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Abstract : By generalizing the method used by Tignol and Amitsur in [TA85], we determine

necessary and sufficient conditions for an arbitrary tame central division algebra D over a Henselian

valued field E to have Kummer subfields [Corollary 2.11 and Corollary 2.12]. We prove also that if

D is a tame semiramified division algebra of prime power degree pn over E such that p 6= char(Ē)

and rk(ΓD/ΓF ) ≥ 3 [resp., such that p 6= char(Ē) and p3 divides exp(ΓD/ΓE)], then D is non-cyclic

[Proposition 3.1] [resp., D is not an elementary abelian crossed product [Proposition 3.2]].

Introduction

Let B be a tame central division algebra over a Henselian valued field E. We know

by [JW90, Lemma 6.2] that B is similar to some S ⊗E T , where S is an inertially

split [resp., T is a tame totally ramified] division algebra over E. By generalizing the

method used by Tignol and Amitsur in [TA85], Morandi and Sethuraman determined

in [MorSe95] necessary and sufficient conditions for B to have Kummer subfields
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when B = S ⊗E T . A good question was to see if we have the same results when

B is an arbitrary tame central division algebra over E. To deal with this question,

we remarked that it will be the same if we can determine necessary and sufficient

conditions for a graded central division algebra over a graded field to have Kummer

graded subfields. Indeed, we know that if char(Ē) does not divide deg(B), then any

result concerning graded subfields of GB gives an analogous one for B.

A first key idea was the fact that if D is a graded central division algebra over a

graded field F , then there is a factor set (ω, f) of ΓD/ΓF in D0F such that D is the

generalized graded crossed product (D0F, ΓD/ΓF , (ω, f)). Another important result

consists in the fact that f can be decompsed in a nice way. Indeed, we showed that for

any γ̄, γ̄′ ∈ ΓD/ΓF , we can write f(γ̄, γ̄′) = d(γ̄, γ̄′)h(γ̄, γ̄′), where (ω, d) is a factor set

of ΓD/ΓF in D0 and h ∈ Z2(ΓD/ΓF , F ∗)sym [Lemma 1.6]. We show also in section 2

that if K is a Kummer graded subfield of D, then there is an exact sequence of trivial

ΓK/ΓF -modules αK : 1 → kum(K0/F0) → kum(K/F ) → ΓK/ΓF → 0. We consider

αK as an element of Z2(ΓD/ΓF , kum(K0/F0))sym and so applying the previous facts

we get in [Corollary 2.10 and Corollary 2.11] necessary and sufficient conditions for

D to have Kummer graded subfields when F0 contains enough roots of unity. This

results are then applied to give necessary and sufficient conditions for a semiramified

graded division algebra D over a graded field F to be cyclic [resp., to be an elementary

abelian graded crossed product] when F0 contains enough roots of unity. In section 3,

and without assuming any root of unity to be in Ē, we prove that if E is a Henselian

valued field and B is a tame semiramified division algebra of prime power degree pn

over E such that p 6= char(Ē) and rk(ΓB/ΓF ) ≥ 3 [resp., such that p 6= char(Ē)

and p3 divides exp(ΓB/ΓE)], then B is non-cyclic [Proposition 3.1] [resp., B is not an

elementary abelian crossed product [Proposition 3.2]].

Throughout this paper, we assume familiarity with the definitions and notations

previously used in [M05] and [M07].
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1 Generalized graded crossed products and graded division

algebras

(1.1) Let L be a field and A a central simple algebra over L. We denote by A∗ the

group of invertible elements of A and by Aut(A) the group of ring automorphisms

of A. For any c ∈ A∗, we denote by Inn(c) the ring automorphism of A defined

by a 7→ cac−1. Let H be a finite group that acts by automorphisms on L and let

ω : H → Aut(A) and f : H × H → A∗ be two maps. We say that (ω, f) is a factor

set of H in A if the following conditions are satisfied :

(1) ωσ(a) = σ(a) for all a ∈ L and σ ∈ H ,

(2) ωσωτ = Inn(f(σ, τ))ωστ for all σ, τ ∈ H , and

(3) f(σ, τ)f(στ, µ) = ωσ(f(τ, µ))f(σ, τµ) for all σ, τ, µ ∈ H .

