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Abstract. Let F be a field of characteristic 6= 2. We say that F has property D(2)

if for any quadratic extension L/F and any two binary quadratic forms over F having
a common nonzero value over L this value can be chosen in F . We show that if k is a

field of characteristic 6= 2 having at least two distinct quadratic extensions, then for

the field k(x) property D(2) does not hold. Using this we construct two biquaternion
algebras over a field K = k(x)((t))((u)) such that their sum is a quaternion algebra,

but they do not have a common biquadratic (i.e. a field of the kind K(
√

a,
√

b),

where a, b ∈ K∗) splitting field.

Let F be a field of characteristic different from 2. By definition, F has property
D(2) if for any quadratic extension L/F and any two binary quadratic forms q1, q2

over F the existence of a common value of the forms q1L, q2L implies the existence
of a common value of the forms q1L, q2L, which lies in F . Examples of fields
of characteristic 0 not satisfying this property has been given in [5]. Later in [1]
starting from such a field, it has been shown that the answers to the following
questions are negative in general:

1) Let (a1, b1) and (a2, b2) be quaternion algebras over a field K. Suppose c ∈ K∗

is such that (a1, b1) ⊗ (a2, b2)K(
√

c) is not a division algebra. Is it true that there

exists d ∈ K∗ such that

(a1, b1)K(
√

c,
√

d) = (a2, b2)K(
√

c,
√

d) = 0 ?

2) Let ϕ be an 8-dimensional form from I2(K) whose Clifford algebra has index

4. Is it true that ϕ is a direct sum of two forms similar to 2-fold Pfister forms ?

3) Let ϕ be a 14- dimensional form from I3(K). Is it true that ϕ is similar to

the difference of the pure parts of two 3-fold Pfister forms ?
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By means of quite a different and very nonelementary technique the negative
answers to the same questions have been given in [3].

The above questions stipulate our interest to property D(2). As far as we know,
examples of fields of positive characteristic not satisfying property D(2) are not
known. In this note independently of characteristic of the field we give simple
counterexamples to property D(2) such that the 2-cohomological dimension of the
ground field F equals 2. Using these examples we show that the following question
has the negative answer in general:

Suppose D1 and D2 are two biquaternion algebras over the field K such that

ind(D1 + D2) = 2. Does there exist a common splitting field of D1 and D2 of the

type K(
√

a,
√

b), where a, b ∈ K∗ ?

Our notation is standard. All the fields in the sequel are of characteristic different
from 2. By form we always mean a quadratic form over a field. Slightly abusing
notation we often identify a form over F with the corresponding class in the Witt
group W (F ). By ϕan we denote the anisotropic part of the form ϕ. If L/F is a
field extension, and ϕ is a form over F , then DL(ϕ) is the set of nonzero values of
ϕL, and GL(ϕ) is the group of multipliers of ϕL, i.e. GL(ϕ) = {a ∈ L∗ : ϕ ≃ aϕ}.
By the n-fold Pfister form 〈〈a1, . . . , an〉〉 we mean the form 〈1,−a1〉⊗ . . .⊗〈1,−an〉.
By (a, b) we denote the quaternion algebra with generators 1, i, j, k and relations
i2 = a, j2 = b, ij = −ji. If k is a field, t is an indeterminate and p ∈ k[t] is a monic
irreducible polynomial, then ∂p : W (k(t)) → W (k[t]/p) is the second residue map,
i.e. the group homomorphism determined by the following rule: for a squarefree
polynomial f ∈ k[t]

∂p(〈f〉) =

{
0 if p does not divide f,

〈 f
p
〉 if p divides f

.

The tensor product of central simple K-algebras is always considered over the field
K.

We turn to the construction of the examples in question. Let k be a field,
a, d1, d2 ∈ k∗ such that d2

1−4a, d2
2−4a, (d2

1−4a)(d2
2−4a) /∈ k∗2, x an indeterminate,

F = k(x), L = F (
√

x2 − 4a). Set

q1 ≃ (x − d1)〈〈d2
1 − 4a〉〉 ∈ W (F ),

q2 ≃ (x − d2)〈〈d2
2 − 4a〉〉 ∈ W (F ).

Proposition 1. The field F does not satisfy property D(2), and the forms q1, q2

and the quadratic extension L/F provide a counterexample.

Proof. It is trivial to check that

q1((x − d1 −
√

x2 − 4a)(x − d1)
−1

, (x − d1)
−1

)

= q2((x − d2 −
√

x2 − 4a)(x − d2)
−1

, (x − d2)
−1

)

= 2(x −
√

x2 − 4a) ∈ L.

This shows that DL(q1) ∩ DL(q2) 6= ∅.
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Now let us prove that DL(q1) ∩ DL(q2) ∩ F = ∅. We will follow an idea in [6].

