sum of r nonzero squares in K if such r exists, otherwise we put
ℓK(x) = ∞. With r ∈ N we write DK(r) = {x ∈ K× | ℓK(x) ≤ r}. Hence∑


K2 =
⋃


r∈N
DK(r) = {x ∈ K× | ℓK(x) < ∞}. The number


p(K) = sup {ℓK(x) | x ∈ ∑
K2} ∈ N ∪ {∞}


is called the pythagoras number of K. If p(K) = 1, then K is said to be
pythagorean. The value


s(K) = ℓK(−1)


is called the level of K. Note that ℓK(0) = s(K) + 1 ≥ p(K), with the
usual conventions for calculating with ∞. By the Artin-Schreier Criterion
[9, Chap. VIII, (1.11)], s(K) = ∞ holds if and only if K admits a field
ordering; if this is the case, the field K is said to be real, otherwise nonreal.
A famous result due to Pfister says that the level of a nonreal field is always
a power of 2 and that any 2-power is the level of some field (cf. [9, Chap. XI,
(2.2) and (2.6)]). If K is a nonreal field, then s(K) ≤ p(K) ≤ s(K) + 1, by
[9, Chap. XI, (5.6)], so in particular p(K) ∈ {2n, 2n +1 | n ∈ N}. In contrast
to this, for the real case, Hoffmann showed in [7] that any positive integer is
the pythagoras number of some uniquely ordered field.


The u-invariant of K is defined as


u(K) = sup {dim(ϕ) | ϕ anisotropic torsion form over K} ∈ N ∪ {∞}.
This definition of the u-invariant was introduced by Elman and Lam in [4].
Whenever u(K) is finite, it equals the least integer n such that every torsion
form over K of dimension strictly larger than n is isotropic. Furthermore,
by [9, Chap. XIII, (6.28)] p(K) ≤ u(K) holds for any field K except if K is
real pythagorean, in which case p(K) = 1 and u(K) = 0.


Both, the pythagoras number and the u-invariant of a given field are
in general difficult to determine. For many interesting fields it is not even
known whether these invariants are finite. For an account on known results
about these field invariants we refer to the corresponding chapters of [12].


The following is a variation of [1, (3.5)]. It will turn out to be useful
especially for showing that certain fields have u-invariant equal to 4.
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2.1 Theorem. Assume that I3K is torsion free. Let d ∈ ∑
K2 be such that


|∑K2/DK(〈1, d〉)| ≤ 2. Then u(K) ≤ u(K(
√
−d)).


Proof: Let L = K(
√
−d). For arbitrary a, b ∈ ∑


K2, we claim that the
quadratic form ϕ = 〈1, d,−a,−b〉 over K is universal. If ϕ is isotropic, this
is trivial. Suppose that ϕ is anisotropic. Then


∅ = DK(〈1, d〉) ∩ DK(〈a, b〉) = DK(〈1, d〉) ∩ aDK(〈1, ab〉) .


Since DK(〈1, ab〉) ⊆ ∑
K2 and |∑K2/DK(〈1, d〉)| ≤ 2, it follows that


a /∈ DK(〈1, d〉) and DK(〈1, ab〉) ⊆ DK(〈1, d〉). This yields the inclusion
DK(〈1, ab,−a,−b〉) ⊆ DK(ϕ). But 〈1, ab,−a,−b〉 is a torsion 2-fold Pfister
form over K, thus universal by the assumption that I3K is torsion free. Then
ϕ is universal, too.


Let now α be an arbitrary anisotropic torsion form over K of dimension
dim(α) > 4. We claim that α remains anisotropic over L. Suppose on the
contrary that αL is isotropic. Then by [9, Chap. VII, (3.1)], α contains up to
scaling the norm form 〈1, d〉 of the quadratic extension L/K. Without loss of
generality, we may thus assume that α = 〈1, d〉 ⊥ α′. If K is nonreal, then the
above claim yields that α is isotropic over K, in contradiction to the choice of
α. Assume now that K is real. Since I3K is torsion free, using [2, (3.5) and
(4.2)] we can write α′ = β ⊥ γ over K where γ is a torsion form and β is a
form such that m×β is anisotropic for any m ∈ N. Since α = 〈1, d〉 ⊥ β ⊥ γ
and γ are torsion forms over K, the same holds for 〈1, d〉 ⊥ β. Since d ∈ ∑


K2


and by the property of β, it follows that dim(β) = 2 and β = 〈−a,−b〉 for
certain a, b ∈ ∑


K2. Then α = 〈1, d,−a,−b〉 ⊥ γ, so the above claim yields
a contradiction to the assumptions that α anisotropic and dim(α) > 4.


This argument shows that u(L) ≥ u(K) whenever u(K) > 4. It remains
to consider the cases where u(L) < 4. Recall that u(L) 6= 3. Assume now
that u(L) ≤ 2. Then I2L = 0, which by [9, Chap. XI, (4.1) and (4.7)] implies
that I2K is torsion free and thus u(K) ≤ 2. Finally, if u(L) = 1, then K is
pythagorean, whence u(K) ≤ 1. ¤


We shall use the notation K(i) = K(
√
−1).


2.2 Corollary. If |∑K2/DK(2)| ≤ 2 and u(K(i))<8, then u(K)≤ u(K(i)).


Proof: If u(K(i)) < 8, then I3K(i) = 0 and thus I3K is torsion free, by [9,
Chap. XI, (4.4) and (4.7)]. Therefore the statement follows from (2.1). ¤


Values of Pfister forms over quadratic extensions


Given elements a1, . . . , an ∈ K× we denote by 〈〈a1, . . . , an〉〉 the n-fold Pfister
form 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉 over K. Given an n-fold Pfister form π over
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K, we write π′ for its pure part and π(a) = 〈a〉 ⊥ π′. We refer to the 0-fold
Pfister form 〈1〉 as the trivial Pfister form.


2.3 Theorem. Let a ∈ K and L = K(
√


a) and let π be a nontrivial Pfister


form defined over K. Then


K× ∩ DL(π) = DK(π) · DK(π(a)) .


Proof: Obvously, K× ∩ DL(π) ⊇ DK(π) · DK(π(a)). To show the converse
inclusion, let b ∈ K× ∩ DL(π). Then the Pfister form ρ = π ⊗ 〈1,−b〉
is hyperbolic over L. Therefore, the form ρ considered over K contains a
binary subform 〈c,−ac〉 with c ∈ K×. (In fact, if ρ is isotropic over K, then
it is hyperbolic and thus contains 〈1,−a,−1, a〉.) Then c ∈ DK(ρ), whence
cρ ∼= ρ and thus 〈1,−a〉 ⊆ cρ = ρ. Witt Cancellation now shows that ρ′


represents −a, i.e. ρ(a) is isotropic over K. Since ρ(a) = π(a) ⊥ −bπ, the fact
that this form is isotropic just means that b ∈ DK(π) · DK(π(a)). ¤


At least for 1-fold Pfister forms (2.3) is common knowledge.