If (ω, f) is a factor set of H in A, then we define the generalized crossed product

associated to (ω, f) to be the algebra (A, H, (ω, f)) = ⊕σ∈HAxσ, where xσ are inde-

pendent indeterminates over A satisfying the following multiplicative conditions (for

all σ ∈ H and a ∈ A) :

(4) xσa = ωσ(a)xσ, and

(5) xσxτ = f(σ, τ)xστ .

It is well-known that if char(L) does not divide card(H), then (A, H, (ω, f)) is a

semisimple algebra (see [MorSe95, p. 556]).

Let (ω, f) and (ω′, f ′) be two factor sets of H in A. We say that (ω, f) and (ω′, f ′)

are cohomologous if there is a family (aσ)σ∈H of elements of A∗ such that for all

σ, τ ∈ H , ω′
σ = Inn(aσ)ωσ and f ′(σ, τ) = aσωσ(aτ )f(σ, τ)a−1

στ . We write in this case

(ω, f) ∼ (ω′, f ′). The relation ∼ is an equivalence relation on the set of factor sets of

H in A. We denote the set of equivalence classes by H(H, A∗). If A = L is a Galois

field extension of some field E and H = Gal(L/E), then H(H, A∗) is the second

Galois cohomology group H2(H, L∗).

Now, let L be a graded field, A a graded central simple algebra over L, H a finite

group that acts on L by graded automorphisms (of grade 0), GAut(A)0 the group of

graded ring automorphisms (of grade 0) of A (i.e. ring automorphisms of A such that

4



f(Aδ) = Aδ). In the same way as above, if ω : H → GAut(A)0 and f : H × H → A∗

are two maps that satisfy the conditions (1) to (3) above, then we say that (ω, f) is a

graded factor set of H in A. The corresponding graded generalized crossed product

(A, H, (ω, f)) is defined also as above. Namely, (A, H, (ω, f)) = ⊕σ∈HAxσ, where

xσ are independent indeterminates on A satisfying the multiplicative conditions :

xσa = ωσ(a)xσ and xσxτ = f(σ, τ)xστ for all a ∈ A and σ, τ ∈ H . As we will see in

the next lemma, (A, H, (ω, f)) has a unique graded algebra structure extending that

of A and for which xσ are homogeneous elements (the proof of this lemma is inspired

from [HW(2), Lemma 5.4]).

Lemma 1. 2 Let L be a graded field, A be a graded central simple algebra over L, H

a finite group that acts on L by graded automorphisms, and (ω, f) a graded factor set

of H in A. Then, there is a unique graded algebra structure of (A, H, (ω, f)) extending

the grading of A and for which xσ are homogeneous elements.

Proof. Let ΓA (a totally ordered abelian group) be the support of A, ∆A(=

ΓA ⊗ZZ Q′ ) be the divisible hull of ΓA and consider the map h : H × H → ∆A,

(σ, τ) 7→ gr(f(σ, τ)). Then, it follows from condition (3) above that h is a cocycle of

Z2(H, ∆A) (for the trivial action of H on ∆A). Since H is finite and ∆A is uniquely

divisible, then H2(H, ∆A) = H1(H, ∆A) = 0. Therefore, there is a unique family

(δσ)σ∈H of elements of ∆A such that h(σ, τ) = δσ + δτ − δστ (the uniqueness follows

from the fact that H1(H, ∆A) = 0). The unique graded structure of (A, H, (ω, f))

that extends that of A and for which xσ are homogeneous elements is then defined

by gr(xσ) = δσ.

In what follows, we will show that any graded division algebra can be represented

as a generalized graded crossed product. This representation, will be applied in sec-

tion 2 to determine necessary and sufficient conditions for the existence of Kummer

graded subfields.

(1.3) Let F be a graded field and D a graded central division algebra over F . Then,

the map θD : ΓD/ΓF → Gal(Z(D0)/F0), defined by θD(gr(d) + ΓF )(a) = dad−1 for
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any d ∈ D∗ and a ∈ Z(D0), is a surjective group homomorphism. Since HCq(D) is

a tame central division algebra over HFrac(F ), then by [JW90, Proposition 1.7 and

Definition p. 166] Z(D0) is an abelian field extension of F0. For simplicity, we denote

by G the Galois group Gal(Z(D0)/F0). So, by [HW(1)99, Remark 3.1] Z(D0)F is

an abelian Galois graded field extension of F with Galois group isomorphic to G. In

what follows, we will consider the action of ΓD/ΓF on Z(D0)F defined by θD (i.e., for

any γ̄ ∈ ΓD/ΓF and any a ∈ Z(D0)F , we let γ̄(a) = dγ̄ad−1
γ̄ , where dγ̄ is an arbitrary

homogeneous element of D∗ such that gr(dγ̄) + ΓF = γ̄).

