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Abstract. For any n ≥ 3 we give numerous examples of central division algebras of
exponent 2 and index 2n over fields, which do not decompose into a tensor product

of two nontrivial central division algebras, and which are sums of n + 1 quaternion

algebras in the Brauer group of the field.
Also for any n ≥ 3 and any field k0 we construct an extension F/k0 and a

multiquadratic extension L/F of degree 2n such that for any proper subextensions
L1/F and L2/F

W (L/F ) 6= W (L1/F ) + W (L2/F ), 2Br(L/F ) 6=2 Br(L1/F ) +2 Br(L2/F ).

1. Preliminaries

Let F be a field of characteristic not 2. A well known result of Albert states that
any central division algebra of index 4 and exponent 2 over F is a tensor product of
two quaternion algebras ([A]). In [T1] Tignol proved that any algebra of index 8 and
exponent 2 is similar to a tensor product of four quaternion algebras. Moreover, by
Merkurjev’s theorem ([M]), any central simple algebra A of exponent 2 over a field
is similar to a tensor product of quaternion algebras. In other words, any element
[A] of 2BrF is a sum of classes of quaternion algebras. If the index of A is 2n, then,
obviously, the number of summands in this sum is not less than n. If this number
equals n, then by dimension count A itself is isomorphic to a tensor product of
quaternion algebras. We call a central simple algebra over a field decomposable if
it is a tensor product of two nontrivial central simple algebras over the same field.
Otherwise we say that the algebra is indecomposable. Obviously, if the algebra
is indecomposable it is necessarily a division algebra, i.e. a skewfield. The first
example of indecomposable algebra of index 8 and exponent 2 was given in [ART].
In ([K]) Karpenko gave examples of indecomposable algebras of exponent 2m and
index 2n for any m ≥ 1, n ≥ 3, n ≥ m. An algebra A of such a type is obtained
by means of the ”generic” splitting of another algebra of index and exponent 2n.

1991 Mathematics Subject Classification. 16K20, 14H05.

Key words and phrases. Brauer group, division algebra, conic, Laurent series field.
The work under this publication was partially supported by Royal society Joint Project”Quadratic

forms and central simple algebras under field extensions”

Typeset by AMS-TEX

1



2 A.S. SIVATSKI

However, if expA = 2 and [A] =
p∑

i=1

[(ai, bi)] in these examples, it is unclear how

small one can choose the number of summands p. In this paper we construct for
any field k0 and n ≥ 3 an indecomposable algebra of index 2n over some field E/k0

which is a sum of n + 1 quaternion algebras in 2Br E. One can choose the field E
having no proper odd degree extension. Moreover, all the summands are splitted
by the same prescribed multiquadratic field extension of degree 2n over E. The
description of the field E and the quaternion algebras is quite transparent.

We refer the reader to [Sch] as the main source concerning central simple algebras
and quadratic forms over fields. The notation used in the sequel is more or less
standard and coincides with the notation in ([S]). All the fields in the paper are
supposed to be of characteristic different from 2. If F is a field, then 2BrF stands
for the 2-torsion of the Brauer group of F . Slightly abusing notation we will often
identify a central simple algebra and its class in the Brauer group. W (F ) and I(F )
are respectively the Witt ring of F and the ideal of evendimensional quadratic forms
in W (F ). By K2(F ) we denote the Milnor’s K2 group of F . For u, v ∈ F ∗ the
symbol (u, v) denotes the quaternion algebra over F generated by the elements i
and j with the relation

i2 = u, j2 = v ij = −ji.

If C is a projective conic over a field k, and p is a closed point of C, then k(C) is
the function field of C, and k(p) is the residue field at p. If f ∈ k(C)

∗
, then (f) is

the divisor of the function f . The abbreviations res, N , ind, deg denote respectively
restriction, norm, index and degree. If L/F is a field extension and A is a central
simple algebra over F , then by definition AL = resL/F A = A ⊗F L. We will write
simply A⊗L instead of A⊗F L, or even merely A, if the restriction is clear from the
context. The tensor product of central simple algebras over F is always considered
over F . The sign ∼ means similarity of algebras, i.e. their equality in the Brauer
group of the field.

2. Auxiliary and related results

The crucial point in the examples that we are going to give is some quaternion
algebra, which was constructed in ([S]) and which is the basic tool in the proof of
nonexcellency of multiquadratic field extensions in general. For the convenience of
the reader we recall the construction of this algebra, the more so that we need some
additional properties of it.

