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ABSTRACT. Let K be a field of characteristic not 2, X a nonsingular projective conic
over K, n is a positive integer and a; € K* for 1 < i < n. We investigate elements
of 2 Br(X), which are sums of quaternion algebras (a;, f;) for some f; € K(X)*. An
application to a construction of indecomposable division algebras of exponent 2 is
given.

The main purpose of this paper is to construct indecomposable central division
algebras of an arbitrary 2-primary index more than 4 over fields with finite u-
invariant (recall that the u-invariant of the field K is the maximal dimension of
anisotropic quadratic forms over K). To do this we begin with a result concerning
the Brauer group of a conic. Let K be a field of characteristic different from 2, and
let X be a nonsingular projective conic over K. Recall that

2Br(X) = ker(:BrK(X) > [ K(2)"/K(2)"),

where K (X)) is the function field of X, z runs over all closed points of X, and K (x)
is the residue field at x. Moreover,

vz (g)
B, g) = (—1) =@ L7 iy ()2,

g'Uac (f)
where v, is the discrete valuation related to the point z, and the symbol (f,g)
denotes a quaternion algebra. Notice also that

reSK(X)/K oBr K C QBI"(X).

From now on we fix a field K of characteristic not 2, and elements aq,...a, € K*
such that a7,...a, € K*/K*? are linearly independent over Z/2Z. For any set

I c{1,....n}, put af = [[a; (if I = 0, then a;f = 1). For any polynomial
el
f € KJt] denote by I(f) the leading coefficient of f.
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Proposition 1. Let X be a nonsingular projective conic over K, () the corre-
sponding quaternion algebra, o € 9Br(X). Suppose that the following conditions
hold:

1) a = Y (ai, f;) for some f; € K(X)".
i=1
2) There exist at most two sets I C {1,...,n} such that Qg /a7) = 0.

Then there exist by, ...b, € K* such that a = resg(x)/x _ (@i, b;).
i=1

Proof. If Q = 0, then K(X) = K(t) is the rational function field. The exact
sequence
res 0 * %2
0— oBrK = ,BrK(t) > [[ K(2)"/K(x)
;CG]P)}(
shows that ,Br(X) = resg ),k 2Br K. There is a splitting homomorphism
c: oBrK(t) — oBrK

such that ¢((f,g9)) = (I(f),l(g)) for any f,g € K|t|]. Applying the map c to the
equality

a = Z(ai7 f1)7
i=1
we get what we need.

So assume that Q = (a,b) # 0. Let 22 = az? + by? be the equation determining
the conic X, and let vy be the point of X determined by y = 0. Obviously, we have
K(v9) = K(y/a). In particular, deg(vg) = 2. Assume first that K (vg) # K(\/ar)
for each I C {1,...,n}, i.e. aa;r ¢ K*°.

For any f € K(X) denote by V(f) the finite set of all the points v # vy of X
such that v(f) is odd (we identify a point of X with the corresponding discrete K-

valuation). Let V = 'Lnjl V(fi). Forany I C {1,....n}put V; = N V(f)\U V(fi)-
1= &l

il
Clearly, V' = |J V7, and, moreover, this union is disjoint and V(f;) = |J V7. For
1 =
each I C {1,...,n} consider the divisor
1
ar = Z v— 5(2 deg v)vg.
veVr veVrT

Obviously, dega; = 0. Since any divisor on X of degree 0 is principal, we get that
a; =div(gr) = > v(gr)v for some gr € K(X)*. Notice that

veX
( ) { 1, ifveV;
v = ’
g 0, ifvéVi,v#u

and, therefore, v(f;(]] gr)~") is even for any i and v # vo. Moreover, since
iel
deg(div(f;(TT g1)™")) = 0, degvy = 2, and 2|degv for any v € X, we conclude
i€l
that vo(fi([] gr)~") is also even, i.e. v(f;(] g7)”") is even for any i and v € X.
i€l iel
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Therefore, we have div(f;([] ¢7)") = 2div(h;), i.e. fi(I] g1)”" = ush? for
i€l iel
some u; € K* and h; € K(X)*. This implies

n

O“K(X) = Z(aufz — Z A, qugIh Z CLZ,UZ') +Z(a17gl)~
=1 =1

i=1 i€l I

Now, let Iy be a subset of {1,...,n}, v € Vi,. Then we have

1= av(OéK(X)) = 6@(Z(a1791>) = a(afovgf())’

1

since v(gr) = 0 if I # Io.