We aim here to show that there is a graded factor set (ω, f) of H := ΓD/ΓF in D0F

such that D = (D0F, H, (ω, f)). For this, we fix a family of homogeneous elements

(zγ̄)γ̄∈H of D∗ with gr(zγ̄) + ΓF = γ̄. Clearly, we have D = ⊕γ̄∈HD0Fzγ̄ (because

both graded algebras have the same 0-component and the same support). We define

:

ω : H → GAut(D0F )0

and

f : H × H → (D0F )∗

by ωγ̄(a) = zγ̄az−1
γ̄ and f(γ̄, γ̄′) = zγ̄zγ̄′z−1

γ̄+γ̄′. One can easily see that (ω, f) is a

graded factor set of H in D0F . So, D = ⊕γ̄∈HD0Fzγ̄ = (D0F, H, (ω, f))

Let B = ⊕γ̄∈ker(θD)D0Fzγ̄ and for any σ ∈ G choose a γ̄σ ∈ H such that θD(γ̄σ) = σ

and let zσ := zγ̄σ
. Then, we have the following Proposition.

Proposition 1. 4 B is the centralizer of Z(D0F ) in D and D = ⊕σ∈GBzσ = (B, G, (w, g))

for some graded factor set (w, g) of G in B.

Proof. Let C be the centralizer of Z(D0)F in D. Clearly, we have B ⊆ C.

Moreover, by [HW(2)99, Proposition 1.5] we have [C : F ] = [D : F ]/[Z(D0)F : F ] =

[D0 : F0](ΓD : ΓF )/[Z(D0) : F0] = [D0 : F0]|ker(θD)| = [B : F ]. Hence, B = C.

Clearly, we have ⊕σ∈GBzσ = ⊕σ∈G(⊕γ̄∈ker(θD)D0Fzγ̄)zσ = ⊕γ̄∈ΓD/ΓF
D0Fzγ̄ = D.

Let

w : G → GAut(B)0
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and

g : G × G → B∗

be the maps defined by wσ(b) = zσbz−1
σ (for any b ∈ B and σ ∈ G) and g(σ, τ) =

zσzτz
−1
στ (for any σ, τ ∈ G). Then, (w, g) is a graded factor set of G in B and

(B, G, (w, g)) = ⊕σ∈GBzσ = D.

Remark 1.5 Remark that the existence of (w, g) in Lemma 1.4 follows also by the

graded version of [T87, Theorem 1.3(b)].

(1.6) Now, with the notations of (1.3) let S = (δ̄i := δi + ΓF )1≤i≤r a basis of H ,

qi = ord(δ̄i) for 1 ≤ i ≤ r and I = {(m1, ..., mr) ∈ IN r | 0 ≤ mi < qi for 1 ≤ i ≤ r}.

We fix a family (xi)1≤i≤r of elements of F ∗ with gr(xi) = qiδi, and we consider a

family (zi)1≤i≤r of elements of D∗ with gr(zi) = δi. For m̄ = (m1, ..., mr) ∈ I, we let

m̄δ̄ =
∑

1≤i≤r miδ̄i and zm̄ =
∏r

i=1 zmi

i . Remark that for any γ̄ ∈ H , there is a unique

element m̄ ∈ I such that γ̄ = m̄δ̄. Henceforth, for any γ̄ = m̄δ̄ (where m̄ ∈ I), we

choose zγ̄ = zm̄. Let f : H × H → (D0F )∗ be the map previously defined in (1.3)

by f(γ̄, γ̄′) = zγ̄zγ̄′z−1
γ̄+γ̄′ . Then, for any m̄, n̄ ∈ I, f(m̄δ̄, n̄δ̄) = zm̄zn̄z−β(m̄+n̄), where