Let k0 be a field. Suppose n is a positive integer and a, b1, . . . , bn ∈ k∗
0/k∗

0
2 are

linearly independent over Z/2Z.

Lemma 1. There exist a tower of fields k0 ⊂ k1 ⊂ · · · ⊂ kn and elements xi, yi ∈ k∗
i

for every 1 ≤ i ≤ n such that the following conditions hold:

1) The elements a, b1, . . . , bn remain linearly independent in k∗
n/k∗

n
2.

2) Put Bj =
j∑

i=1

(bi, xi + yi
√

a) ∈ 2Br kj(
√

a). Then for any 1 ≤ j ≤ n

indBj = 2.

3) Put Aj =
j∑

i=1

(bi, x
2
i − ay2

i ) ∈ 2Br kj . Then for any 1 ≤ i ≤ j ≤ n and a
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finite field extension l/k0 such that (Aj)lkj
= 0, either

√
bi ∈ l or

√
abi ∈ l.

In particular, [l : k0] ≥ 2j .

Proof. Let x1, y1 be indeterminates, k1 = k0(x1, y1). Put

A1 = (b1, x
2
1 − ay2

1) ∈ 2Br k1, B1 = (b1, x1 + y1

√
a) ∈ 2Br k1(

√
a).

We will prove the lemma by induction on n. If n = 1, conditions 1) and 2) are
obvious. To check condition 3) in this case put l1 = l(

√
a)(y1) and consider the

second residue map

∂x1−
√

ay1
: 2Br l1(x1) −→ l∗1/l∗1

2

with respect to the linear polynomial x1−
√

ay1. Since ∂x1−
√

ay1
((b1, x

2
1−ay2

1)) = b1,

we get that b1 is a square in l1, hence in l(
√

a), which is just what we need.
Now let n ≥ 2. Assume that we have already constructed a tower of fields k0 ⊂

k1 ⊂ · · · ⊂ kn−1 and the algebras A1, . . . , An−1, B1, . . . , Bn−1 with the required
conditions. Suppose Bn−1 = (u1 + v1

√
a, u2 + v2

√
a), where u1, u2, v1, v2 ∈ k∗

n−1.
Let t1, t2, t3 be indeterminates, and kn = kn−1(t1, t2, t3). Let further xn, yn ∈ kn

be such elements that

xn + yn

√
a = (u1 + v1

√
a)t21 + (u2 + v2

√
a)t22 − (u1 + v1

√
a)(u2 + v2

√
a)t23,

i.e.
xn = u1t

2
1 + u2t

2
2 − (u1u2 + av1v2)t

2
3,

yn = v1t
2
1 + v2t

2
2 − (u1v2 + u2v1)t

2
3.

Put
An = An−1 + (bn, x2

n − ay2
n) ∈ 2Br kn,

Bn = Bn−1 + (bn, xn + yn

√
a) ∈ 2Br kn(

√
a).

It is easy to see that xn + yn
√

a is a square in (Bn−1)kn−1(
√

a), which implies that

(Bn)
kn(

√
a)(

√
xn+yn

√
a)

= 0,

hence indBn ≤ 2. Obviously, (Bn−1)kn(
√

a) 6= (bn, xn + yn
√

a), so indBn = 2.

Now suppose that a finite extension l/k0 is such that

0 = (An)lkn
= (An−1 + (bn, x2

n − ay2
n))lkn

.

Then

0 = (An)lkn(
√

a) = (An−1)lkn(
√

a) + (bn, (xn − yn

√
a)(xn + yn

√
a))lkn(

√
a).

Put K = lkn−1(
√

a, t1, t2). We can view the algebra

(An−1)lkn(
√

a) = (bn, (xn − yn

√
a)(xn + yn

√
a))lkn(

√
a)
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as an algebra over K(t3). It has no residues with respect to the second residue map

∂ = ⊕∂p : 2BrK(t3) −→
∐

p

K(p)
∗
/K(p)

∗2
,

where p runs over all monic irreducible polynomials from K[t3]. On the other hand,
the monic polynomials

P1(t3) = t23 −
(u1 + v1

√
a)t21 + (u2 + v2

√
a)t22

(u1 + v1
√

a)(u2 + v2
√

a)
=

−(xn + yn
√

a)

(u1 + v1
√

a)(u2 + v2
√

a)

and

P2(t3) = t23 −
(u1 − v1

√
a)t21 + (u2 − v2

√
a)t22

(u1 − v1
√

a)(u2 − v2
√

a)
=

−(xn − yn
√

a)

(u1 − v1
√

a)(u2 − v2
√

a)

are distinct. Hence
0 = ∂P1

((An−1)lkn(
√

a)) = bn,

and so,

√
bn ∈ lkn(

√
a, t1, t2,

√
(u1 + v1

√
a)t21 + (u2 + v2

√
a)t22

(u1 + v1
√

a)(u2 + v2
√

a)
).

