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Abstract. Let K be a field of characteristic not 2, X a nonsingular projective conic


over K, n is a positive integer and ai ∈ K∗ for 1 ≤ i ≤ n. We investigate elements
of 2Br(X), which are sums of quaternion algebras (ai, fi) for some fi ∈ K(X)∗. An


application to a construction of indecomposable division algebras of exponent 2 is


given.


The main purpose of this paper is to construct indecomposable central division
algebras of an arbitrary 2-primary index more than 4 over fields with finite u-
invariant (recall that the u-invariant of the field K is the maximal dimension of
anisotropic quadratic forms over K). To do this we begin with a result concerning
the Brauer group of a conic. Let K be a field of characteristic different from 2, and
let X be a nonsingular projective conic over K. Recall that


2Br(X) = ker( 2BrK(X)
∂→


∐


x∈X


K(x)
∗
/K(x)


∗2
),


where K(X) is the function field of X , x runs over all closed points of X , and K(x)
is the residue field at x. Moreover,


∂x(f, g) = (−1)
vx(f)vx(g) f


vx(g)


gvx(f)
∈ k(x)∗/k(x)∗


2
,


where vx is the discrete valuation related to the point x, and the symbol (f, g)
denotes a quaternion algebra. Notice also that


resK(X)/K 2BrK ⊂ 2Br(X).


From now on we fix a field K of characteristic not 2, and elements a1, . . . an ∈ K∗


such that a1, . . . an ∈ K∗/K∗2 are linearly independent over Z/2Z. For any set
I ⊂ {1, . . . , n}, put aI =


∏
i∈I


ai (if I = ∅, then aI = 1). For any polynomial


f ∈ K[t] denote by l(f) the leading coefficient of f .
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Proposition 1. Let X be a nonsingular projective conic over K, Q the corre-
sponding quaternion algebra, α ∈ 2Br(X). Suppose that the following conditions
hold:


1) α =
n∑


i=1


(ai, fi) for some fi ∈ K(X)
∗
.


2) There exist at most two sets I ⊂ {1, . . . , n} such that QK(
√


aI) = 0.


Then there exist b1, . . . bn ∈ K∗ such that α = resK(X)/K


n∑
i=1


(ai, bi).


Proof. If Q = 0, then K(X) = K(t) is the rational function field. The exact
sequence


0 → 2BrK
res→ 2Br K(t)


∂→
∐


x∈P
1


K


K(x)
∗
/K(x)


∗2


shows that 2Br(X) = resK(t)/K 2BrK. There is a splitting homomorphism


c : 2BrK(t) → 2BrK


such that c((f, g)) = (l(f), l(g)) for any f, g ∈ K[t]. Applying the map c to the
equality


α =
n∑


i=1


(ai, fi),


we get what we need.
So assume that Q = (a, b) 6= 0. Let z2 = ax2 + by2 be the equation determining


the conic X , and let v0 be the point of X determined by y = 0. Obviously, we have
K(v0) = K(


√
a). In particular, deg(v0) = 2. Assume first that K(v0) 6= K(


√
aI)


for each I ⊂ {1, . . . , n}, i.e. aaI /∈ K∗2.
For any f ∈ K(X) denote by V (f) the finite set of all the points v 6= v0 of X


such that v(f) is odd (we identify a point of X with the corresponding discrete K-


valuation). Let V =
n⋃


i=1


V (fi). For any I ⊂ {1, . . . , n} put VI =
⋂
i∈I


V (fi)\
⋃
i/∈I


V (fi).


Clearly, V =
⋃
I


VI , and, moreover, this union is disjoint and V (fi) =
⋃
i∈I


VI . For


each I ⊂ {1, . . . , n} consider the divisor


aI =
∑


v∈VI


v − 1


2
(
∑


v∈VI


deg v)v0.


Obviously, deg aI = 0. Since any divisor on X of degree 0 is principal, we get that
aI = div(gI) =


∑
v∈X


v(gI)v for some gI ∈ K(X)∗. Notice that


v(gI) =


{
1, if v ∈ VI


0, if v /∈ VI , v 6= v0


,


and, therefore, v(fi(
∏
i∈I


gI)
−1


) is even for any i and v 6= v0. Moreover, since


deg(div(fi(
∏
i∈I


gI)
−1


)) = 0, deg v0 = 2, and 2| deg v for any v ∈ X , we conclude


that v0(fi(
∏
i∈I


gI)
−1


) is also even, i.e. v(fi(
∏
i∈I


gI)
−1


) is even for any i and v ∈ X .
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Therefore, we have div(fi(
∏
i∈I


gI)
−1


) = 2 div(hi), i.e. fi(
∏
i∈I


gI)
−1


= uih
2
i for


some ui ∈ K∗ and hi ∈ K(X)∗. This implies


αK(X) =
n∑


i=1


(ai, fi) =
n∑


i=1


(ai, ui


∏


i∈I


gIh
2
i ) =


n∑


i=1


(ai, ui) +
∑


I


(aI , gI).