β(m̄+ n̄) ∈ I with m̄+ n̄ ≡ β(m̄+ n̄) mod
∏r

i=1 qiZZ. Write mi +ni = β(m̄+ n̄)i + tiqi,

where ti ∈ IN , then f(m̄δ̄, n̄δ̄) = d(m̄δ̄, n̄δ̄)h(m̄δ̄, n̄δ̄), where d(m̄δ̄, n̄δ̄) ∈ D∗
0 and

h(m̄δ̄, n̄δ̄) =
∏r

i=1 xti
i . Consider the map ω defined in (1.3), we will denote also by ω

the map : H → Aut(D0) defined by γ̄ 7→ ωγ̄/D0
. We have the following lemma.

Lemma 1. 7 (ω, d) is a factor set of H in D0 and h ∈ Z2(H, F ∗)sym.

Proof. Let m̄, n̄ and s̄ be elements of I. Since H acts trivially on F ∗, then

m̄δ̄h(n̄δ̄, s̄δ̄)h(m̄δ̄, n̄δ̄ + s̄δ̄) = h(n̄δ̄, s̄δ̄)h(m̄δ̄, β(n̄ + s̄)δ̄) = (
r∏

i=1

xi
λi)(

r∏

i=1

xi
γi)

where λi = 1
qi

(ni + si − β(n̄ + s̄)i) and γi = 1
qi

(mi + β(n̄ + s̄)i − β(m̄ + β(n̄ + s̄))i).

We have β(m̄ + β(n̄ + s̄)) = β(m̄ + n̄ + s̄), hence

m̄δ̄h(n̄δ̄, s̄δ̄)h(m̄δ̄, n̄δ̄ + s̄δ̄) = (
r∏

i=1

xξi

i ).
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where ξi = 1
qi

mi + ni + si − β(m̄ + n̄ + s̄)i.

Likewise, we have :

h(m̄δ̄, n̄δ̄)h(m̄δ̄ + n̄δ̄, s̄δ̄) =
r∏

i=1

xξi

i .

Moreover, it is clear that h(m̄δ̄, n̄δ̄) = h(n̄δ̄, m̄δ̄). Hence, h ∈ Z2(H, F ∗)sym. The fact

that (ω, f) is a graded factor set of H in D0F and that h ∈ Z2(H, F ∗)sym imply (ω, d)

is a factor set of H in D0.

Remark 1.8 If D is a semiramified graded division algebra over F , then using the

same arguments as in the proof of Lemma 1.7, we prove that d ∈ Z2(H, D∗
0) (see that

in this case H ∼= Gal(D0/F0)).

2 Kummer graded subfields of graded division algebras

(2.1) Let F be a graded field and K is a finite-dimensional abelian graded field

extension of F (i.e., such that Frac(K)/Frac(F ) is an abelian Galois field extension

[see HW(1)99]). We say that K is a Kummer graded field extension of F if F0 contains

a primitive mth root of unity, where m is the exponent of Gal(K/F ). In such a case, as

for ungraded Kummer field extensions, we set KUM(K/F ) = {x ∈ K∗ | xm ∈ F} and

kum(K/F ) = KUM(K/F )/F ∗. One can easily see that kum(K/F ) is isomorphic to

Gal(K/F ).

Now, let K be a Kummer graded field extension of F , then we have K = F [a | a ∈

KUM(K/F )], so ΓK/ΓF is generated by {gr(a) + ΓF | a ∈ KUM(K/F )}, therefore

the group homomorphism ψ : kum(K/F ) → ΓK/ΓF , defined by ψ(aF ∗) = gr(a)+ΓF ,

for a ∈ KUM(K/F ), is surjective. Let φ : kum(K0/F0) → kum(K/F ) be the group

homomorphism defined by φ(aF ∗
0 ) = aF ∗, for every a ∈ KUM(K0/F0). Clearly, φ

is injective and ψ ◦ φ = 0. By comparing the cardinalities, we conclude that the

following sequence of trivial ΓK/ΓF -modules :

αK : 1 → kum(K0/F0)
φ
→ kum(K/F )

ψ
→ ΓK/ΓF → 0
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is exact. Remark that since kum(K/F ) is abelian, then αK ∈ Z2(ΓK/ΓF , kum(K0/F0))sym.

(2.2) With the notations of (2.1), we have KUM(K/F ) ∩ D0 = KUM(K0/F0).