This obviously implies
√

bn ∈ lkn(
√

a). Therefore, either
√

bn ∈ lkn, or
√

abn ∈ lkn.
Since the extension kn/k0 is purely transcendental, we get that either

√
bn ∈ l, or√

abn ∈ l. In both cases it follows that (bn, x2
n − ay2

n)lkn
= 0. Since

0 = (An)lkn(
√

a) = (An−1)lkn(
√

a) + (bn, x2
n − ay2

n)lkn(
√

a),

we get
(An−1)lkn(

√
a) = 0.

Since kn = kn−1(t1, t2, t3), it follows that

(An−1)lkn−1(
√

a) = 0,

and by the induction assumption we conclude that for any 1 ≤ i ≤ n − 1 either√
bi ∈ l, or

√
abi ∈ l. The induction step is done, so the lemma is proved.

Since indBn = 2, it follows that indAn = indNkn(
√

a)/kn
(Bn) = 2 or 4. If

indAn = 2, put k = kn. If indAn = 4 put k = kn(ϕ), where ϕ is an Albert form
corresponding to An. It is easy to see that condition 3) remains valid for the field
k and the algebra (An)k, i.e. if the extension l/k0 is finite and (An)lk = 0, then for

any 1 ≤ i ≤ n either
√

bi ∈ l or
√

abi ∈ l.
Now put A = (An)k, B = (Bn)k(

√
a). Let C be the projective conic over k

corresponding to A. Set F = k(C). Then, obviously, AF = 0. Consider the exact
sequence ([M])

2BrF
res−−→ 2BrF (

√
a)

N−→ 2Br F.
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Since
0 = AF = NF (

√
a)/F (BF (

√
a)),

we have BF (
√

a) = DF (
√

a) for some D ∈ 2BrF . Since indB = 2, we get ind D ≤ 4.
It is well known that if indD = 4, then D = D1 + D2 for some D1, D2 ∈ 2BrF ,
such that indD1 = indD2 = 2 and D2F (

√
a) = 0. Hence we may change D for D1

and so assume that indD ≤ 2.
From now on we will assume that n ≥ 2. Put L = F (

√
a,
√

b1, . . . ,
√

bn). Let
F ⊂ F1 ⊂ F2 ⊂ L be a tower of fields such that

√
a /∈ F2, [F2 : F1] = 4, [L : F1] = 8.

Obviously, L = F2(
√

a) = F1(
√

a)F2, and F1 = kl1(C), F2 = kl2(C) for some
multiquadratic extensions l1/k0, l2/k0 of degree 2n−2 and 2n respectively.

Proposition 2.

1) The elements a, b1, . . . , bn remain linearly independent in F ∗/F ∗2.

2) indD = 2.

3) DL = 0.

4) The algebra DF1
does not decompose into a sum DF1

= D1 + D2, where

D1 ∈ 2Br(F1(
√

a)/F1) and D2 ∈ 2Br(F2/F1).

Proof. 1) Obvious.
2) Assume that indD = 1, i.e. D = 0. Then Bk(

√
a)(C) = 0, hence Bk(

√
a) is

either 0 or Ak(
√

a). In both cases A = Nk(
√

a)/kB = 0, a contradiction.

3) Obvious, since DF (
√

a) =
n∑

i=1
(bi, xi + yi

√
a).

4) Assume the contrary, i.e. that D = D1 + D2, where D1 ∈ 2Br(F1(
√

a)/F1)
and D2 ∈ 2Br(F2/F1). Then

BF1(
√

a) = DF1(
√

a) = D2F1(
√

a).

Denote the field kl1 by k̂, so that F1 = k̂(C). Consider the points z1, . . . , zm ∈ Cbk
at which the algebra D2 has nonzero residues under the second residue map

2BrF1 −→
∐

z∈C
bk

k̂(z)
∗
/k̂(z)

∗2
.