Now, let I0 be a subset of {1, . . . , n}, v ∈ VI0 . Then we have


1 = ∂v(αK(X)) = ∂v(
∑


I


(aI , gI)) = ∂(aI0 , gI0),


since v(gI) = 0 if I 6= I0.
On the other hand, if v /∈ VI0 and v 6= v0, then, obviously, ∂v(aI0 , gI0) = 1, since


v(gI0) = 0. Thus, we conclude that ∂v(aI0 , gI0) = 1 for any v 6= v0.
Our next step is to show that ∂v0


(aI0 , gI0) = 1 as well. Assume the converse.
Then v0(gI0) is odd. Since deg div(gI0) = 0, and deg v0 = 2, there exists v 6= v0


such that v(gI0) is odd and 4 6 | deg v. We have


1 = ∂v(aI0 , gI0) = aI0(modK(v)
∗2


).


Hence we obtain that K(
√


aI0) ⊂ K(v). Furthermore, since deg v is not divided by
4, we get that the degree [K(v) : K(


√
aI0)] is odd. Since QK(v) = 0, we conclude


that QK(
√


aI0
) = 0. Therefore, by condition 2) of the proposition there are at most


two sets I0, which can satisfy the unequality ∂v0
(aI0 , gI0) 6= 1. Let, for instance,


∂v0
(aI01 , gI01) 6= 1 and ∂v0


(aI02 , gI02) 6= 1. So we have


∏


i∈I01


ai


∏


i∈I02


ai = ∂v0
((aI01 , gI01) + (aI02 , gI02)) = ∂v0


(
∑


I 6=I01,I02


(aI , gI)) = 1.


Thus, aI01 = aI02(modK∗2) (recall that a 6= aI(modK∗2) for any I), which is
impossible in view of linear independency of a1, . . . , an ∈ K∗/K∗2.


The case where there is an only I0 such that ∂v0
(aI0 , gI0) 6= 1 is treated similarly.


Therefore, we conclude that ∂v(aI , gI) = 1 for any I ⊂ {1, . . . , n} and v ∈ X .


Lemma 2. Assume that α ∈ 2Br(X) \ resK(X)/K( 2Br K). Then ind(α) ≥ 4.


Proof. The Merkurjev theorem on the norm residue homomorphism of degree 2 [4]
claims that for any field F the natural map K2(F )/2K2(F ) → 2BrF is an isomor-
phism. In view of this it follows from [10] that, if 2Br(X) 6= resK(X)/K( 2BrK),
then


2Br(X)/ resK(X)/K( 2BrK) ≃ Z/2Z, Q = 2D for some D ∈ BrK and DK(X)


is the nonzero element in the factorgroup 2Br(X)/ resK(X)/K( 2BrK).
Therefore, we get that α = (D + β)K(X), where β ∈ 2BrK. Obviously, we may


assume that α is a division algebra. Let D1 be the central division algebra over K
similar to D + β. Since expD1 = 4 we have indD1 ≥ 4. Suppose that ind(α) = 2.
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Then by the Merkurjev index reduction theorem [5] D1 ≃ Q⊗K Q′ for some central
division K-algebra Q′. Obviously, Q′


K(X) = D1K(X) = α. Since expD1 = 4 and


exp Q = 2, we get that exp Q′ = 4. Applying the index reduction theorem again we
obtain that Q′ ≃ Q ⊗K Q′′ for some central division K-algebra Q′′, which implies


D1 ≃ Q′′ ⊗K Q ⊗K Q ≃ Q′′ ⊗K M4(K),


a contradiction, since D1 is a division algebra. The lemma is proved. ¤


Now we are able to finish the proof of Proposition 1 in the case where aaI /∈ K∗2


for each I ⊂ {1, . . . , n}. In view of Lemma 2 we get that (aI , gI) = resK(X)/K βI


for some βI ∈ 2BrK. Since (βI)K(
√


aI)(X) = 0, we have (βI)K(
√


aI) is either zero


or QK(
√


aI), which implies that βI equals either (aI , cI) or (aI , cI) + Q for some
cI ∈ K∗. Therefore,


α = resK(X)/K(
∑


I


(aI , cI)) = resK(X)/K(


n∑


i=1


(ai,
∏


i∈I


cI)),


so we can put bi =
∏
i∈I


cI .