Let y1, y2 be indeterminates, k̂ a maximal odd degree extension of k(y1, y2). Since
d2
1 − 4a and d2

2 − 4a are distinct nontrivial elements in k∗/k∗2, it is easy to see that
(d2

1 − 4a, y1) ⊗bk
(d2

2 − 4a, y2) is a division algebra. Put

ϕ = 〈〈d2
1 − 4a, y1〉〉 − 〈〈d2

2 − 4a, y2〉〉.

In particular, ϕ 6= 0 over any quadratic extension of k̂. Put y =
√

x2 − 4a, x− y =
2t. Then x + y = 2a

t
, hence x = t + a

t
. So we have L = F (

√
x2 − 4a) = k(t),

F = k(t + a
t
). Suppose that u ∈ Dbk(t)

(q1) ∩ Dbk(t)
(q2) ∩ k̂(x). Obviously, we may

assume that u ∈ k̂[x] and u = u(x) is squarefree. Then

(x − d1)u ∈ Dbk(t)(〈〈d2
1 − 4a〉〉) = Gbk(t)(〈〈d2

1 − 4a〉〉) = Gbk(t)(q1),

(x − d2)u ∈ Dbk(t)(〈〈d2
2 − 4a〉〉) = Gbk(t)(〈〈d2

2 − 4a〉〉) = Gbk(t)(q2).

Therefore, we have

(1)
(q1〈〈y1〉〉 − q2〈〈y2〉〉)bk(t)

= ((x − d1)uq1〈〈y1〉〉 − (x − d2)uq2〈〈y2〉〉)bk(t)

= u(〈〈d2
1 − 4a, y1〉〉 − 〈〈d2

2 − 4a, y2〉〉)bk(t)
= uϕbk(t)

.

Similarly, since 4t = 2(x −
√

x2 − 4a) ∈ DL(q1) ∩ DL(q2), we have

(2) (q1〈〈y1〉〉 − q2〈〈y2〉〉)bk(t) = tϕbk(t).

Combining (1) and (2) we conclude that

(3) uϕbk(t)
= tϕbk(t)

Substituting x for t + a
t

in the left part of (3) and comparing the residues at t
of the both parts of this equality we see that the degree of the polynomial u in

x is odd. Since the field k̂ has no proper extensions of odd degree, we conclude

that there is c ∈ k̂ such that x − c divides u. Notice that x − c = p(t)
t

, where

p(t) = t2 − ct + a. Comparing the residues at p(t) of the both parts of the equality
(3) we get a contradiction, since ∂p(tϕ) = 0, and ∂p(uϕ) = ϕbk(

√
c2−4a) 6= 0. The

proposition is proved.

Corollary 2. Let k be a field, b1, b2 ∈ k∗. Then the following conditions are

equivalent.

1) The elements 1, b1, b2 ∈ k∗/k∗2 are pairwise distinct.

2) The field k(x) has not property D(2) and there exist a ∈ k∗, s1, s2 ∈ k(x)∗

such that the extension k(x,
√

x2 − 4a)/k(x) and the forms s1〈〈b1〉〉 and s2〈〈b2〉〉
provide a counterexample.

Proof. 1) ⇒ 2). By Proposition 1 it suffices to find a, d1, d2 ∈ k∗ such that b1 =
d2
1 − 4a, b2 = d2

2 − 4a. One can put, for instance, d1 = b1−b2+1
2

, d2 = b2−b1+1
2

,

a = 1
4 (d2

1 − b1).
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2) ⇒ 1). If b1 is a square, then DL(〈〈b1〉〉) = L∗ for any extension L/k(x), hence
for any s1, s2 ∈ k(x)∗ the forms s1〈〈b1〉〉 and s2〈〈b2〉〉 do not provide a counterexample

to property D(2). Assume that b1b2 is a square, i.e. b1 ≡ b2( mod k∗2). Let L/k(x)
be an arbitrary field extension. Assume that c ∈ DL(s1〈〈b1〉〉) ∩ DL(s2〈〈b2〉〉). Then
〈〈b1, cs1〉〉 = 〈〈b1, cs2〉〉 = 0, hence 〈〈b1, s1s2〉〉 = 0, and so

s1 ∈ DL(s1〈〈b1〉〉) ∩ DL(s2〈〈b2〉〉) ∩ k(x).

Remark. If k0 is an algebraically closed field, and k is the rational function
field over k0, then cd2(k) = 1 and cd2(k(x)) = 2. By Corollary 2 the field k(x) does
not have property D(2). On the other hand, if I2(K) = 0, then the field K has
property D(2), since 1 is a value of any binary form over K.