Since B is defined over k(
√

a), the algebra D2F1(
√

a) = BF1(
√

a) has no residues
at all. This implies that the residues of D2 at the points z1, . . . , zm are equal
to a. Recall that F2 = kl2(C), and let c1, . . . , cn ∈ k∗

0 be elements such that
l2 = k0(

√
c1, . . . ,

√
cn). Therefore, since D2F2

= 0, we have for any j

abk(zj)(
√

c1,...,
√

cn) ∈ k̂(zj)(
√

c1, . . . ,
√

cn)∗
2
.

Denote by cI the product
∏
i∈I

ci (the similar notation will be used also in the sequel).

Thus, given any j, we have acI ∈ k̂(zj)
∗2

for some I ⊂ {1, . . . , n} depending on j,
i.e.

k̂(
√

acI) ⊂ k̂(zj).

¤
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Lemma 3. For any j we have 4| deg zj .

Proof. Assume this is not the case. Consider the tower k̂ ⊂ k̂(
√

c) ⊂ k̂(zj), where

c = acI and I corresponds to the point zj . Notice that
√

c /∈ k̂ = kl1, for oth-

erwise
√

c ∈ kl2, and so
√

a ∈ F2, a contradiction. Hence [k̂(zj) : k̂(
√

c)] is odd.
Since Abk(zj) = 0 we conclude that Abk(

√
c) = 0. Therefore, (An)knl1(

√
c) = 0, a

contradiction to Lemma 1, since [l1(
√

c) : k0] = 2n−1. The lemma is proved. ¤

Now we use the fact that any divisor of degree zero on a projective conic is

principal. Choose any y ∈ Cbk such that deg y = 2. Let s =
m∑

i=1

deg zj . Consider

the divisor a = − s
2
y +

m∑
i=1

zi. Obviously, deg a = 0, hence there is f ∈ F ∗
1 such that

a = (f). The algebra (a, f) has nonzero residues just at the points z1, . . . , zm, since
by Lemma 3 the number s

2 is even. Moreover, all these residues are equal to a.

Therefore, the algebra D̂2 = D2 + (a, f) has no residues at all, i.e. D̂2 ∈ 2Br(Cbk
).

Merkurjev’s theorem ([M]) claims that K2k̂(C)/2K2k̂(C) ≃ 2Br k̂(C). Hence by
([Su], Lemma 5) we get that either

D̂2 ∈ resF1/bk( 2Br k̂),

or

2Br(Cbk)/ resF1/bk( 2Br k̂) = Z/2Z,

and the element D̂2 is nontrivial in this factor group.

In the first case let D̂2 = resF1/bk D̃ for some D̃ ∈ 2Br k̂. Then

(D̃ + B)bk(
√

a)(C) = (D̂2 + B)bk(
√

a)(C) = (D2 + B)bk(
√

a)(C) = (D + B)bk(
√

a)(C) = 0.

Hence (D̃ + B)bk(
√

a)
is either zero or Abk(

√
a)

. But then

0 = Nbk(
√

a)/bk(D̃ + B) = Nbk(
√

a)/bkB = Abk,

hence (An)l1kn
= 0, a contradiction to Lemma 1, since [l1 : k0] = 2n−2.

In the second case, when D̂2 /∈ res
F1/bk

( 2Br k̂), let A = (a1, a2), where a1, a2 ∈
k∗. Then F1 is the quotient field of the ring k̂[u1, u2]/(a1u

2
1 + a2u

2
2 − 1), where

u1, u2 are indeterminates. It is easy to see that NF1/bk(u1)
(D̂2) = A. Consider the

commutative diagram

2BrF1
res−−−−→ 2BrF1(

√
a)

N

y N

y

2Br k̂(u1)
res−−−−→ 2Br k̂(

√
a)(u1)

So we have

resbk(
√

a)(u1)/bk(u1)
A = resbk(

√
a)(u1)/bk(u1)

◦ N
F1/bk(u1)

(D̂2) =

NF1(
√

a)/bk(
√

a)(u1) ◦ resF1(
√

a)/F1
(D̂2) = NF1(

√
a)/bk(

√
a)(u1)

(B) = 0,
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hence resbk(
√

a)/k(A) = 0, a contradiction to Lemma 1, since [l1(
√

a) : k0] = 2n−1.