It remains to consider the case where aaI ∈ K∗2 for some I ∈ {1, . . . , n}. Passing
to the rational function field K(t) we have


Q = (a, b) = (at2 + b,−ab),


and, obviously (at2 + b)aI /∈ K(t)
∗2


. Hence αK(X)(t) =
n∑


i=1


(ai, pi) for some poly-


nomials pi ∈ K[t]. This implies that α =
n∑


i=1


(ai, l(pi)). The proposition is proved.


¤


Corollary 3. In the notation of Proposition 1 assume that α = resK(X)/K γ for


some γ ∈ BrK. Then γ equals either
n∑


i=1


(ai, bi) or Q+
n∑


i=1


(ai, bi) for some bi ∈ K∗.


Proof. Since resK(X)/K(γ −
n∑


i=1
(ai, bi)) = 0, and ker(BrK → BrK(X)) = 〈Q〉 is


the cyclic group generated by Q, the corollary follows. ¤


We can not drop condition 2) in Proposition 1 as the following two examples
show.


Example A.


Let K be a field, a1, a2, a3 ∈ K∗, D ∈ 2BrK, DK(
√


a1,
√


a2,
√


a3) = 0, and D is
not a sum of 3 quaternion algebras (the existence of such D has been established
in [6] and [1]). Hence by [3] we have


(1) DK(
√


a3) = (a1, b1 + c1
√


a3) + (a2, b2 + c2
√


a3)
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for some b1, b2, c1, c2 ∈ K, and, moreover,


(a1, b
2
1 − a3c


2
1) + (a2, b


2
2 − a3c


2
2) = NK(


√
a3)/KD = 0,


i.e. (a1, b
2
1−a3c


2
1) = (a2, b


2
2−a3c


2
2). Put Q = (a1, b


2
1−a3c


2
1), and let X be the conic


corresponding to Q. Then we get


NK(X)(
√


a3)/K(X)(a1, b1 + c1
√


a3) = (a1, b
2
1 − a3c


2
1)K(X) = 0,


NK(X)(
√


a3)/K(X)(a2, b2 + c2
√


a3) = (a2, b
2
2 − a3c


2
2)K(X) = 0.


Hence by [3]


(2) (a1, b1 + c1
√


a3)K(X)(
√


a3) = (a1, f1)K(X)(
√


a3),


(3) (a2, b2 + c2
√


a3)K(X)(
√


a3) = (a2, f2)K(X)(
√


a3)


for some f1, f2 ∈ K(X)∗. Combining (1), (2) and (3) we obtain that


(D − (a1, f1) − (a2, f2))K(X)(
√


a3) = 0,


i.e.
DK(X) = (a1, f1) + (a2, f2) + (a3, f3)


for some f1, f2, f3 ∈ K(X)∗. On the other hand, if Corollary 3 of Proposition 1
were valid, then we would have


D = (a1, e1) + (a2, e2) + (a3, e3)


for some e1, e2, e3 ∈ K∗, which would contradict to the hypothesis on D.
Notice that in this example


QK(
√


a1) = QK(
√


a1a3) = QK(
√


a2) = QK(
√


a2a3) = 0,


so there are at least four elements aI such that QK(
√


aI) = 0.


Example B.


Let K be a field,
√
−1 ∈ K, Q = (a1, a2) a nontrivial quaternion algebra, X the


corresponding conic. Put α = (a1, y) + (a2, x) ∈ 2BrK(X), where a1x
2 + a2y


2 = 1
is the equation of an affine part of the conic. It is easy to see that α ∈ 2Br(X)
and NK(X)/K(x)α = Q. In particular, α /∈ resK(X)/K( 2BrK). Notice that since√
−1 ∈ K, we have


Q = (a1, a2) = (a1 + a2,−a1a2) = (a1 + a2, a1a2),


hence
QK(


√
a1) = QK(


√
a2) = QK(


√
a1a2) = 0,


so there are three elements aI such that QK(
√


aI) = 0.
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We keep the conditions of Proposition 1. Let L/K be any field extension. Con-
sider the following abelian groups:


A(L/K) = {γ ∈ 2BrK such that resL/K γ =
n∑


i=1


(ai, fi) for some fi ∈ L∗},


B(L/K) = {
n∑


i=1


(ai, bi) ∈ 2BrK where bi ∈ K∗},


H(L/K) = A(L/K)/B(L/K).