It has been established in [1] that if the field F has not property D(2), then
the field F1 = F ((t)) has not property CS. Recall that property CS for the
field F1 means that for any quaternion algebras Q1, Q2 over F1 and c ∈ F ∗

1

such that (Q1 ⊗ Q2)F1(
√

c) is not a division algebra there exists d ∈ F ∗
1 such that

Q1F1(
√

c,
√

d) = 0, Q2F1(
√

c,
√

d) = 0. In fact, if the binary forms s1〈〈b1〉〉, s2〈〈b2〉〉
and the quadratic extension F (

√
c)/F provide a counterexample to property D(2)

for the field F , then the quaternion algebras Q1 ≃ (b1, s1t), Q2 ≃ (b2, s2t) give a
counterexample to property CS for the field F ((t)).

Let now F be an arbitrary field, for which property CS does not hold. Assume
that quaternion algebras Q1, Q2 and a quadratic extension F (

√
c)/F provide a

counterexample. In particular, (Q1 ⊗ Q2)F (
√

c) is not a division algebra, which

implies that Q1 ⊗ Q2 ≃ (c, d) ⊗ (e, f) for some d, e, f ∈ F ∗. Notice that (e, f) 6= 0,
for otherwise Q1and Q2 would have a common quadratic subfield. Consider the
biquaternion algebras D1 ≃ Q1⊗ (c, u) and D2 ≃ Q2⊗ (c, du) over the field F ((u)).

Proposition 3. 1) ind(D1 ⊗ D2) = 2.

2) The algebras D1 and D2 do not have a common biquadratic splitting ex-

tension. In other words, for any p, q ∈ F ((u))∗ either D1F ((u))(
√

p,
√

q) 6= 0, or

D2F ((u))(
√

p,
√

q) 6= 0.

Proof.

1) D1 +D2 = Q1 +Q2 +(c, u)+(c, du) = Q1 +Q2 +(c, d) = (e, f), which proves
the first part of the proposition.

2) Assume the contrary, i.e. that D1F ((u))(
√

p,
√

q) = 0, D2F ((u))(
√

p,
√

q) = 0. Since

F ((u))
∗
/F ((u))

∗2
= F ∗/F ∗2 ⊕ Z/2Z, we may assume that p ∈ F ∗. If q ∈ F ∗, it

is easy to see that F (
√

c) ⊂ F (
√

p,
√

q), i.e. F (
√

p,
√

q) = F (
√

c,
√

c′) for some
c′ ∈ F ∗. Hence

Q1F (
√

c,
√

c′) = Q2F (
√

c,
√

c′) = 0,

which is impossible, since the algebras Q1, Q2 and the extension F (
√

c)/F provide
a counterexample to property CS. Therefore, we may suppose that q = au, where
a ∈ F ∗. Then, obviously,

(Q1 + (c, a))F ((u))(
√

p,
√

au) = (Q1 + (c, u))F ((u))(
√

p,
√

q) = 0,

(Q2 + (c, ad))F ((u))(
√

p,
√

au) = (Q2 + (c, du))F ((u))(
√

p,
√

q) = 0.
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Hence,
(Q1 + (c, a))F (

√
p) = 0, (Q2 + (c, ad))F (

√
p) = 0,

which implies that
Q1F (

√
c,
√

p) = Q2F (
√

c,
√

p) = 0,

a contradiction to the fact that the algebras Q1, Q2 and the extension F (
√

c)/F
provide a counterexample to property D(2). The proposition is proved.

Remark. To give a concrete example of biquaternion algebras D1 and D2

satisfying the conditions of Proposition 3 we start from the binary forms q1 ≃
(x− d1)〈〈d2

1 − 4a〉〉 and q2 ≃ (x− d2)〈〈d2
2 − 4a〉〉 over the field k(x) from Proposition

1. Then Q1 ≃ (d2
1 − 4a, (x− d1)t), Q2 ≃ (d2

2 − 4a, (x− d2)t). It is easy to check the
following equality comparing the residues on its both sides:

Q1 + Q2 = (x2 − 4a,−(x − d1)(x − d2)((d1 + d2)x − 4a − d1d2))+

((d2
1 − 4a)(d2

2 − 4a), ((d1 + d2)x − 4a − d1d2)(d1 + d2)
−1

t).

Tracing back the construction of the algebras D1, D2 from the algebras Q1, Q2,
we get over the field k(x)((t))((u))

D1 ≃ (d2
1 − 4a, (x− d1)t) ⊗ (x2 − 4a, u),

D2 ≃ (d2
2 − 4a, (x− d2)t) ⊗ (x2 − 4a,−(x− d1)(x − d2)((d1 + d2)x − 4a − d1d2)u).