2.4 Corollary. Let a, b ∈ K and L = K(
√


a). Then


K× ∩ DL(〈1, b〉) = DK(〈1, b〉) · DK(〈1, ab〉) .


Proof: By (2.3), we have K× ∩ DL(〈1, b〉) = DK(〈1, b〉) · DK(〈a, b〉). As
DK(〈a, b〉) = bDK(〈1, ab〉) and b ∈ DK(〈1, b〉), the statement follows. ¤


For later use, we explicitly state the following special case.


2.5 Corollary. Let a ∈ K and L = K(
√


a). Then


K× ∩ DL(2) = DK(2) · DK(〈1, a〉) .


Proof: This is what (2.4) yields for b = 1. ¤


Ramification of torsion forms


Given a discrete rank-one valuation w : K −→ Z∪{∞} with residue field κ of
characteristic different from 2 and an element u ∈ K of valuation w(u) = 1,
one defines the first and second residue homomorphisms ∂1, ∂2 : WK −→ Wκ
with respect to w and u (see [9, p. 147]). The quadratic forms over κ,
determined up to Witt equivalence, which represent the images under ∂1


and ∂2 of a given form over K, are called its first and second residue forms,
respectively. A quadratic form over K is then said to be unramified in w if
its Witt equivalence class lies in the kernel of ∂2, otherwise ramified in w.
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Actually, the kernel of ∂2 and therefore the notion of being ramified in w
depend on the valuation w, but not on the choice of the uniformiser u.


We are essentially concerned with the k-valuations of the rational function
field E = k(X) over a real field k. Apart from the degree valuation, any such
valuation is associated to a (unique) monic irreducible polynomial f ∈ k[X],
which then also is our canonical choice for the uniformising element for this
valuation. We say that a quadratic form over k(X) is unramified over k, if
it is unramified in any k-valuation of k(X).


2.6 Lemma. Let k be a real field and ϕ a torsion form over k(X). Let w
be a k-valuation on k(X) with real residue field κw. If n ∈ N is such that


p(κw) ≤ 2n, then 2n × ϕ is unramified at w.


Proof: Since p(κw) ≤ 2n, the torsion part of Wκw is annihilated by 2n


(cf. [9, Chap. XI, (5.6)]). Therefore the second residue homomorphism ∂2 :
Wk(X) −→ Wκw with respect to w and an arbitrary uniformising element
u is trivial on 2n · Wt k(X). ¤


2.7 Lemma. Let k be a real field. Assume that n ∈ N is such that p(K) ≤ 2n


holds for any finite real extension K/k. Let ϕ be a torsion form over k(X).
Then the form 2n×ϕ over k(X) is either hyperbolic, or it is ramified at some


k-valuation associated to a nonreal monic irreducible polynomial in k[X].


Proof: Assume that 2n × ϕ is unramified at every k-valuation of E = k(X)
which is associated to a nonreal monic irreducible polynomial. Observe that
the residue field of the degree valuation is the real field k. Using the previous
lemma, it then follows that 2n×ϕ is unramified over k. So, by Milnor’s Exact
Sequence (cf. [9, p. 306]), there exists a form ρ over k such that 2n×ϕ = ρE .


We claim that ρ is of the shape ρ = 2n × ψ for some form ψ over k. As
for n = 0 there is nothing to show, we may assume n ≥ 1. Let π = 2n × 〈1〉.
Since ρE = 2n × ϕ, the form ρ becomes hyperbolic over E(π), the function
field of π over E. On the other hand, E(π) is a rational function field in
one variable over k(π), and thus the scalar extension Wk(π) −→ WE(π) is
injective. Therefore ρ becomes hyperbolic already over k(π). As the kernel
of the scalar extension map Wk −→ Wk(π) is the ideal generated by π (cf.
[14, Chap. 4, (5.4)]), it follows that, over k, we have ρ = π ⊗ ψ = 2n × ψ for
some form ψ, as we claimed.


Now, since ρE = 2n × ϕ is a torsion form over E, it follows that ρ and
ψ are torsion forms over k. However, the hypothesis in particular contains
that p(k) ≤ 2n, so that Wtk is 2n-torsion. Therefore ρ = 2n ×ψ is hyperbolic
over k. Thus 2n × ϕ = ρE is also hyperbolic. ¤
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3 Pythagoras numbers of function fields


By a function field in one variable over k we mean a finitely generated field
extension F/k of transcendence degree one where k is relatively algebraically
closed in F .


3.1 Lemma. If F/k is a finitely generated, non-algebraic extension, then


p(F ) ≥ 2.


Proof: Let n be the transcendence degree of F/k. Then n ≥ 1 and F
is k-isomorphic to a finite extension of E = k(X1, . . . , Xn). Now, E is not
pythagorean, because 1+X2


1 is not a square in E. The Diller-Dress Theorem
[9, Chap. VIII, (5.7)] then asserts that F is not pythagorean either. ¤


3.2 Proposition. Let f ∈ k[X, Y ] be an irreducible polynomial which is not


constant in Y and let n = degY (f). Let F be the quotient field of k[X, Y ]/(f).
Then 2 ≤ p(F ) ≤ n · p(k(X)).


Proof: The first inequality is valid by (3.1), and the second follows from the
fact that p(L) ≤ [L : K] · p(K) holds for any finite field extension L/K (see
[12, p. 103]). ¤


For certain function fields in one variable F/k one can bound p(F ) from
below by p(k(X)).


3.3 Proposition. Let F/k be a function field in one variable. If F has a


divisor of odd degree, then p(F ) ≥ p(k(X)) and u(F ) ≥ u(k(X)).