Indeed, let a ∈ KUM(K/F ) ∩ D0, then ψ(aF ∗) = 0, so aF ∗ ∈ im(φ). Hence there

is b ∈ KUM(K0/F0) such that aF ∗ = bF ∗. Since both a and b are in D∗
0, then

ab−1 ∈ F ∗
0 (= D∗

0 ∩F ∗). So, a ∈ KUM(K0/F0). This shows that KUM(K/F )∩D0 ⊆

KUM(K0/F0). The converse inclusion is trivial.

2.3 Notations : We precise here some notations needed for the next result :

(a) Let e : KUM(K0/F0) → kum(K0/F0) be the canonical surjective homomorphism.

We denote by e∗ : H2(ΓK/ΓF , KUM(K0/F0))sym → H2(ΓK/ΓF , kum(K0/F0))sym the

corresponding homomorphism of cohomology groups (for the trivial action of ΓK/ΓF

on KUM(K0/F0) and on kum(K0/F0)).

(b) Let (ω, d) be the factor set of H in D0 previously seen in Lemma 1.7, we denote

by resH
ΓK/ΓF

(ω, d) its restriction when considering ΓK/ΓF instead of H .

Obviously, resH
ΓK/ΓF

(ω, d) is a factor set of ΓK/ΓF in D0.

(c) Let i : KUM(K0/F0) → D∗
0 be the inclusion map. For a cocycle h ∈ Z2(ΓK/ΓF ,

KUM(K0/F0)) we denote by i∗h the map : ΓK/ΓF × ΓK/ΓF → D∗
0, (γ̄, γ̄′) 7→

i ◦ h(γ̄, γ̄′).

Theorem 2. 4 Let F be a graded field, D a graded central division algebra over F ,

(ω, d) the factor set of ΓD/ΓF in D0 seen in Lemma 1.7, K a Kummer graded subfield

of D and αK the cocycle of Z2(ΓK/ΓF , kum(K0/F0))sym defined in (2.1), then there

exists a cocycle d′ ∈ Z2(ΓK/ΓF , KUM(K0/F0))sym (for the trivial action of ΓK/ΓF

on KUM(K0/F0)) and a map ω′ : ΓK/ΓF → Aut(D0) which satisfies ω′
γ̄(a) = a for

all a ∈ K0 and γ̄ ∈ ΓK/ΓF , such that :

1. (ω′, i∗d
′) is a factor set of ΓK/ΓF in D0 cohomologous to res

ΓD/ΓF

ΓK/ΓF
(ω, d), and

2. e∗([d
′]) = [αK ].

Proof. Let H = ΓD/ΓF and write D = ⊕γ̄∈HD0Fxγ̄, where xγ̄a = ωγ̄(a)xγ̄ and

xγ̄xγ̄′ = d(γ̄, γ̄′)h(γ̄, γ̄′)xγ̄+γ̄′ (where h is the cocycle of Z2(ΓD/ΓF , F ∗)sym seen in

Lemma 1.7). For any γ ∈ ΓK , let yγ̄ ∈ KUM(K/F ) such that gr(yγ̄) + ΓF = γ̄
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(= γ + ΓF ) and write yγ̄ = aγ̄xγ̄ , where aγ̄ ∈ (D0F )∗. Let bγ̄ ∈ D∗
0 and cγ̄ ∈ F ∗ such

that aγ̄ = bγ̄cγ̄ , then we have :

yγ̄yγ̄′ = aγ̄ωγ̄(aγ̄′)d(γ̄, γ̄′)a−1
γ̄+γ̄′h(γ̄, γ̄′)yγ̄+γ̄′

= bγ̄ωγ̄(bγ̄′)d(γ̄, γ̄′)b−1
γ̄+γ̄′cγ̄cγ̄′c−1

γ̄+γ̄′h(γ̄, γ̄′)yγ̄+γ̄′

= d′(γ̄, γ̄′)h′(γ̄, γ̄′)yγ̄+γ̄′

where d′(γ̄, γ̄′) = bγ̄ωγ̄(bγ̄′)d(γ̄, γ̄′)b−1
γ̄+γ̄′ and h′(γ̄, γ̄′) = cγ̄ c̄γ̄′c−1