Corollary 3 claims that if L = K(X), where X is the nonsingular projective conic
corresponding to the quaternion algebra Q, then H(L/K) = 〈Q〉 (of course, it may
happen that the image of Q in H(L/K) is zero). Now we will consider the case of
a quadric of dimension more than 1. We will need the following


Lemma 4. 1) If F/L/K is a tower of field extensions, and H(L/K) = H(F/L) = 0,
then H(F/K) = 0 as well. If H(F/K) = 0, then H(L/K) = 0.


2) If L/K is a purely transcendental extension, then H(L/K) = 0.
3) If H(F/K) = 0, and the extension L/K is such that LF/F is a purely


transcendental extension, then H(L/K) = 0.


Proof. 1) This follows immediately from the definition of the groups H(F/K),
H(L/K) and H(F/L).


2) In view of 1) it suffices to treat the case where L = K(t). Assume that u ∈
2BrK is such that uK(t) =


n∑
i=1


(ai, fi) for some fi ∈ K[t]. Then u =
n∑


i=1


(ai, l(fi)),


which proves the assertion.
3) This follows at once from 1) and 2). ¤


Proposition 5. Let X = Xϕ be the projective quadric over K corresponding to
the anisotropic quadratic form ϕ. Put L = K(X). Then


1) If dimϕ = 4 and disc(ϕ)aI ∈ K∗2 for some I 6= ∅, then H(L/K) = 〈(a, b)〉,
where (a, b) is an arbitrary quaternion K-algebra such that C0(ϕ) ≃ (a, b)K(


√
disc ϕ).


2) If dim ϕ = 4 and disc(ϕ)aI /∈ K∗2 for every I, then H(L/K) = 0.
3) If dim ϕ ≥ 5, then H(L/K) = 0.


Proof. 1), 2). Let d = disc(ϕ), and let z2 − ax2 − by2 + abd = 0 be the equation of
an affine part of X . We have


K(X) = K(x, y,
√


ax2 + by2 − abd) = K(x)(C),


where C is the conic over K(x) corresponding to the quaternion K(x)-algebra
(b, ax2 − abd).


Let u ∈ A(L/K). By Corollary 3 we have


(4) uK(x) = δ +
n∑


i=1


(ai, fi),







ON SOME ELEMENTS OF THE BRAUER GROUP OF A CONIC 7


where δ is either 0 or (b, ax2 − abd), and fi ∈ K[x]. Furthermore,


u = c(uK(x)) = c(δ) +


n∑


i=1


(ai, l(fi)),


where c(δ) is either zero, or (a, b). This proves that H(L/K) ⊂ 〈(a, b)〉.
Assume first that daI ∈ K∗2 for some I. Then, since


(ab)
2
d = a(by)


2
+ b(ax)


2 − abz2


and


(a, b)K(X) = (a(by)
2
+ b(ax)


2
,−ab) = (a(by)


2
+ b(ax)


2 − abz2, ab(a(by)
2
+ b(ax)


2
),


we get that (a, b) ∈ H(L/K).
Now assume that daI /∈ K∗2 for every I. Compare the residues at (x2 − bd) on


the left-hand and the right-hand sides of (4). We have


(5) ∂x2−bd(uK(x)) = 0, ∂x2−bd(


n∑


i=1


(ai, fi)) = aI for some I.


Suppose that δ 6= 0, i.e. δ = (b, ax2 − abd). The equality ∂x2−bd(δ) = b and (5)


imply baI ∈ K(
√


bd)
∗2


. Since daI /∈ K∗2, we obtain that baI ∈ K∗2. Thus, we
have proved part 2) if baI /∈ K∗2 for any I. On the other hand,


ϕK(t) ≃ 〈1,−ab(at2 + b),−(at2 + b), abd〉,


and (at2 + b)aI /∈ K(t)
∗2


. The above argument show that H(LK(t)/K(t)) = 0,
and so by Lemma 4 we have H(L/K) = 0.