Proof: If there exists a divisor of odd degree over F , then there is a k-
valuation v on F such that, with Fv denoting the residue field, the residue
degree [Fv : k] is odd. Let g denote the genus of F . We choose an odd
number m with (m − 1) · [Fv : k] ≥ 2g. We compare the divisors D = m · v
and D′ = (m − 1) · v. For f ∈ F let (f) denote the principal divisor over
F defined by f . For any divisor C on F let L(C) = {f ∈ F | (f) ≥
−(D)} ∪ {0}. Since both divisors D and D′ are of degree larger than 2g− 2,
the Riemann-Roch theorem yields that dim(L(D)) = deg(D) − g + 1 and
dim(L(D′)) = deg(D′) − g + 1, showing that L(D′) ( L(D). We choose an
element z ∈ L(D)\L(D′). Then (z) ≥ −m ·v while (z) 6≥ −(m−1) ·v, which
implies that v is the only pole of z, and that this pole is of order −v(z) = m.
By [15, Chap. I, (4.11)], we have [F : k(z)] = [Fv : k] · m which is an odd
number. Therefore, Springer’s Theorem [9, Chap. VII, (2.7)] implies that
p(F ) ≥ p(k(z)) as well as u(F ) ≥ u(k(z)). Obviously, k(z) is k-isomorphic
to k(X). ¤
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3.4 Remark. In quadratic form theory, there are several invariants i of fields
K which are of the type


i(K) = sup{dim(ϕ) | ϕ anisotropic form over K satisfying P} ∈ N ∪ {∞}


where P is a certain property of quadratic forms which is conserved under
extending the fields of scalars (cf. [8, Sect. 3]). The u-invariant and the
pythagoras number are examples of such invariants, corresponding to the
property of being a torsion form and the property of having a diagonalisation
〈1, . . . , 1,−s〉 with s a sum of squares, respectively. Since the argument in
the proof of (3.3) is based on Springer’s Theorem for quadratic forms and odd
degree extensions, in this situation the analogous inequality can be obtained
in the same way for any field invariant of this type.


The last two statements relate the pythagoras number of a general func-
tion field in one variable F/k to that of the rational function field k(X). The
next theorem relates the pythagoras number of k(X) to sums of squares in
finite extensions of k. It extends Pfister’s result [11, Satz 2].


By a 2-extension we mean an arbitrary separable algebraic field extension
F/E such that the Galois group of the Galois closure of this extension is a 2-
group. A finite 2-extension F/E is characterised by the existence of a tower
of fields E = F0 ⊆ F1 ⊆ · · · ⊆ Fr = F in which Fi/Fi−1 is a quadratic
extension for i = 1, . . . , r.


3.5 Theorem. Let k be a real field and n ∈ N. The following are equivalent:


(i) p(K) < 2n+1 for any finite real extension K/k.


(ii) s(K) ≤ 2n for any finite nonreal extension K/k.


(iii) p(k(X)) ≤ 2n+1.


Proof: See [11, Satz 2] and [9, p. 397] for the equivalence (ii ⇔ iii).


(ii ⇒ i) Assume K/k is a finite real extension with p(K) ≥ 2n+1. So
there is some element a ∈ ∑


K2 with ℓK(a) = 2n+1. Then K(
√−a) is a finite


nonreal extension of k with s(K(
√−a)) = 2n+1.


(i ⇒ ii) Assume that K/k is a finite nonreal extension with s(K) > 2n.
Since the level of a nonreal field is a power of 2, this means that s(K) ≥ 2n+1.
Let M be the normal closure of K/k. Let S be a 2-Sylow subgroup of
Gal(M/k) which contains a 2-Sylow subgroup S ′ of Gal(M/K). Let L = MS,
the fixed field of S in M . Then L/k is of odd degree and therefore L is a
real field, too. Since KL is fixed by S ′, the extension KL/K has odd degree,
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and therefore s(KL) = s(K) ≥ 2n+1. Moreover, M/L is a 2-extension.
As KL ⊆ M , it follows that KL/L is a finite 2-extension, so there is a
finite tower of fields L = K0 ⊆ K1 ⊆ · · · ⊆ Kr = KL where Ki/Ki−1 is a
quadratic extension for i = 1, . . . , r. Since L is real while KL is nonreal, we
can choose m ∈ {1, . . . , r} such that Km−1 is real and Km nonreal. We write
Km = Km−1(


√−a) with a ∈ ∑
Km−1


2. Since s(Km) ≥ s(KL) ≥ 2n+1, we
conclude that ℓKm−1


(a) ≥ 2n+1. Therefore Km−1 is a finite real extension of
k with p(Km−1) ≥ 2n+1. ¤


3.6 Remark. If k is a field such that there is a common finite upper bound
on the pythagoras numbers of all finite extensions of k, then p(F ) is finite for
every function field in one variable F/k. In fact, if k is nonreal this is trivial,
and in the real case this follows from (3.5) and (3.2). This fact is probably
known, but we could not find a reference for it.


Given f ∈ k[X] over a field k, we say that a root α of f is real or nonreal,
if the field k(α) has the corresponding property. If f is irreducible, then we
may also say that f is real or nonreal, respectively, meaning that the root
field k[X]/f(X) is real or nonreal. It follows from [9, Chap. X, (2.13)] that
a monic irreducible polynomial f ∈ k[X] is nonreal if and only f is a sum of
squares in k(X).


3.7 Proposition. Let k be a field and n ∈ N such that s(K) ≤ 2n holds for


any finite nonreal extension of K/k. Let F be the function field of Y 2 = f(X)
over k where f ∈ k[X] is a monic polynomial with only nonreal roots. Then


p(F ) ≤ 2n+1.


Proof: We may assume that k is real. By (3.5) we have p(k(X)) ≤ 2n+1. It
follows from the assumptions on the polynomial f that it is a sum of squares
in k(X). Therefore F = k(X)(


√
f) is a totally positive quadratic extension


of k(X). Then p(k(X)) ≤ 2n+1 implies that p(F ) ≤ 2n+1 (cf. [5, (2.18)]). ¤


Using (3.5) we obtain the following technical lemma, which will turn out
to be useful in the study of quadratic extensions of a rational function field.


3.8 Lemma. Let k be a real field and let n ∈ N be such that p(K) < 2n+1


for any finite real extension K/k. Let F = k(X)(
√


f) with f ∈ k[X]. Then∑
F 2 = DF (2n+1) · (k(X)× ∩∑


F 2). Moreover, any class in
∑


F 2/DF (2n+1)
is represented by a polynomial g ∈ k[X] with only real roots.


Proof: Let E = k(X). By the hypothesis and (3.5), we have p(E) ≤ 2n+1.
Let ξ ∈ ∑


F 2. Then NF/E(ξ) ∈ ∑
E2 = DE(2n+1). By the Norm Principle


([5, (2.13)]), we have ξ ∈ E× · DF (2n+1), so there is some h ∈ E× such
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that ξ · DF (2n+1) = h · DF (2n+1). Obviously, we can choose such h in k[X],
and we additionally obtain that h ∈ ∑


F 2. We now factorise h = g · h′


where g, h′ ∈ k[X] are such that g has only real roots while h′ is monic
and has only nonreal roots. Then h′ ∈ ∑


E2 = DE(2n+1) and therefore
ξ · DF (2n+1) = h · DF (2n+1) = g · DF (2n+1). ¤


3.9 Proposition. Let k be a real field. Assume that n ∈ N is such that


p(K) ≤ 2n for any finite real extension K/k. Let F = k(X)(
√


f) where


f ∈ k[X] is a nonzero square-free polynomial. Let g ∈ k[X] be a nonzero


polynomial with only real roots, Then g ∈ Dk(X)(2
n × 〈1, f〉) if and only if


g ∈ ∑
F 2 and g(α) ∈ Dk(α)(2


n) for every nonreal root α of f .