On the other hand, if v ¢ Vj, and v # v, then, obviously, d,(ar,,91,) = 1, since
v(gr,) = 0. Thus, we conclude that d,(ay,, g1,) = 1 for any v # vp.

Our next step is to show that 0,,(ar,,g7,) = 1 as well. Assume the converse.
Then vy(gz,) is odd. Since degdiv(gr,) = 0, and degvy = 2, there exists v # vy
such that v(gy,) is odd and 4 fdegv. We have

1= dy(as,, g1,) = az, (mod K (v)*?).

Hence we obtain that K (,/az,) C K(v). Furthermore, since deg v is not divided by
4, we get that the degree [K(v) : K(\/az,)] is odd. Since Qg (,) = 0, we conclude
that Qg var) = 0. Therefore, by condition 2) of the proposition there are at most
two sets Iy, which can satisfy the unequality 0,,(ar,,g1,) # 1. Let, for instance,
avo (afowgf(n) 7£ 1 and aUo (6”0279102) 7£ 1. So we have

H a; H a; = a101vg~701> + (a10279102>) = avo( Z (CE[,Q[)) =1

i€lgr  i€Ips I#1o1,102

Thus, aj,, = ar,,(mod K*?) (recall that a # ar(mod K*?) for any I), which is
impossible in view of linear independency of ag,...,a, € K*/K *2,
The case where there is an only Iy such that 0,,(ar,, g91,) # 1 is treated similarly.
Therefore, we conclude that d,(ay,gr) =1 for any I C {1,...,n} and v € X.

Lemma 2. Assume that o € 2Br(X) \ resg(x)/x(2Br K). Then ind(a) > 4

Proof. The Merkurjev theorem on the norm residue homomorphism of degree 2 [4]
claims that for any field F' the natural map Ky (F')/2K5(F) — oBr F is an isomor-
phism. In view of this it follows from [10] that, if Br(X) # resg(x),/x(2Br K),
then

2Br(X)/resg(x)/k (2Br K) ~ Z/27, Q = 2D for some D € Br K and Dy x)

is the nonzero element in the factorgroup 2Br(X)/resg(x)/k (2Br K).

Therefore, we get that o = (D + 3) k(x), where 3 € 2Br K. Obviously, we may
assume that « is a division algebra. Let D; be the central division algebra over K
similar to D + 3. Since exp D; = 4 we have ind D; > 4. Suppose that ind(«a) = 2.
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Then by the Merkurjev index reduction theorem [5] D; ~ Q ® x Q' for some central
division K-algebra Q'. Obviously, Q' x(x) = Dig(x) = «. Since exp D1 = 4 and
exp QQ = 2, we get that exp Q" = 4. Applying the index reduction theorem again we
obtain that Q' ~ Q ®x Q" for some central division K-algebra ', which implies

Dy ~Q" ok QoK Q ~ Q" @K My(K),

a contradiction, since D, is a division algebra. The lemma is proved. O

Now we are able to finish the proof of Proposition 1 in the case where aa; ¢ K*?
for each I C {1,...,n}. In view of Lemma 2 we get that (ar,gr) = resx(x)/x 51
for some #; € oBr K. Since (51)1((\/@)()() = 0, we have (1) /ar) is either zero
or Qk(/a7), which implies that 3r equals either (ar,cr) or (ar,cr) + @ for some
c; € K*. Therefore,

n

a = feSK(X)/K(Z(CLbCI)) = 1"E"SK(X)/K(Z:(C”’ HCI)>’