3) Obviously, we can choose a 4-dimensional subform ψ of the form ϕK(t) such


that disc(ψ)aI /∈ K(t)
∗2


. Since the form ϕK(t)(Xψ) is isotropic, the extension
K(t)(Xψ)(Xϕ)/K(t)(Xψ) is purely transcendental. Applying part 2) and Lemma
4 we get H(K(Xϕ)/K) = 0. ¤


Now we are ready to strentghen the main results of [7] and [8]. Recall the
corresponding notation.


Let F be an arbitrary field, n ≥ 2, a, b1, . . . , bn ∈ F ∗, D ∈ 2BrF . We call the
triple (F, D, {a, b1, . . . , bn}) admissible, if the following conditions hold:


a) The elements a, b1, . . . , bn ∈ F ∗/F ∗2 are linearly independent.
b) indD = 2.
c) DF (


√
a,
√


b1,...,
√


bn) = 0.


d) For any tower F ⊂ F1 ⊂ F2 ⊂ L = F (
√


a,
√


b1, . . . ,
√


bn) such that


√
a /∈ F ∗


2 , [L : F1] = 8, [F2 : F1] = 4


we have
DF1


/∈ 2Br(F1(
√


a)/F1) + 2Br(F2/F1).


e) The field F has no proper extensions of odd degree.
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Corollary 6. Suppose that the triple (F, D, {a, b1, . . . , bn}) is admissible, ϕ is an
anisotropic form over F , and dim ϕ ≥ 5. Put X = Xϕ, and let F (X)odd be a maxi-
mal odd degree extension of F (X). Then the triple (F (X)odd, DF (X)odd


, {a, b1, . . . , bn})
is admissible as well.


Proof. Obviously, all the above conditions except maybe d) hold. Let us check d).
First we will do this for the field F (X). So, suppose that there is a tower of fields


F (X) ⊂ F1(X) ⊂ F2(X) ⊂ L(X) = F (
√


a,
√


b1, . . . ,
√


bn)(X) such that


√
a /∈ F ∗


2 , [L : F1] = 8, [F2 : F1] = 4


and


DF1(X) ∈ 2Br(F1(X)(
√


a)/F1(X)) + 2Br(F2(X)/F1(X)).


Notice that F2 = F1(
√


d1,
√


d2), for some d1, d2 ∈ F ∗, hence by [3] we have


DF1(X) = (a, f) + (d1, f1) + (d2, f2)


for some f, f1, f2 ∈ F1(X)∗. By part 3) of Proposition 5 we conclude that


DF1
= (a, u) + (d1, u1) + (d2, u2)


for some u, u1, u2 ∈ F ∗
1 , which contradicts to condition d) for the admissible triple


(F, D, {a, b1, . . . , bn}).
On the other hand, it has been shown in [8] that if the triple (K, D, {a, b1, . . . , bn})


is admissible, then the triple Kodd, DKodd
, {a, b1, . . . , bn}) is admissible as well (see


also Lemma 9 below). This finishes the proof of Corollary 6. ¤


We recall now some additional results from the papers [7] and [8].
If the triple (F, D, {a, b1, . . . , bn}) is admissible, and E = F ((t0))((t1)) . . . ((tn))


is the Laurent series field in variables t0, t1, . . . , tn, then the division algebra A
similar to the algebra


D ⊗E (a, t0) ⊗E (b1, t1) ⊗ · · · ⊗E (bn, tn)


does not decompose into a tensor product of two nontrivial central simple algebras
over any odd degree extension of E, and indA = 2n+1 [8]. Moreover, the multi-
quadratic extension F (


√
b1, . . . ,


√
bn)/F is not 4-excellent, and if D = (u, v), the


form 〈uv,−u,−v, a〉 provides a corresponding counterexample [7]. Finally, if k is a
field and elements a, b1, . . . , bn ∈ k∗/k∗2 are linearly independent over Z/2Z, then
there exists an extension F/k and a quaternion algebra D over F such that the
triple (F, D, {a, b1, . . . , bn}) is admissible [8].


On the other hand, Corollary 6 and the argument in Lemma 9 below imply that
if the triple (F, D, {a, b1, . . . , bn}) is admissible, then there exists an extension K/F
such that the triple (K, DK , {a, b1, . . . , bn}) is admissible as well, u(K) = 4, and K
has no proper odd degree extension.