γ̄+γ̄′h(γ̄, γ̄′). Since yγ̄, yγ̄′

and yγ̄+γ̄′ are in KUM(K/F ) and h′(γ̄, γ̄′) ∈ F ∗, then d′(γ̄, γ̄′) ∈ KUM(K/F ) ∩ D0

(= KUM(K0/F0)). One can easily check that d′ ∈ Z2(ΓK/ΓF , KUM(K0/F0))sym

(this follows from the equality (yγ̄yγ̄′)yγ̄” = yγ̄(yγ̄′yγ̄”), the fact that h′ ∼ resH
ΓK/ΓF

(h)

is a symmetric 2-cocycle and the fact that yγ̄ are pairwise commuting for γ̄ ∈ ΓK/ΓF ).

Now, let ω′ : ΓK/ΓF → Aut(D0) be the map defined by ω′
γ̄ = Inn(bγ̄)ωγ̄ (i.e., ω′

γ̄(a) =

bγ̄ωγ̄(a)b−1
γ̄ for all a ∈ D0 and γ̄ ∈ ΓK/ΓF ). Then, for any a ∈ K0 and any γ̄ ∈ ΓK/ΓF ,

we have ω′
γ̄(a) = bγ̄xγ̄ax−1

γ̄ b−1
γ̄ = aγ̄xγ̄ax−1

γ̄ a−1
γ̄ = yγ̄ay−1

γ̄ = a. One can easily see that

(ω′, i∗d
′) is a factor set of ΓK/ΓF in D0 cohomologous to resH

ΓK/ΓF
(ω, d). Moreover,

the equality yγ̄yγ̄′ = d′(γ̄, γ̄′)h′(γ̄, γ̄′)yγ̄+γ̄′ yields, by considering classes modulo F ∗ in

kum(K/F ), ȳγ̄ ȳγ̄′ = e(d′(γ̄, γ̄′))ȳγ̄+γ̄′ , where e : KUM(K0/F0) → kum(K0/F0) is the

canonical surjective homomorphism (we identify here kum(K0/F0) with its canonical

image in kum(K/F )). Hence, e∗([d
′]) = [αK ].

(2.5) Let F be a graded field, D a graded division algebra over F , A a finite abelian

subgoup of D∗/F ∗ with exponent m, and for any a ∈ A, let da be a representative of

a in D∗. Assume that F0 contains a primitive mth root of unity and let F (A) = F [da

| a ∈ A] be the subring of D generated by F and the elements da (a ∈ A). If da are

pairwise commuting, then as in the ungraded case F (A) is a Kummer graded field

extension of F with kum(F (A)) = A (it suffices to see that F (A) is a graded field

and that Frac(F (A)) = Frac(F )(A) when A is identified with its canonical image in

Cq(D)∗/Frac(F )∗).

Conversely to Theorem 2.4, we have the following Theorem.

Theorem 2. 6 Let F be a graded field, D a graded central division algebra over F

and (ω, d) the factor set of ΓD/ΓF in D0 seen in Lemma 1.7. Assume F0 contains
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enough roots of unity and that there are :

1. a field extension M of F0 in D0, and a subgroup R of ΓD/ΓF acting trivially on

M ,

2. a cocycle d′ ∈ Z2(R, KUM(M/F0))sym and a map ω′ : R → Aut(D0) such that

(ω′, i∗d
′) is a factor set of R in D0 cohomologous to res

ΓD/ΓF

R (ω, d) and such that

ω′
γ̄(a) = a for all a ∈ M and γ̄ ∈ R.

Then, there exists a Kummer graded subfield K of D such that :

1. K0 = M , ΓK/ΓF = R and

2. e∗([d
′]) = [αK ].

Proof. Let’s denote by H the quotient group ΓD/ΓF and write D = ⊕γ̄∈HD0Fxγ̄ ,

where xγ̄a = ωγ̄(a)xγ̄ and xγ̄xγ̄′ = d(γ̄, γ̄′)h(γ̄, γ̄′)xγ̄+γ̄′ (h being the cocycle of

Z2(H, F ∗)sym seen in Lemma 1.7). The fact that (ω′, i∗d
′) is cohomologous to resH

R (ω, d)

means that there is a family (bγ̄)γ̄∈R of elements of D∗
0 such that for all a ∈ D0

and γ̄, γ̄′ ∈ R, we have ω′
γ̄(a) = bγ̄ωγ̄(a)b−1

γ̄ and d′(γ̄, γ̄′) = bγ̄ωγ̄(bγ̄′)d(γ̄, γ̄′)b−1
γ̄+γ̄′ .