I i=1 el
so we can put b; = [] ¢;.
icl
It remains to consider the case where aa; € K** for some I € {1,...,n}. Passing

to the rational function field K (t) we have

Q = (a,b) = (at® + b, —ab),

n

and, obviously (at? + b)a; ¢ K(t)*Q. Hence ag(xy) = > (as, p;) for some poly-
i=1

nomials p; € K[t]. This implies that a = > (a;,l(p;)). The proposition is proved.
i=1
U

Corollary 3. In the notation of Proposition 1 assume that o = resg(x)/x 7 for
n

some vy € Br K. Then ~ equals either Y (a;,b;) or Q+ > (a;,b;) for some b; € K*.
i=1 i=1

n

Proof. Since resg(x)/kx (7 — > (ai,b;)) = 0, and ker(Br K — BrK(X)) = (Q) is
1

the cyclic group generated by_Q, the corollary follows. O

We can not drop condition 2) in Proposition 1 as the following two examples
show.

Example A.

Let K be a field, a1,a2,a3 € K*, D € 2Br K, Dg( /a7, /a3, /a5) = 0, and D is
not a sum of 3 quaternion algebras (the existence of such D has been established
in [6] and [1]). Hence by [3] we have

(1) Dy (yaz) = (a1,b1 + c1v/az) + (az, b2 + cav/a3)
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for some b1, bo, c1,co € K, and, moreover,
2 2 2 2
(a1,b] — azcy) + (a2, b3 — azcy) = Nk (jaz) kD = 0,

i.e. (a1,b? —asc?) = (az, b3 —aszc3). Put Q = (a1, b —aszc?), and let X be the conic
corresponding to ). Then we get

Nk (x)(yaz)/k(x)(a1, b1 + c1v/a3) = (a1, b — asc) g (x) =0,

N (x)(vaz)/ K (x) (a2, b2 + c21/a3) = (a2, b5 — asc3) k(x) = 0.
Hence by [3]

(2) (a1, b1 + c1v/a3) k(x)(vaz) = (@1, 1)Kk (x)(vas)
(3) (a2, b2 + c2v/a3) k(x)(yaz) = (a2, f2) k(x)(vaz)

for some f1, fo € K(X)*. Combining (1), (2) and (3) we obtain that

(D — (a1, f1) — (a2, f2)) K (x)(vaz) = 0,
i.e.

Dy (xy = (a1, f1) + (a2, f2) + (a3, f3)
for some f1, fo, f3 € K(X)*. On the other hand, if Corollary 3 of Proposition 1
were valid, then we would have

D = (a1761) + (a2762) + (CL3,€3)

for some eq, eq,e3 € K*, which would contradict to the hypothesis on D.
Notice that in this example

Qr(var) = QK (varas) = QK (yaz) = QK (yazas) = 0,
so there are at least four elements a; such that Qg ar) = 0.

Example B.

Let K be a field, v/—1 € K, Q = (a1, a2) a nontrivial quaternion algebra, X the
corresponding conic. Put o = (a1,y) + (az,z) € 2Br K(X), where a;2? + asy® = 1
is the equation of an affine part of the conic. It is easy to see that o € 2Br(X)
and Ng(x)/k(z)@ = Q. In particular, a € resg(x)/x(2Br K). Notice that since
v—1 € K, we have

Q= (ah CL2) = (CL1 + aq, —G1CL2) = (CL1 + ao, G1CL2),

hence
QK (yar) = @k (yaz) = QK (yaraz) =0

so there are three elements ay such that Qg jar) = 0.
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We keep the conditions of Proposition 1. Let L/K be any field extension. Con-
sider the following abelian groups:

A(L/K) = {v € 2Br K such that resy /gy = Z(ai,fi) for some f; € L™},

=1
B(L/K)={ (ai,b;) € 2Br K where b; € K*},
=1

H(L/K) = A(L/K)/B(L/K).