Proof: Note that Dk(X)(2
n × 〈1, f〉) ⊆ ∑


F 2. Hence, for both directions
we may assume that g ∈ ∑


F 2. Consider the form ϕ = 〈1, f,−g,−fg〉 over
E = k(X). This is a torsion form, because g ∈ E×∩∑


F 2 =
∑


E2 +f
∑


E2.
Now, g ∈ DE(2n × 〈1, f〉) if and only if 2n × ϕ is hyperbolic over E, and by
(2.7) this is equivalent to having that 2n×ϕ is unramified at every k-valuation
associated to a nonreal monic irreducible polynomial in k[X]. Moreover, since
g has only real roots, the only nonreal monic irreducible polynomials in which
2n×ϕ might possibly be ramified are the factors of f . So, g ∈ DE(2n×〈1, f〉)
if and only if 2n × ϕ is unramified at p for every minimial polynomial p of
a nonreal root α of f . Now given such α and p, by definition the second
residue homomorphism ∂2 with respect to the valuation given by p maps the
class of 2n × ϕ in WE to the class of a form similar to 2n × 〈1,−g(α)〉 in
Wk(α); this class is trivial if and only if g(α) ∈ Dk(α)(2


n). ¤


3.10 Theorem. Let k be a real field and n ∈ N such that p(K) ≤ 2n holds


for any finite real extension K/k. Let F = k(X)(
√


f) where f ∈ k[X] is a


nonzero square-free polynomial. Let K1, . . . , Kr denote the root fields of the


distinct nonreal irreducible factors of f . Then p(F ) ≤ 2n+2 and


|∑F 2/DF (2n+1)| ≤
r∏


i=1


|K×


i /DKi
(2n)| .


In particular, if f has only real roots, then p(F ) ≤ 2n+1.


Proof: Let f1, . . . , fr be the distinct nonreal monic irreducible factors of f
and α1, . . . , αr corresponding roots, so that Ki = k(αi) for 1 ≤ i ≤ r. By
(3.8), any class of


∑
F 2/DF (2n+1) is represented by a polynomial g ∈ k[X]


with only real roots. By (3.9), for such g we have g ∈ Dk(X)(2
n × 〈1, f〉) ⊆


DF (2n+1) provided that g(αi) ∈ DKi
(2n) for 1 ≤ i ≤ r. We thus can define an


injective homomorphism
∑


F 2/DF (2n+1) −→ ∏r
i=1 K×


i /DKi
(2n) by sending
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the class of a polynomial g as above to (g(α1)DK1
(2n), . . . , g(αr)DKr


(2n)).
This yields the bound on |∑F 2/DF (2n+1)|. Moreover, if f has only real
roots, then we obtain that


∑
F 2 = DF (2n+1), i.e. p(F ) ≤ 2n+1. ¤


4 Hereditarily pythagorean fields


A field k is said to be hereditarily pythagorean, if k is real and if any finite real
extension of k is pythagorean. Such fields have been characterised by Becker
in [3] in various ways. In [3, Chap. III, Theorem 1] Becker showed that a real
field k is hereditarily pythagorean if and only if the absolute Galois group of
k(i) is abelian. The following characterisations of hereditarily pythagorean
fields are contained in [3, Chap. III, Theorems 1 and 4], and they can be
retrieved from (3.5).


4.1 Theorem (Becker). For a real field k the following are equivalent:


(i) k is hereditarily pythagorean.


(ii) Every finite nonreal extension of k contains k(i).


(iii) p(k(X)) = 2.


Proof: This follows immediately from (3.5). ¤


4.2 Corollary. Let F be the function field of a hyperelliptic curve over a


hereditarily pythagorean field. Then 2 ≤ p(F ) ≤ 4.


Proof: By assumption, F is k-isomorphic to a quadratic extension of k(X),
so the statement follows from (3.2) and (4.1). ¤


4.3 Corollary. There exists a function field in one variable F/k with a


divisor of odd degree and with p(F ) = 2 if and only if either k is hereditarily


pythagorean or if −1 ∈ k×2.


Proof: Suppose F is a function field in one variable over k with p(F ) = 2 and
having a divisor of odd degree. By (3.3) we have 2 ≤ p(k(X)) ≤ p(F ) = 2,
whence p(k(X)) = 2. In the case where k is real, the statement thus follows
from (4.1). On the other hand, if k is nonreal, then p(k(X)) = 2 is equivalent
with −1 ∈ k×2. In fact, given any a ∈ k×, the element a+X2 is not a sum of
2 squares in k(X) unless −1 ∈ k×2 or a ∈ k×2, by the Second Representation
Theorem [9, Chap. IX, (2.1)]. ¤
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4.4 Question. Assume that −1 /∈ k×2 and that there exists a function field


in one variable F/k such that p(F ) = 2. Does this imply that k is hereditarily


pythagorean?


A field K is called euclidean if it is pythagorean and uniquely ordered,
which is actually equivalent to saying that K×2 ∪ {0} is a field ordering of
K. If K is real and every finite real extension of K is euclidean, then K is
said to be hereditarily euclidean.


4.5 Theorem (Elman-Wadsworth). Let F/k be any function field in one


variable. Then u(F ) = 2 if and only if k is hereditarily euclidean or heredi-


tarily quadratically closed. Otherwise u(F ) ≥ 4.


Proof: Using (3.1), we have 2 ≤ p(F ) ≤ u(F ). Note that, on the one hand,
u(F ) ≤ 2 is equivalent with I2F being torsion free, on the other hand, k is
(hereditarily) euclidean or (hereditarily) quadratically closed if and only if
k(
√
−1) is (hereditarily) quadratically closed. Hence, the claim follows from


[6, Theorem, p. 479] and the fact that u(F ) 6= 3 [9, Chap. XI, (6.8)]. ¤


4.6 Corollary. Let k be hereditarily euclidean. Then p(F ) = u(F ) = 2 for


any function field in one variable F/k.


Proof: This follows from the proof of (4.5). ¤


We now obtain a characterisation of hereditarily euclidean fields. Note
that the statement could also be obtained using Theorems 1 and 2 in [17].