Summarizing all these results we obtain the following
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Theorem 7. Let k be a field, n ≥ 2. Assume that elements a, b1, . . . , bn ∈ k∗/k∗2


are linearly independent over Z/2Z. Then there exists an extension K/k such that
1) u(K) = 4.
2) K has no proper extension of odd degree.
3) K(


√
b1, . . . ,


√
bn)/K is not 4-excellent, and the counterexample is provided


by some 4-dimensional form of discriminant a.
4) There exists a central division algebra A over E = K((t0))((t1)) . . . ((tn))


such that indA = 2n+1, and AL does not decompose into a tensor product of two
nontrivial central simple algebras over any odd degree extension L/E (notice that
u(E) = 2n+3 and cd2(E) = n + 3).


Next we compute the group H for the extension determined by the function field
of the Severi-Brauer variety related to a central simple algebra of exponent 2.


Corollary 8. Let D ∈ 2BrK, and either indD ≥ 4, or indD = 2 and DK(
√


aI) 6= 0
for every I. Denote by K(D) the function field of the Severi-Brauer variety SB(D)
corresponding to D. Then H(K(D)/K) = 〈D〉.
Proof. Let indD = 2n, where n ≥ 2. Let D1 be the division algebra Brauer-


equivalent to D, F = SB(D1), and L = SB(D). Then, since SB(DF ) ≃ P
deg D−1
F ,


the extension LF/F is purely transcendental. Hence by Lemma 4 it suffices to
prove Corollary 8 in the case where D is a division algebra.


First consider the case where D is a tensor product of quaternion algebras. We
will go on by induction on n. Let ϕ ∈ I2(K) be a quadratic form corresponding
to D under the isomorphism I2(K)/I3(K) ≃ 2BrK. It is easy to see that we can
choose ϕ such that dimϕ = 2n + 2, and, moreover, no form of dimension < 2n + 2
corresponds to D under this isomorphism. Let X = Xϕ be the projective quadric
determined by the form ϕ. Consider the following diagram:


K −−−−→ K(D)
y


y


K(X) −−−−→ K(X)(D)


,


where all the maps are natural field embeddings.
If n = 2, then indDK(X) = 2, and DK(X)(


√
aI) 6= 0 for any I, since DK(


√
aI) 6= 0,


and ker( 2BrF → 2BrF (Y )) = 0 for any field F and any quadric Y over F of
dimension > 2.


If n ≥ 3, then 4 ≤ indDK(X) < indD. So in both cases (n = 2 or n ≥ 3)
we can apply the induction hypothesis to the extension K(X)(D)/K(X). Let
u ∈ H(K(D)/K). By the induction hypothesis


uK(X) ∈ H(K(X)(D)/K(X)) ⊂ 〈DK(X)〉.


We conclude that either u ∈ H(K(X)/K), or u + D ∈ H(K(X)/K). Since by
Proposition 5 we have H(K(X)/K) = 0, this completes the proof in the case where
D is a tensor product of quaternion algebras.


Thus, to prove the proposition in the general case it suffices to construct an
extension L/K such that DL is a tensor product of quaternion algebras, indDL ≥ 4,
and H(L/K) = 0. We need the following
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Lemma 9.


1) If L/K is a finite odd degree extension, then H(L/K) = 0.
2) If π is a 3-fold Pfister form over K, then H(K(Xπ)/K) = 0.
3) Let F be a field, D ∈ 2BrF a division algebra. Assume that F has no proper


extension of odd degree, and I3(F ) = 0. Then D is a tensor product of quaternion
algebras.


Proof.


1) Assume that u ∈ 2Br K and uL =
n∑


i=1


(ai, bi), where bi ∈ L∗. Then


u = NL/K(uL) =


n∑


i=1


(ai, NL/Kbi),


which proves 1).
2) This is a particular case of Proposition 5, since dim π = 8.
3) This part is proved in [9] and [2]. ¤


We return to the proof of Corollary 8 in the general case. For an arbitrary field


F denote by F̂ a maximal odd degree extension of F , and by F̃ the composite of
all extensions F (Xπ), where π runs over all anisotropic 3-fold Pfister forms over F .
Consider the following infinite tower of fields K = K1 ⊂ K2 ⊂ . . . , where


Ki+1 =


{
K̂i if i is odd,


K̃i if i is even
.


Set L =
∞⋃


i=1


Ki. It is easy to see that L has no proper odd degree extensions, and


I3(L) = 0. Applying Lemma 9 we get that H(L/K) = 0 and DL is a tensor product
of quaternion algebras. Moreover, by the index reduction formula for central simple
algebras [5] we have indDL = indD. These properties of the field L prove Corollary
8 in the general case. ¤
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