Corollary 3 claims that if L = K(X), where X is the nonsingular projective conic
corresponding to the quaternion algebra @, then H(L/K) = (Q) (of course, it may
happen that the image of @ in H(L/K) is zero). Now we will consider the case of
a quadric of dimension more than 1. We will need the following

Lemma4. 1) IfF/L/K is a tower of field extensions, and H(L/K) = H(F/L) = 0,
then H(F/K) =0 as well. If H(F//K) =0, then H(L/K) = 0.

2) If L/ K is a purely transcendental extension, then H(L/K) = 0.

3) If H(F/K) = 0, and the extension L/K is such that LF/F is a purely
transcendental extension, then H(L/K) = 0.

Proof. 1) This follows immediately from the definition of the groups H(F/K),
H(L/K) and H(F/L).
2) In view of 1) it suffices to treat the case where L = K(t). Assume that u €

n

oBr K is such that g ) = > (ay, fi) for some f; € K[t]. Then u = > (a;, l(fi)),

i=1 i=1
which proves the assertion.

3) This follows at once from 1) and 2). O

Proposition 5. Let X = X, be the projective quadric over K corresponding to
the anisotropic quadratic form ¢. Put L = K(X). Then

1) If dim ¢ = 4 and disc(p)a; € K*? for some I # (), then H(L/K) = ((a, b)),
where (a,b) is an arbitrary quaternion K-algebra such that Co(p) ~ (a,b) - (,/amep)-

2) If dim ¢ = 4 and disc(p)a; ¢ K** for every I, then H(L/K) = 0.

3) If dim¢ > 5, then H(L/K) = 0.

Proof. 1),2). Let d = disc(ip), and let 22 — ax? — by? + abd = 0 be the equation of
an affine part of X. We have

K(X) = K(z,y, Vaz? + by? — abd) = K (z)(C),
where C is the conic over K(x) corresponding to the quaternion K (x)-algebra

(b, ax? — abd).
Let u € A(L/K). By Corollary 3 we have

(4) Uk (z) = 0+ Z(@i, fi)s
i=1



ON SOME ELEMENTS OF THE BRAUER GROUP OF A CONIC 7

where § is either 0 or (b, az? — abd), and f; € K[z]. Furthermore,
u= clug(m) = c(8) + Y _(ai, 1(f)),
i=1

where ¢(d) is either zero, or (a,b). This proves that H(L/K) C {((a,b)).
Assume first that da; € K*? for some I. Then, since

(ab)*d = a(by)® + b(az)* — abz?
and
(a, D) rex) = (a(by)” + blax)*, —ab) = (a(by)” + blaz)” — abz®, ab(a(by)” + b(az)?),

we get that (a,b) € H(L/K).
Now assume that da; ¢ K*? for every I. Compare the residues at (22 — bd) on
the left-hand and the right-hand sides of (4). We have

n

(5) amz_bd(uK(I)) = O, amz_bd( Z(ai, f1)> = ay for some 1.
i=1
Suppose that § # 0, i.e. § = (b,az? — abd). The equality 9,2_yq(6) = b and (5)

*2
imply ba; € K(v/bd) . Since da; ¢ K*?, we obtain that ba; € K*?. Thus, we
have proved part 2) if ba; ¢ K*? for any I. On the other hand,

@K(t) = <17 —CLb(CLt2 + b)7 _<at2 + b)7 CLbd>,

and (at? + b)ar ¢ K(t)*z. The above argument show that H(LK(t)/K(t)) = 0,
and so by Lemma 4 we have H(L/K) = 0.

3) Obviously, we can choose a 4-dimensional subform ¢ of the form ¢ ) such
that disc(y)a; ¢ K(t)*z. Since the form ¢ (4)(x,) is isotropic, the extension
K(t)(Xy)(Xy)/K(t)(Xy) is purely transcendental. Applying part 2) and Lemma
4 we get H(K(X,)/K) =0. O

Now we are ready to strentghen the main results of [7] and [8]. Recall the
corresponding notation.