4.7 Theorem. Let F be the function field of the conic X2 + Y 2 + 1 = 0
over k. Then p(F ) = 2 if and only if either −1 ∈ k×2 or if k is hereditarily


euclidean. In any other case p(F ) = 3.


Proof: By (3.1) and since s(F ) ≤ 2, we have 2 ≤ p(F ) ≤ s(F ) + 1 ≤ 3. If k
is hereditarily euclidean, then (4.6) implies that p(F ) = 2. If s(k) ≤ 2, then
F is actually a rational function field in one variable over k, and therefore
p(F ) = s(k) + 1, and this corresponds to the claim.


Suppose now that −1 /∈ k×2 and k is not pythagorean. Then we may
choose an element c ∈ k such that 1+c2 /∈ k×2. Let ζ = c+


√
−(1 + X2) ∈ F .


From the Second Representation Theorem [9, Chap. IX, (2.1)], using that
〈1, 1〉 is anisotropic over k, we obtain that NF/k(X)(ζ) = 1 + c2 + X2 is not a
sum of 2 squares in k(X). On the other hand, the norm of a sum of 2 squares
is also a sum of 2 squares, by [9, Chap. VII, (5.1)]. Hence, ζ is not a sum of
2 squares in F .


So far, we have established the statement in particular for all cases where
k is either nonreal or hereditarily euclidean. Assume from now on that k is
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real and not hereditarily euclidean. By [3, Chap. III, Lemma 5], then either
k is itself not euclidean, or it is not hereditarily pythagorean.


Suppose k is not hereditarily pythagorean. Then there exists an algebraic
element α over k such that k(α) is real and 1 + α2 is not a square in k(α).
Let g ∈ k[X] be the minimal polynomial of α over k. We claim that g is
not a sum of 2 squares in F . Suppose on the contrary, that g ∈ DF (2). By
(2.5), then g ∈ Dk(X)(2) ·Dk(X)(〈1,−(1+X2)〉). This means that there exists
a polynomial h ∈ k[X] with only nonreal roots such that the 2-fold Pfister
form 〈〈(1+X2), gh〉〉 over k(X) is hyperbolic. In particular, 〈〈(1+X2), gh〉〉 is
unramified with respect to the valuation associated to g. Since g has a real
root α, it is clear that h is not divisible by g. However, the second residue
form of 〈〈(1+X2), gh〉〉 with respect to g is the form 〈1,−(1+α2)〉 over k(α),
and this form is anisotropic because 1+α2 /∈ k(α)×2. This is a contradiction.


Suppose finally that k is hereditarily pythagorean but not euclidean.
Then there exists t ∈ k× such that ±t /∈ k×2 =


∑
k2. So the 2-fold Pfis-


ter form 〈〈−1, t〉〉 is anisotropic and not isometric to 〈〈−1,−1〉〉. Now, since
〈〈−1,−1〉〉 is the only anisotropic 2-fold Pfister form over k splitting over F ,
it follows that 〈〈−1, t〉〉 is anisotropic over F , whence t /∈ DF (2). ¤


The remainder of this section is focused on conditions on function fields
of hyperelliptic curves F/k which allow to conclude that p(F ) = 2.


4.8 Proposition. Let k be a hereditarily pythagorean field. Let f ∈ k[X]
be a nonzero square-free polynomial and F = k(X)(


√
f). Let g ∈ k[X] be a


nonzero polynomial with only real roots. Then g ∈ Dk(X)(〈1, f〉) if and only


if g ∈ ∑
F 2 and g(α) ∈ k(α)×2 for any nonreal root α of f .


Proof: This is what (3.9) yields for n = 0. ¤


4.9 Corollary. Let k be a hereditarily pythagorean field. Let f ∈ k[X] be a


nonzero square-free polynomial and F = k(X)(
√


f). If g(α) ∈ k(α)×2 holds


for any nonreal root α of f and any polynomial g ∈ k[X] ∩ ∑
F 2 with only


real roots, then p(F ) = 2.


Proof: Given any polynomial g ∈ k[X] ∩ ∑
F 2 with only real roots, using


(4.8) we obtain that g ∈ Dk(X)(〈1, f〉) ⊆ DF (2). Therefore (3.8) applied with
n = 0 yields that


∑
F 2 = DF (2). ¤


The following is a generalisation of [17, Theorem 3], the case where F is
real and the function field of a conic over k.


4.10 Corollary. Let k be a hereditarily pythagorean field. Let F be the


function field of the curve Y 2 = f(X) over k where f ∈ k[X]. If f has only


real roots, or if f is monic and has only nonreal roots, then p(F ) = 2.
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Proof: In the first case, this follows from (4.9), in the second from (3.7). ¤


A field K is said to be ∞-pythagorean if K2n


+ K2n


= K2n


holds for any
n ∈ N. We say that K is hereditarily ∞-pythagorean, if K is real and if any
finite real extension of K is ∞-pythagorean. By [3, Chap. III, Theorem 9],
a field K is hereditarily ∞-pythagorean as soon as L4 + L4 = L4 holds for
any finite real extension L/K. A herditarily pythagorean field does not need
to be ∞-pythagorean, as a simple example in [3, p. 109] shows.


4.11 Lemma. Let k be a hereditarily ∞-pythagorean field. Let g ∈ k[X] be


a polynomial with only real roots and such that g ∈ ∑
k(X)2 + X


∑
k(X)2


.


Let a, b ∈ k. Then g(a2 ± b2i) ∈ k(i)2.


Proof: Since g is represented over k(X) by a multiple of the form 〈1, X〉, it
follows from [12, Chap. 1, (2.3)] that g = h1 + Xh2 for certain polynomials
h1, h2 ∈ k[X] which are sums of squares in k[X]. We may assume that g is
square-free, so that h1 and h2 are relatively prime. If we show that g(a2+b2i)
is a square in k(i), then the same follows for its conjugate g(a2 − b2i). The
leading coefficient of g is a sum of squares in k, hence a square. It is therefore
sufficient to show that g̃(a2 + b2i) ∈ k(i)2 holds for any monic irreducible
factor g̃ of g.