Thus Proposition 2 is proved. ¤

Recall that L = F (
√

a,
√

b1, . . . ,
√

bn). Proposition 2 implies the following corol-
lary, which is of some independent interest, and which can be considered as a
generalization of Th. 5.1 in [ELTW].

Corollary 4. Let F ⊂ L1 ⊂ L, F ⊂ L2 ⊂ L be proper field subextensions of L/F .

Then

1) D /∈ 2Br(L1/F ) + 2Br(L2/F ). In particular,

2Br(L/F ) 6= 2Br(L1/F ) + 2Br(L2/F ).

2) f /∈ W (L1/F ) + W (L2/F ), where f ∈ W (L/F ) is the 2-fold Pfister form

corresponding to D.

Proof. 1) Obviously we may assume that [L : L1] = [L : L2] = 2 and L = L1L2.
Then [L : L1 ∩ L2] = 4. Choose a field F1 such that

F ⊂ F1 ⊂ L1 ∩ L2,
√

a /∈ F ∗
1 , [L1 ∩ L2 : F1] = 2.

Then

[L : F1] = 8, [L1 : F1] = [L2 : F1] = 4, L1 = F1(
√

d1,
√

d2), L2 = F1(
√

d1,
√

d3)

for some d1, d2, d3 belonging to the multiplicative group generated by the elements
a, b1, . . . , bn. We will show that DF1

/∈ 2Br(L1/F1) + 2Br(L2/F1). Assume the
contrary. Then

DF1
= (d1, e1) + (d2, e2) + (d3, e3)

for some e1, e2, e3 ∈ F ∗
1 . Obviously, we may suppose that a is equal either to di, or

to didj (i < j), or to d1d2d3. We have

DF1
= (d1d2, e1) + (d2, e1e2) + (d3, e3) = (d1d2d3, e1) + (d2, e1e2) + (d3, e1e3).

Put F2 = F1(
√

d2,
√

d3). We conclude that

DF1
∈ 2Br(F1(

√
a)/F1) + 2Br(F2/F1),

which contradicts Proposition 2.
2) This part easily follows from part 1). Indeed, assume that [f ] = [f1] + [f2],

where f1 ∈ W (L1/F ), f2 ∈ W (L2/F ). Obviously, disc(f1) = disc(f2). Let g1, g2 ∈
I2(F ) be forms such that dim(fi ⊥ −gi)an ≤ 2 for i = 1, 2. It is clear that gi ∈
W (Li/F ). If Di ∈ 2BrF correspond to gi under the map I2(F )/I3(F ) ≃ 2BrF ,
then D = D1 +(D2 +(disc f2, u)) for some u ∈ F ∗, a contradiction to part 1) since
〈〈disc(f2)〉〉 ∈ W (L2/F ). ¤
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Lemma 5. Let K be a field, K((t))odd any odd degree extension of K((t)). Then

the following holds:

1) There exists a field inclusion Kodd((t)) →֒ K((t))odd over K((t)) for some

maximal odd degree extension Kodd of K.

2) K((t))odd
∗
/K((t))odd

∗2 ≃ Kodd
∗/Kodd

∗2 ⊕ Z/2Z, where the element t ∈
K((t))odd

∗
/K((t))odd

∗2
corresponds to the nontrivial element of Z/2Z and

Kodd
∗/Kodd

∗2
naturally includes into K((t))odd

∗
/K((t))odd

∗2
under this iso-

morphism.

Proof. 1) Any finite extension L of K((t)) is a complete valuation field of charac-
teristic equal to the characteristic of its residue field. We have L = L((π)), where
L is a subfield of L isomorphic to the residue field and π is a uniformizer ([Se],
Ch.2, Th.2). It is easy to check that we can choose for Kodd the union of all finite
extensions of K contained in K((t))odd.