Let F' be an arbitrary field, n > 2, a,by,...,b, € F*, D € 3BrF. We call the
triple (F, D,{a,bs,...,b,}) admissible, if the following conditions hold:

a) The elements @, by, ..., b, € F*/F** are linearly independent.
b) ind D = 2.
C) DF(\/E’\/EIV"’\/ETL) = 0.
d) For any tower F' C Fy C F» C L = F(\/a, Vb, ..., \/Bn) such that
\/E%FQ*, [LZF1]28, [F21F1]24
we have

Dp, ¢ 2Br(Fi(va)/F1) + 2Br(Fp/F).
e) The field F' has no proper extensions of odd degree.
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Corollary 6. Suppose that the triple (F, D, {a,b1,...,b,}) is admissible, ¢ is an
anisotropic form over F, and dim¢ > 5. Put X = X,,, and let F'(X),qq be a maxi-
mal odd degree extension of F/(X). Then the triple (F (X )oad; Dp(x) 04> 10501, -, bn} )|}
is admissible as well.

Proof. Obviously, all the above conditions except maybe d) hold. Let us check d).
First we will do this for the field F(X). So, suppose that there is a tower of fields
F(X)C Fi(X) C Fy(X) C L(X) = F(ya,Vby,...,vVb,)(X) such that

\/5¢F2*, [LZF1]28, [F21F1]24

and
Dp,(x) € 2Br(Fi(X)(Va)/F1(X)) + 2Br(Fa(X)/Fi(X)).

Notice that Fy = Fy(y/d1,/d3), for some dq,ds € F*, hence by [3] we have
Dp,x) = (a, f) + (d1, f1) + (d2, f2)
for some f, f1, fo € F1(X)*. By part 3) of Proposition 5 we conclude that
Dp, = (a,u) + (di,u1) + (d2, u2)

for some u, uy,uy € Fy, which contradicts to condition d) for the admissible triple
(F,D,{a,by,...,b,}).

On the other hand, it has been shown in [8] that if the triple (K, D, {a, by, ..., b,} )}
is admissible, then the triple Koq4, Dk, ;. {@,b1,...,b,}) is admissible as well (see
also Lemma 9 below). This finishes the proof of Corollary 6. O

We recall now some additional results from the papers [7] and [§].

If the triple (F, D,{a,by,...,b,}) is admissible, and E = F((to))((t1)) ... ((tn))
is the Laurent series field in variables tg,tq,...,t,, then the division algebra A
similar to the algebra

D ®g (a,t9) ®g (b1,t1) ® -+ Qp (by, tn)

does not decompose into a tensor product of two nontrivial central simple algebras
over any odd degree extension of E, and ind A = 2"+ [8]. Moreover, the multi-
quadratic extension F'(v/b1,...,vb,)/F is not 4-excellent, and if D = (u,v), the
form (uv, —u, —v, a) provides a corresponding counterexample [7]. Finally, if k is a
field and elements @, by, ...,b, € k*/ k*2 are linearly independent over 7./27., then
there exists an extension F'/k and a quaternion algebra D over F' such that the
triple (F, D,{a,by,...,b,}) is admissible [§].

On the other hand, Corollary 6 and the argument in Lemma 9 below imply that
if the triple (F, D, {a,by,...,b,}) is admissible, then there exists an extension K/F
such that the triple (K, Dk, {a,by,...,b,}) is admissible as well, u(K) = 4, and K
has no proper odd degree extension.

Summarizing all these results we obtain the following
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Theorem 7. Let k be a field, n > 2. Assume that elements @, b1, ..., b, € k*/k*2
are linearly independent over 7Z/27. Then there exists an extension K /k such that

1) uw(K) = 4.

2) K has no proper extension of odd degree.

3) K(vb1,...,vb,)/K is not 4-excellent, and the counterexample is provided
by some 4-dimensional form of discriminant a.