Given such g̃, we fix a root ϑ of g̃ and observe that the field K = k(ϑ)
is real and thus ∞-pythagorean. Note that g̃(c) = NK(i)/k(i)(c − ϑ) for any
c ∈ k(i). Since 0 = g(ϑ) = h1(ϑ) + ϑh2(ϑ) and both h1(ϑ) and h2(ϑ) are
squares in K, we have −ϑ ∈ K2. Since K is ∞-pythagorean, there exist
γ0, γ1 ∈ K such that 2γ2


0 = a2 − ϑ and γ4
1 = γ4


0 + 1
4
b4, and further β0 ∈ K


with β2
0 = γ2


0 + γ2
1 . If β0 = 0, then K being real implies that a = b = ϑ = 0,


whence g̃ = X and g̃(a2 + b2i) = 0 ∈ k(i)2. Suppose now that β0 6= 0 and
put β1 = (2β0)


−1b2 ∈ K. Then β4
0 − 1


4
b4 = 2γ2


0β
2
0 and thus


(β0 + iβ1)
2 = (β2


0 − β2
1) + 2β0β1i = 2γ2


0 + b2i = a2 + b2i − ϑ ,


whence g̃(a2 + b2i) = NK(i)/k(i)(a
2 + b2i − ϑ) ∈ k(i)2. ¤


4.12 Theorem. Let k be a hereditarily ∞-pythagorean field. Let f ∈ k[X]
be a monic polynomial such that every root of f different from zero lies in


k(i) \ k and is of the form α2
0 ± α2


1i with α0 ∈ k and α1 ∈ k×. Then the


function field F of the curve Y 2 = f(X) has pythagoras number p(F ) = 2.


Proof: Let E = k(X), so that F = E(
√


f). Note that f ∈ ∑
E2 ∪ X


∑
E2.


Let g ∈ k[X] ∩ ∑
F 2 be a polynomial with only real roots. Then we have


g ∈ E× ∩ ∑
F 2 =


∑
E2 + f


∑
E2 ⊆ ∑


E2 + X
∑


E2. For any nonzero root
α of f , we have k(α) = k(i) and thus g(α) ∈ k(α)×2, by (4.11). In view of
(4.9), this shows that p(F ) = 2. ¤
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4.13 Example. Let k be a hereditarily ∞-pythagorean field. Then the
function field of the curve Y 2 = X(X2 + 1) over k has pythagoras number 2,
by (4.12).


4.14 Question. Let k be a field with −1 /∈ k×2 and such that the function


field of Y 2 = X(X2 + 1) has pythagoras number 2. Then k is hereditarily


pythagorean, by (4.3). Is k necessarily hereditarily ∞-pythagorean?


5 Henselian valued fields


Let k̃ denote the separable closure of k. If k is of characteristic zero, in par-
ticular if k is real, then k̃ is just the algebraic closure of k. Given a valuation
v on k, we denote by kv the residue field, by Ov or Ov,k the corresponding
valuation ring in k, and by Γv or Γv,k the value group of v on k.


The next three statements are inspired by a simple argument we learned
from S. Tikhonov, showing that tX is a sum of 3 but not a sum of 2 squares
in the function field of the curve Y 2 = (tX − 1)(X2 + 1) over R((t)) (see also
[16, (3.11)]). D. Leep gave us the idea how to generalise this example.


5.1 Proposition. Let v be a valuation on k. Let E = k(X) and F = E(
√


f)
with f ∈ k[X] such that v(f) = 0. If n ∈ N is such that s(kv) ≥ 2n and


ℓkv(X)(−f ) ≥ 2n, then v(E× ∩ DF (2n)) ⊆ 2Γv. Moreover, if kv is real and


−f /∈ ∑
kv(X)2


, then v(E× ∩ ∑
F 2) ⊆ 2Γv.


Proof: Let n ∈ N be such that s(kv) ≥ 2n and ℓkv(X)(−f) ≥ 2n. So, the


forms 2n × 〈1〉 and (2n − 1) × 〈1〉 ⊥ 〈f〉 are anisotropic over kv. Therefore
we have v(DE(2n)) ⊆ 2Γv as well as v(DE(ϕ)) ⊆ 2Γv for the quadratic form
ϕ = 〈f〉 ⊥ (2n − 1) × 〈1〉 over k. Since E× ∩ DF (2n) = DE(2n) · DE(ϕ) by
(2.3), it follows that v(E× ∩DF (2n)) ⊆ 2Γv. This proves the first part of the
statement. The second claim follows immediately from the first. ¤


5.2 Corollary. Let v be a valuation on k. Let F = k(X)(
√


f) where f ∈
k[X] is such that v(f) ∈ 2Γv. Let c ∈ k× and h ∈ k[X] be such that f = c2h
and v(h) = 0. Let n ∈ N be such that s(kv) ≥ 2n and ℓkv(X)(−h) ≥ 2n. Then


either v(k(X)× ∩ ∑
F 2) ⊆ 2Γv or p(F ) > 2n.


Proof: By the hypotheses and (5.1), we have v(k(X)× ∩ DF (2n)) ⊆ 2Γv.
Thus, if p(F ) ≤ 2n, i.e.


∑
F 2 = DF (2n), then v(k(X)× ∩ ∑


F 2) ⊆ 2Γv. ¤


5.3 Theorem. Let v be a valuation on k with real residue field kv. Let


t, c ∈ k× with 0 < v(t) ≤ v(c) and v(t) /∈ 2Γv. Let h(X) ∈ Ov[X] be a monic
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polynomial with only nonreal roots and let n ∈ N be such that ℓkv
(h(X)) ≥ 2n.


Let F be the function field of the curve Y 2 = (cX − 1)h(X) over k. Then F
is real and p(F ) > 2n.


Proof: Note that h is a sum of squares in k[X]. It is clear that F is real.
Let b = 2t + t2 + cX. Then v(b) = v(t) /∈ 2Γv, whence b /∈ DF (2n) by
(5.1). However, b = (1 + t)2 + Y 2h−1 is a sum of squares in F . Therefore
p(F ) ≥ ℓF (b) > 2n. ¤


Assume now that the valuation v on k is henselian. Then v has a unique
extension to k̃, which we also denote by v; the value group Γv,k then is a
subgroup of Γv,ek. Note that, if kv is hereditarily pythagorean, then so is k.


Often we will assume kv real closed, or at least hereditarily euclidean.
The standard example for this situation is k = R((t)), the field of Laurent
series with real coefficients, where the valuation v : k −→ Z ∪ {∞} is trivial
on R and takes t to 1; in this case, we have kv = R and Γv,k = Z.


Any valuation v on k can be extended to k(X) in such way that one
has v(a0 + a1X + · · ·+ anX


n) = min{a0, . . . , an} for arbitrary a0, . . . , an ∈ k,
n ∈ N. This extension to k(X), uniquely determined by this formula, is called
the Gauss extension, and is again denoted by v. It has value group Γv,k(X) =
Γv,k and residue field kv(X). Obviously, this extension to k(X) depends on
the choice of the variable X, i.e. it is not stable under k-automorphisms of
k(X). In the case where k = R((t)), the valuation may even be extended to a
valuation on the field R(X)((t)), which contains the field k(X) = R((t))(X),
and such that the valuation is trivial on the subfield R(X), which is also the
residue field of v on R(X)((t)).