2) Assume L/Kodd((t)) is a finite odd degree extension. Then

L ≃ Kodd((π)), L∗/L∗2 ≃ Kodd
∗/Kodd

∗2 ⊕ Z/2Z,

where π ∈ L∗/L∗2 corresponds to the nontrivial element of Z/2Z and Kodd
∗/Kodd

∗2

naturally includes into L∗/L∗2. Denote by v the discrete valuation on L. Obviously,

v(t) is odd, hence πt ∈ Kodd
∗/Kodd

∗2 →֒ L∗/L∗2. Therefore, there exists another
isomorphism

L∗/L∗2 ≃ Kodd
∗/Kodd

∗2 ⊕ Z/2Z,

where t ∈ L∗/L∗2 corresponds to the nontrivial element of Z/2Z and Kodd
∗/Kodd

∗2

naturally includes into L∗/L∗2. Also it is clear that the last isomorphisms are
compatible for various L, which completes the proof. ¤

Corollary 6. Let K be a field, E = K((t0)) . . . ((tn)) the iterated Laurent series

field. Let Eodd be any maximal odd degree extension of E. Then

Kodd →֒ Eodd, Eodd
∗/Eodd

∗2 ≃ K∗
odd/K∗

odd
2 ⊕ (Z/2Z)

n+1

for some maximal odd degree extension Kodd of K, and under this isomorphism the

element ti (0 ≤ i ≤ n) corresponds to the nontrivial element of the i + 1-th factor

of (Z/2Z)
n+1

while K∗
odd/K∗

odd
2 naturally includes into E∗

odd/E∗
odd

2.

Proof. Taking into account Lemma 5, the proof is immediate by induction on n. ¤

Lemma 7. Let K be a field, let c0, . . . , cn ∈ K∗/K∗2 be linearly independent

elements. Suppose the algebra α ∈ 2BrK is such that αK(
√

c0,
√

c1,...,
√

cn) 6= 0. Let

further t0, . . . , tn, x be indeterminates. Then for any 0 ≤ i ≤ n + 1

ind[α + (c0, t0) + · · · + (cn, tn)]E ≥ 2n+2,

where

E = K((t0)) . . . ((ti−1))((x))((ti)) . . . ((tn)).
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Proof. The argument is by induction on n. Suppose first that i ≤ n. Put

E1 = K((t0)) . . . ((ti−1))((x))((ti)) . . . ((tn−1)).

By induction hypothesis ind[α + (c0, t0) + · · · + (cn−1, tn−1)E1(
√

cn)] ≥ 2n+1. Ap-

plying Tignol’s theorem ([T2], Prop. 2.4) we finishes the proof. If i = n + 1, the
argument is similar with a slight modification. ¤

3. Construction of indecomposable algebras

Now we turn to the construction of indecomposable algebras of an arbitrary
2-primary index and exponent 2. From now on we change the notation a bit.

Let F be an arbitrary field, n ≥ 2, a, b1, . . . , bn ∈ F ∗, D ∈ 2BrF . We call the
triple (F, D, {a, b1, . . . , bn}) admissible if the following conditions hold:

a) The elements a, b1, . . . , bn ∈ F ∗/F ∗2 are linearly independent.
b) indD = 2.
c) DF (

√
a,
√

b1,...,
√

bn) = 0.

d) For any tower F ⊂ F1 ⊂ F2 ⊂ L = F (
√

a,
√

b1, . . . ,
√

bn) such that

√
a /∈ F ∗

2 , [L : F1] = 8, [F2 : F1] = 4

we have
DF1

/∈ 2Br(F1(
√

a)/F1) + 2Br(F2/F1).

e) The field F has no proper extensions of odd degree.

Notice that Proposition 2 give us examples of triples satisfying conditions a)−d)
of the above definition.

Proposition 8.

1) If the triple (F, D, {a, b1, . . . , bn}) satisfies condition a)−d) above, then the

triple (Fodd, Dodd, {a, b1, . . . , bn}) is admissible.

2) If the triple (F, D, {a, b1, . . . , bn}) is admissible, n ≥ 3, c ∈ F ∗, and

F (
√

a,
√

b1, . . . ,
√

bn) = F (
√

c,
√

a,
√

b1, . . . ,
√

bn−1),

then the triple (F (
√

c), DF (
√

c), {a, b1, . . . , bn−1}) is admissible as well.

3) If the triple (F, D, {a, b1, . . . , bn}) is admissible, and L = F (
√

a,
√

b1, . . . ,
√

bn),
then Corollary 4 holds for the extension L/F and the algebra D.

Proof. 1) Conditions a), b), c), e) are obvious, and applying the norm map we obtain
condition d).

2) The proof is straightforward, and we leave it to the reader.
3) Obvious. ¤

Now let (F, D, {a, b1, . . . , bn}) be an admissible triple. Put E = F ((t0)) . . . ((tn)).
Suppose C is the division algebra over E such that

C ∼ D ⊗ (a, t0) ⊗ (b1, t1) ⊗ . . . ⊗ (bn, tn).