Notice that if cd2k = 1, K = k(x)((t))((u)), then cd2K = 4, so one can construct
a counterexample with a field K of 2-cohomological dimension 4. On the other hand,
there is no such a counterexample for a field of cohomological dimension 2. More
precisely we have the following

Proposition 4. Let K be a field such that I3(K) = 0. Let further D1, D2 be

biquaternion algebras such that ind(D1 +D2) = 2. Then there exist p, q ∈ K∗ such

that

D1K(
√

p,
√

q) = D2K(
√

p,
√

q) = 0.

Proof. By ([2], Lemma 14.2) we have I3(K(
√

a)) = 0 for any a ∈ K∗. Let ϕ1, ϕ2

be Albert forms corresponding to D1, D2. Then by ([4], Ch.2, Th.14.4) we get

(ϕ1 − ϕ2)K(
√

b) ∈ I3(K(
√

b)) = 0

for any b ∈ K∗ such that (D1 + D2)K(
√

b) = 0. Hence ϕ1 ⊥ −ϕ2 ≃ 〈〈b〉〉 ⊗ ψ, where

dim ψ = 6. Let ψ1 ∈ I2(K) be such a form that ψ = ψ1 + τ , where dim τ = 2.
Then we have

ϕ1 − ϕ2 = 〈〈b〉〉 ⊗ ψ1 + 〈〈b〉〉 ⊗ τ = 〈〈b〉〉τ,

since 〈〈b〉〉 ⊗ ψ1 ∈ I3(K) = 0. Therefore, dim(ϕ1 ⊥ −ϕ2)an ≤ 4. This means that
ϕ1 and ϕ2 have a common 4-dimensional subform, say

ϕ1 ≃ 〈a, b, c, d, e1,−abcde1〉,
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ϕ2 ≃ 〈a, b, c, d, e2,−abcde2〉.
Then, obviously,

ϕ1K(
√
−ab,

√
−cd) = ϕ2K(

√
−ab,

√
−cd) = 0,

which is equivalent to

D1K(
√
−ab,

√
−cd) = D2K(

√
−ab,

√
−cd) = 0,

so we can put p = −ab, q = −cd. The proposition is proved.

The following theorem [7] is the main motivation of the present note, and for
the sake of completeness we give here its proof.

Theorem 5. Let D1 and D2 be biquaternion algebras over a field k such that

ind(D1 + D2) = 2. Then there exists a field extension l/k of degree 4 such that

D1l = D2l = 0.

Proof. Let D1 +D2 = Q = (a, b). Then by the dimension count D1 ⊗Q ≃ M2(D2).
In particular, Q →֒ M2(D2). It follows that there exist I, J ∈ M2(D2) such that

I2 =

(
a 0
0 a

)
, J2 =

(
b 0
0 b

)
, and IJ = −JI.

Let I =

(
α β
γ δ

)
. We may assume that α2 6= a, and D2 is a division algebra

(in the opposite case the theorem is simple and left to the reader).

Lemma 6. There is a matrix S ∈ GL2(D2) such that SIS−1 =

(
0 1
a 0

)
.

Proof. Since α2 6= a and I2 =

(
a 0
0 a

)
, we have β 6= 0. Then for any x ∈ D2

(
1 0
x 1

)
I

(
1 0
x 1

)−1

=

(
1 0
x 1

) (
α β
γ δ

) (
1 0
−x 1

)
=

(
α − βx ∗

∗ ∗

)
.

Hence setting x = β−1α we may assume that α = 0. Since

(
α β
γ δ

)2

=

(
a 0
0 a

)
,

we get βγ = a, βδ = 0. Since D2 is a division algebra, we conclude that δ = 0, i.e.(
α β
γ δ

)
=

(
0 aγ−1

γ 0

)
. Put C =

(
1 0
0 aγ−1

)
. Then

C

(
α β
γ δ

)
C−1 =

(
0 1
a 0

)
.

The lemma is proved.

In view of the above lemma, conjugating by a suitable matrix we may assume

that I =

(
0 1
a 0

)
. Let J =

(
x y
z t

)
. Since

(
0 1
a 0

) (
x y
z t

)
= −

(
x y
z t

) (
0 1
a 0

)
,



ON PROPERTY D(2) AND COMMON SPLITTING FIELD OF TWO BIQUATERNION ALGEBRAS7

we get that z = −ay, t = −x. Therefore,

(
x y

−ay −x

)2

=

(
b 0
0 b

)
, which means

that x2 − ay2 = b and xy = yx. Hence the subalgebra l1 = k[x, y] is a subfield
of D2. Moreover, Ql1 = 0. If l is a maximal subfield of D2 containing l1, then
Ql = (D2)l = 0, which implies (D1)l = 0, and proves Theorem 5.
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