5.4 Lemma. Let v be a henselian valuation on k. Let g ∈ k[X] and α ∈ k̃
with v(α) = 0. If for every root ϑ ∈ k̃ of g with v(ϑ) = 0 one has ϑ 6= α in


k̃v, then v(g(α)) = v(g(X)).


Proof: Let ϑ ∈ k̃ be a root of g. We claim that v(X − ϑ) = v(α − ϑ).
This claim obviously implies the statement. Note that v(X) = v(α) = 0.
Therefore the claim is obvious if v(ϑ) 6= 0. Suppose now that v(ϑ) = 0.
Then it is clear that v(X − ϑ) = 0 and v(α − ϑ) ≥ 0. Now ϑ 6= α yields the
equality v(α − ϑ) = 0 = v(X − ϑ). ¤


Let v be a henselian valuation on k. We say that a ∈ k̃ has good reduction


(with respect to v and k) if v(a) = 0 and [kv(a) : kv] = [k(a) : k].


5.5 Theorem. Let v be a henselian valuation on k with hereditarily euclidean


residue field kv. Let E = k(X) and F = E(
√


f) where f ∈ k[X] is a


nonzero polynomial such that all nonreal roots of f have good reduction with
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respect to v. Then E× ∩ ∑
F 2 ∩ v−1(2Γv) ⊆ DF (2) and |∑F 2/DF (2)| ≤


|Γv/(2Γv ∪ (v(f) + 2Γv))|.


Proof: Let g ∈ E×∩∑
F 2 with v(g) ∈ 2Γv be given. Since E is the quotient


field of k[X], in order to show that g ∈ DF (2), we may assume that g is
a polynomial in X with no multiple roots. Since for the nonreal part g∗ of
g we have g∗ ∈ DE(2) ∩ v−1(2Γv), we may assume g∗ = 1, that is, g has
only real factors. Let α be a nonreal root of f . Since, by the hypothesis, α
has good reduction with respect to v, we have v(α) = 0, k(α) ⊇ k(i), and
kv(α) ⊇ kv(i). On the other hand, for any root ϑ of g with v(ϑ) = 0, the
residue class ϑ generates a real extension of kv, so that in particular ϑ 6= α.
Therefore (5.4) yields v(g(α)) = v(g). Note that kv(α) is quadratically closed,
because kv is hereditarily euclidean. Therefore k(α)×2 = k(α)∩v−1(2Γv,k(α)).
Since v(g) ∈ 2Γv, it follows that g(α) is a square in k(α). Since this holds for
any nonreal root α of f , using (4.8) we conclude that g ∈ DE(〈1, f〉) ⊆ DF (2).
This shows the inclusion which is claimed in the statement. Since f ∈ F×2


we even obtain that E×∩∑
F 2∩v−1(2Γv ∪ (v(f)+2Γv)) ⊆ DF (2). Observe


that the quotient
∑


F 2∩E×/
∑


F 2∩E×∩v−1(2Γv∪(v(f)+2Γv)) injects into
Γv/(2Γv ∪ (v(f) + 2Γv)). By the last inclusion, the same quotient surjects
onto


∑
F 2 ∩E×/DF (2)∩E×. Moreover, DF (2)∩E× = DF (2)∩∑


F 2 ∩E×,
thus (


∑
F 2 ∩E×)/(DF (2)∩E×) is isomorphic to (


∑
F 2 ∩E×)DF (2)/DF (2).


Now recall that
∑


F 2 = DF (2)(E× ∩ ∑
F 2), by (3.8) applied with n = 0.


This yields the claimed estimate. ¤


5.6 Corollary. Assume that k carries a henselian valuation v with hered-


itarily euclidean residue field kv. Let F = k(X)(
√


f) where f ∈ k[X] is a


polynomial with v(f) ∈ 2Γv and such that all nonreal roots of f are of good


reduction with respect to v. We may write f = c2h with c ∈ k× and h ∈ k[X]
such that v(h) = 0. If −h is not a sum of squares in kv[X], then p(F ) = 2.


Proof: Replacing f by h, which does not change the function field F , we
may assume that v(f) = 0 and that −f is not a square in kv[X], thus also
not in E = k(X). Then v(E× ∩ ∑


F 2) ⊆ 2Γv by (5.1) and therefore (5.5)
yields the inclusion E× ∩ ∑


F 2 ⊆ DF (2). Since p(E) = 2, it follows that∑
F 2 = DF (2)(E× ∩ ∑


F 2) = DF (2). Therefore p(F ) = 2. ¤


We now focus on function fields over fields k carrying a henselian valuation
with value group Z and with hereditarily euclidean residue field. The typical
example for such k is still the field R((t)). The aim is to determine the values
of u(F ), p(F ), and |∑F 2/F×2| for function fields of hyperelliptic curves F/k,
if possible. To deal with the u-invariant, we need some preparation.
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5.7 Proposition. Let k be a field carrying a henselian valuation v with value


group Z and such that the residue field kv is hereditarily quadratically closed


of characteristic zero. Let F be a function field in one variable over k. Then


u(F ) = 4.


Proof: Observe that k satisfies the assumption of (4.5), whence u(F ) ≥ 4.
To prove the converse inequality, we first assume that kv is algebraically
closed of characteristic zero. Then k is a C1-field by [10], and therefore F is
a C2-field by Tsen-Lang Theory, which implies that u(F ) ≤ 4.


Suppose now that kv is hereditarily quadratically closed of characteristic
zero. Then kv has no finite extensions of even degree. Let k′ be the maximal
unramified extension of k with respect to v, and let k′


v be the corresponding
extension of the residue field. Then every element of k′ has odd degree over
k and k′


v is the algebraic closure of k. Let F ′ = Fk′. Then it follows from
[15, Chap. III, (6.2)] that also every element of F ′ has odd degree over F .
Using Springer’s Theorem [9, Chap. VII, (2.7)], and the previous case, we
obtain that u(F ) ≤ u(F ′) ≤ 4. ¤


5.8 Corollary. Let k be a field carrying a henselian valuation v with value


group Z and such that the residue field kv is hereditarily euclidean. Let F be


a function field in one variable over k. If |∑F 2/F×2| ≤ 2, then u(F ) = 4.