The main purpose of the present article is the following
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Proposition 9.

1) indC = 2n+1.

2) The algebra Codd
def
= CEodd

does not decompose into a tensor product of

two nontrivial algebras over any maximal odd degree extension Eodd of E.

Proof. 1) Since CL = 0 we have indC ≤ 2n+1. On the other hand, applying Lemma
7 to the field F0 = F ((t0)) and the algebra C0 = D ⊗ (a, t0) we get

indC = ind[(D + (a, t0)) + (b1, t1) + · · ·+ (bn, tn)] ≥ 2n+1.

2) The proof is by induction on n. Assume that the algebra Codd is decomposable,
Codd ≃ D1 ⊗Eodd

D2 and indD1, indD2 ≥ 2. Consider two cases:
a) indD1 = 2 or indD2 = 2.
Suppose for instance indD1 = 2. By Lemma 5 D1 ≃ (ptI , stJ), where

I, J ⊂ {0, 1, . . . , n}, p, s ∈ F ∗.

Case a) divides in turn into two subcases.
a1) I 6= ∅ or J 6= ∅. Assume I 6= ∅.
Suppose I = {k + 1, k + 2, . . . , n} for some k (the general case can be treated

similarly, using Lemma 7). Then we have

CEodd(
√

ptI) = D + (a, t0) + (b1, t1) · · ·+ (bn−1, tn−1) + (bn, ptk+1 . . . tn−1) =

D + (bn, p) + (a, t0) + (b1, t1) + · · ·+ (bk, tk) + (bk+1bn, tk+1) + · · ·+ (bn−1bn, tn−1).

The field Eodd(
√

ptI) can be considered as an iterated Laurent series field, namely
Eodd(

√
ptI) = F ((t0)) . . . ((tn−1))((x)), where x =

√
ptI . Put

L1 = F (
√

a,
√

b1, . . . ,
√

bk,
√

bk+1bn, . . . ,
√

bn−1bn), L2 = F (
√

bn).

Since indCEodd(
√

ptI) = 1
2 indC = 2n, it follows by Lemma 7 that

(D + (bn, p))L1
= 0.

Therefore,

D = (D + (bn, p)) + (bn, p) ∈ 2Br(L1/F ) + 2Br(L2/F ),

which contradicts Corollary 4.
a2) I = J = ∅, i.e. D1 = (p, s), where p, s ∈ F ∗.
Then

ind[D + (p, s) + (a, t0) + (b1, t1) + · · · + (bn, tn)] = indD2 = 2n,

which contradicts Lemma 6.
Thus we have completed the proof in the case a). In particular, we have proved

indecomposability of C in the case n = 2.
b) indD1 ≥ 4 and indD2 ≥ 4.
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In particular, n ≥ 3. Obviously, either indD1Eodd(
√

a) = indD1, or indD2Eodd(
√

a) =
indD2. Assume that indD1Eodd(

√
a) = indD1. Since any finite extension of Eodd is

a tower of quadratic extensions, there exists c ∈ Eodd
∗ such that indD1Eodd(

√
c) =

1
2 indD1. Moreover, since F has no proper odd degree extensions, we may as-
sume by Lemma 5 that c = ptI for some p ∈ F ∗ and I ⊂ {0, 1, . . . , n}. Let
D1Eodd(

√
ptI) ∼ D′

1, where D′
1 is some nontrivial division algebra over Eodd(

√
ptI).

If I 6= ∅ we come to a contradiction just as in case a). So suppose that I = ∅. Since
indD1Eodd(

√
a) = indD1, we have pa /∈ F ∗2, and

indCEodd(
√

p) = ind[D + (a, t0) + (b1, t1) + · · ·+ (bn, tn)]Eodd(
√

p) = 2n.

It follows from Lemma 6 that the elements a, b1, . . . , bn are linearly dependent in

F (
√

p)
∗
/F (

√
p)

∗2
. This in turn means that we may assume that either p = bI ,

or p = abI for some ∅ 6= I ⊂ {1, . . . , n}. Let for instance p = bI , where I =
{k + 1, . . . , n} (the general case can be treated with a slight modification, and is
left to the reader). Put

K = F (
√

p)((t0)) . . . ((tn−1)), L = F (
√

p)((t0)) . . . ((tn−1))((
√

tn)).