4) There exists a central division algebra A over E = K((to))((t1))...((tn))
such that ind A = 2"*! and A; does not decompose into a tensor product of two

nontrivial central simple algebras over any odd degree extension L/E (notice that
w(E) = 2""3 and cda(E) = n + 3).

Next we compute the group H for the extension determined by the function field
of the Severi-Brauer variety related to a central simple algebra of exponent 2.

Corollary 8. Let D € 2Br K, and eitherind D > 4, orind D = 2 and Dk ( /a7) # 0
for every I. Denote by K (D) the function field of the Severi-Brauer variety SB(D)
corresponding to D. Then H(K(D)/K) = (D).

Proof. Let ind D = 2™, where n > 2. Let D; be the division algebra Brauer-
equivalent to D, F = SB(D;), and L = SB(D). Then, since SB(Dp) ~ P&&P~1,
the extension LF'/F is purely transcendental. Hence by Lemma 4 it suffices to
prove Corollary 8 in the case where D is a division algebra.

First consider the case where D is a tensor product of quaternion algebras. We
will go on by induction on n. Let ¢ € I?(K) be a quadratic form corresponding
to D under the isomorphism I?(K)/I3(K) ~ 2Br K. It is easy to see that we can
choose ¢ such that dim ¢ = 2n + 2, and, moreover, no form of dimension < 2n + 2
corresponds to D under this isomorphism. Let X = X be the projective quadric
determined by the form ¢. Consider the following diagram:

l L

K(X) —— K(X)(D)

where all the maps are natural field embeddings.

If n =2, then ind Dy (x) = 2, and Dk (x)(/a7) # 0 for any I, since Dk jar) # 0,
and ker(oBrF' — 2BrF(Y)) = 0 for any field F and any quadric Y over F' of
dimension > 2.

If n > 3, then 4 < ind Dg(x) < indD. So in both cases (n = 2 or n > 3)
we can apply the induction hypothesis to the extension K(X)(D)/K(X). Let
u € H(K(D)/K). By the induction hypothesis

uk(x) € H(K(X)(D)/K(X)) C (Dk(x))-

We conclude that either v € H(K(X)/K), or u+ D € H(K(X)/K). Since by
Proposition 5 we have H(K (X)/K) = 0, this completes the proof in the case where
D is a tensor product of quaternion algebras.

Thus, to prove the proposition in the general case it suffices to construct an
extension L /K such that Dy is a tensor product of quaternion algebras, ind Dy, > 4,

and H(L/K) = 0. We need the following
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Lemma 9.

1) If L/K is a finite odd degree extension, then H(L/K) = 0.

2) If 7 is a 3-fold Pfister form over K, then H(K(X,)/K) = 0.

3) Let F' be a field, D € yBr F' a division algebra. Assume that F' has no proper
extension of odd degree, and I3(F) = 0. Then D is a tensor product of quaternion
algebras.

Proof.

1) Assume that u € oBr K and ur, = ) (a;, b;), where b; € L*. Then
i=1

n

u = NL/K(UL) = Z(ai7NL/Kbi>:

=1

which proves 1).
2) This is a particular case of Proposition 5, since dim 7w = 8.
3) This part is proved in [9] and [2]. O

We return to the proof of Corollary 8 in the general case. For an arbitrary field
F' denote by F a maximal odd degree extension of F', and by F' the composite of
all extensions F'(X ), where 7 runs over all anisotropic 3-fold Pfister forms over F.
Consider the following infinite tower of fields K = K; C K5 C ..., where

% f(\z if 7 is odd,
i+l = —~ .
- K; if i is even

oo
Set L = |J Kj;. It is easy to see that L has no proper odd degree extensions, and
i=1
I3(L) = 0. Applying Lemma 9 we get that H(L/K) = 0 and Dy, is a tensor product
of quaternion algebras. Moreover, by the index reduction formula for central simple

algebras [5] we have ind Dy, = ind D. These properties of the field L prove Corollary

8 in the general case. U
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