Proof: Since kv(i) is hereditarily quadratically closed of characteristic zero,
we have u(F (i)) = 4 by (5.7). With |∑F 2/F×2| ≤ 2 we thus obtain from
(2.2) that u(F ) ≤ u(F (i)) = 4. On the other hand, u(F ) ≥ 4 by (4.5). ¤


5.9 Theorem. Let k be a field carrying a henselian valuation v with value


group Z and such that the residue field kv is hereditarily euclidean. Let F be


the function field of a hyperelliptic curve Y 2 = f(X) over k where f ∈ k[X]
has at most one nonreal irreducible factor. Then u(F ) = 4.


Proof: Since kv(i) is hereditarily quadratically closed of characteristic zero,
we have u(F (i)) = 4 by (5.7). By the assumptions on k and v, we have
K×/K×2 ∼= Z/2Z for any finite nonreal extension K/k. Therefore, with the
assumption on f , applying (5.5) we obtain that |∑F 2/DF (2)| ≤ 2. Hence,
u(F ) ≤ u(F (i)) = 4 by (2.2). On the other hand, u(F ) ≥ 4 by (4.5). ¤


5.10 Corollary. Let k be a field carrying a henselian valuation v with value


group Z and such that the residue field kv is hereditarily euclidean. Let F be


the function field of a conic or an elliptic curve over k. Then u(F ) = 4.


Proof: This is a special case of (5.9). ¤


The following result generalises and extends [16, Theorem 1.4].
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5.11 Theorem. Let v be a henselian valuation on k with value group Z


and with hereditarily euclidean residue field kv. Let f ∈ k[X] be a nonzero


polynomial such that all nonreal roots of f have good reduction with respect


to v. Let F be the function field of the curve Y 2 = f(X) over k. Then


∣∣∣
∑


F 2/DF (2)
∣∣∣ ≤ 2 and u(F ) = 4 .


Moreover, p(F ) = 2 except possibly in the case where v(f) ∈ 2Z and, writing


f = c2h with c ∈ k× and h ∈ k[X] of valuation v(h) = 0, the residue


polynomial −h is a sum of squares in kv[X].


Proof: In the case where v(f) ∈ 2Z, except for the u-invariant this is a
reformulation of (5.6). Otherwise, we have v(f) /∈ 2Z and then the inequality
in (5.5) actually yields that


∑
F 2 = DF (2), thus p(F ) = 2. In any case, using


(5.8) we obtain that u(F ) = 4. ¤


We now give an example of a function field of a hyperelliptic curve over
k((t)), where neither (5.9) nor (5.11) applies and where we have not been able
to decide whether the u-invariant is 4.


5.12 Example. Let F be the function field of Y 2 = −(X2 + 1)(X2 + t2)
over k = R((t)). Then F is nonreal with −1 /∈ F×2. We claim that
|∑F 2/DF (2)| = 4, in particular p(F ) = s(F ) + 1 = 3. In view of (3.10), it
is sufficient to show that none of t, X, and tX lies in DF (2).


We write f = −(X2 + 1)(X2 + t2) and consider the canonical extension
to E = k(X) of the valuation v : k −→ Z ∪ {∞} associated to t. It follows
from (5.1) that v(E× ∩ DF (2)) ⊆ 2Z. Therefore t, tX /∈ DF (2).


Assume now that X ∈ DF (2). Then the quadratic form 〈1, f,−X,−X〉
is isotropic over k(X). By [12, Chap. 1, (2.3)], this implies that


X4 + (1 + t2)X2 + t2 = −f = g2 − X(h2
1 + h2


2)


with g, h1, h2 ∈ k[X]. Comparing the degrees of both sides shows that g is a
quadratic polynomial with leading coefficient ±1 and constant coefficient ±t,
while h1 and h2 are linear or constant. We write g(X) = ±X2 + bX ± t with
b ∈ k. Comparing the linear coefficients, we obtain ±2bt = h1(0)2 + h2(0)2


and thus v(b) /∈ 2Z, while comparing coefficients in degree 3 yields on the
contrary that v(b) ∈ 2Z. Therefore, we have X /∈ DF (2), as claimed.


The following example shows that p(F ) = 2 may occur in the case which
is left open in (5.11). Moreover, it shows that p(F ) = s(F ) is possible for a
nonreal function field of a hyperelliptic curve over R((t)).
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5.13 Example. Let F be the function field of Y 2 = −(X2+1)(X2+1+t) over
R((t)). Then F is nonreal with −1 /∈ F×2. By (5.5) we have the inclusion
E× ∩ v−1(2Z) ⊆ DF (2). It follows that F× = DF (2) ∪ −tDF (2). But
−t(X2 + 1) = Y 2 + (X2 + 1)2 in F , showing that −t is also a sum of two
squares in F . Therefore we have p(F ) = 2 = s(F ).


Consider now the function field F of an elliptic curve over k = R((t)).
Thus F is given by a curve Y 2 = f(X) where f ∈ k[X] is of degree 3. If
f has only real factors then p(F ) = 2 by (4.10). In the remaining case, f
is a product of a linear polynomial with an irreducible quadratic polynomial
with root field k(i). After a linear substitution we are then in the situtation
where the following theorem allows to decide whether p(F ) = 2 or p(F ) > 2.


5.14 Theorem. Let k be a real field carrying a henselian valuation v with


value group Z and with hereditarily euclidean residue field kv. Let f ∈ k[X]
be a polynomial of degree 3 with f(0) = 0 and let F be the function field of


the elliptic curve Y 2 = f(X). If v(f) ∈ 2Z and if f has a root α0 + iα1 in


k(i) with α0, α1 ∈ k× such that v(α0) < v(α1) and −α0 ∈ k×2, then p(F ) is


either 3 or 4. In any other case p(F ) = 2.


Proof: Recall that 2 ≤ p(F ) ≤ 4 by (4.2). If v(f) /∈ 2Z or if f has no root in
k(i) \ k, then p(F ) = 2, by (5.11) and (4.10). In the remaining case we may
assume that f is monic and write f = X((X − α0)


2 + α2
1) with α0, α1 ∈ k


and α1 6= 0. Substituting X = α1X
′ +α0 and Y = α1Y


′ shows that F is also
the function field of the curve Y 2 = g(X) for g = (α1X + α0)(X


2 + 1). Now,
again by (5.11), we readily obtain p(F ) = 2 for the cases where v(α0) ≥ v(α1)
or −α /∈ ∑


k2 = k×2. On the other hand, if v(α0) < v(α1) and −α0 ∈ k×2,
then p(F ) > 2 follows from (5.3). ¤


5.15 Question. Let h ∈ R[X] be a non-constant square-free polynomial with


no roots in R. Let F be the function field of the curve Y 2 = (tX − 1)h(X)
over R((t)). Then 3 ≤ p(F ) ≤ 4 by (5.3) and (4.2). What is the exact value


of p(F )?
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