Then

D ⊗ (a, t0) ⊗ (b1, t1) ⊗ . . .⊗ (bn−1, tn−1)Lodd
∼ CLodd

∼ D′
1 ⊗Lodd

D2

for any maximal odd degree extension Lodd of L, containing Eodd(
√

p). On the other
hand, by Proposition 8 the triple (F (

√
p), DF (

√
p), {a, b1, . . . , bn−1}) is admissible.

Hence by the induction hypothesis for any maximal odd degree extension Kodd of
K we have

D ⊗ (a, t0) ⊗ (b1, t1) ⊗ . . .⊗ (bn−1, tn−1)Kodd
∼ C1Kodd

,

C1 being a division algebra over K such that it is indecomposable over Kodd and
indC1 = 2n. By the first part of Lemma 5 we can choose Kodd in such a way that
Kodd((

√
tn)) →֒ Lodd over K((

√
tn)). This implies

C1Lodd
∼ D′

1 ⊗Lodd
D2.

Since, obviously, ind(D′
1 ⊗Lodd

D2) = indC1Lodd
= 2n, we have

C1Lodd
≃ D′

1 ⊗Lodd
D2.

By ([Se], Ch.2, Th.2) the field Lodd is the direct limit of fields Kodd((u)), where u
is an indeterminate. Hence for some u ∈ Lodd the algebras D′

1 and D2 are defined
over Kodd((u)) and

C1Kodd((u)) ≃ D′
1 ⊗Kodd((u)) D2.

It is well known that for any field k and positive integer m not divided by char k

H2(k((x)), µm) ≃ H2(k, µm) ⊕ H1(k, Z/mZ),
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where µm is the group of mth roots of unity. From this and the cohomological
interpretation of the Brauer group it follows that

D′
1 = res

Kodd((u
1

s ))/Kodd

D̃1, D2 = res
Kodd((u

1

s ))/Kodd

D̃2

for a sufficiently large 2-power s and some central division algebras D̃1 and D̃2 over
Kodd. Since the natural map BrKodd → BrKodd((u

1

s )) is injective,

C1Kodd
= D̃1 + D̃2,

and by dimension count we conclude that

C1Kodd
≃ D̃1 ⊗Kodd

D̃2,

a contradiction to indecomposability of the algebra C1 over Kodd. ¤

Summing up the obtained results and changing the notation a bit we get the
following

Corollary 10. Let k be a field, n ≥ 3. Suppose the elements a1, . . . , an ∈ k∗/k∗2

are linearly independent over Z/2Z. Then there exists a field extension F/k, a

quaternion algebra D ∈ 2Br F and a division algebra C ∈ 2BrF ((t1)) . . . ((tn)) of

index 2n such that

1) C is indecomposable over any odd degree extension of E = F ((t1)) . . . ((tn)).
2) M2(C) ≃ (a1, t1) ⊗E . . .⊗E (an, tn) ⊗E D.

3) D ∈ 2Br(F (
√

a1, . . . ,
√

an)/F )

Proof. This immediately follows from Propositions 2, 8 and 9. ¤

REFERENCES

[A] Albert A.A., Structure of algebras, Amer. Math. Soc. Colloq. Publ. XXIV (1961).
[ART] Amitsur S.A., Rowen L.H. and Tignol J.-P., Division algebras of degree 4 and 8 with

involution, Israel J. Math. 33 (1979), 133-148.
[ELTW] Elman R., Lam T.Y., Tignol J.-P. and Wadsworth A.R., Witt rings and Brauer groups

under multiquadratic extensions, I., Amer. J. Math. 105 (1983), 1119-1170.

[K] Karpenko N.A., Codimension 2 cycles on Severi-Brauer varieties, K-Theory 13 (1998),
305-330.

[M] Merkurjev A.S., On the norm residue symbol of degree two, Sov. Math. Dokl. 24 (1981),

546-551.
[S] Sivatski A.S., Nonexcellence of multiquadratic field extensions, Journal of Algebra 275

(2004), no. 2, 859-866.
[Sch] Scharlau W., Quadratic and Hermitian forms, Springer, Berlin Heidelberg New York

(1985).

[Se] Serre J.-P., Corps Locaux, Hermann, Paris (1962).
[Su] Suslin A., The quaternion homomorphism for the function field on a conic, Soviet Math.

Docl. 26 (1982), no. 1, 72-77.
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