Let yγ̄ = bγ̄xγ̄ for all γ̄ ∈ R. Then, we have yγ̄yγ̄′ = d′(γ̄, γ̄′)h(γ̄, γ̄′)yγ̄+γ̄′ . Let

K = ⊕γ̄∈RMFyγ̄(⊆ D). Since d′ and h are symmetric, then yγ̄ are pairwise com-

muting. Moreover, by hypotheses ω′
γ̄(a) = a for all a ∈ M and γ̄ ∈ R, so K is a

commutative graded subring (hence a graded subfield) of D.

Let A be the subgroup of D∗/F ∗ generated by kum(M/F0) and the set {ȳγ̄}γ̄∈R.

One can easily see that up to a graded isomorphism we have K = F (A). There-

fore, K is a Kummer graded field extension of F with kum(K/F ) = A. Considering

classes in kum(K/F ), we have ȳγ̄ ȳγ̄′ = e(d′(γ̄, γ̄′))ȳγ̄+γ̄′ , where e : KUM(M/F0) →

kum(M/F0) is the canonical surjective homomorphism (we identify here kum(M/F0)

with its canonical image in kum(K/F )), so kum(K/F ) is the extension of kum(M/F0)

by R with cocycle e∗([d
′]).

(2.7) Let F be a graded field, D a semiramified graded division algebra over F

and G = Gal(D0/F0). We know that ΓD/ΓF
∼= G. Therefore, any subgroup of
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ΓD/ΓF can be identified to a subgoup of G. Let’s consider the following diagram :

H2(ΓK/ΓF , KUM(K0/F0))sym
i∗→ H2(ΓK/ΓF , D∗

0)

e∗ ↓ ↑ resG
ΓK/ΓF

H2(ΓK/ΓF , kum(K0/F0))sym H2(G, D∗
0)

where i∗ is the homomorphism of cohomology groups induced by the inclusion map

KUM(K0/F0)
i
→ D∗

0, e∗ is the homomorphism of cohomology groups induced by the

canonical surjective homomorphism e : KUM(K0/F0) → kum(K0/F0), and resG
ΓK/ΓF

is the restriction map. As a consequence of Theorem 2.4, we have the following

Corollary :

Corollary 2. 8 Let F be a graded field, D a semiramified graded division algebra over

F , G = Gal(D0/F0), d the cocycle of Z2(G, D∗
0) seen in Remark 1.8, K a Kummer

graded subfield of D and αK the cocycle of Z2(ΓK/ΓF , kum(K0/F0))sym defined in

(2.1), then there exists a cocycle d′ ∈ Z2(ΓK/ΓF , KUM(K0/F0))sym such that :

(1) i∗([d
′]) = resG

ΓK/ΓF
([d]), and

(2) e∗([d
′]) = [αK ].

Also, as a consequence of Theorem 2.6, we have the following Corollary.

Corollary 2. 9 Let F be a graded field, D a semiramified graded division algebra over

F and d ∈ Z2(G, D∗
0) the cocycles seen in Remark 1.8. Assume F0 contains enough

roots of unity and suppose there exist : a subfield M of D0 containing F0, a subgroup

R of ΓD/ΓF acting trivially on M , and a cocycle d′ ∈ Z2(G, KUM(M/F0))sym such

that i∗([d
′]) = resG

R([d]). Then, there exists a Kummer graded subfield K of D such

that :

(1) M = K0, R = ΓK/ΓF , and

(2) [αK ] = e∗([d
′]).

(2.10) Now let E be a Henselian valued field and D a tame central division algebra

over E such that char(Ē) does not divide deg(D). Since GD is a graded central

division algebra over GE, then we can define a graded factor set (ω, d) corresponding

12



to GD as made in Lemma 1.7. If K is a Kummer subfield of D, then by [HW(1),

Theorem 5.2] GK is a Kummer graded subfield of GD. So, we can consider the

symmetric cocycle αGK of (2.1) corresponding to GK. For simplicity, we denote αGK

just by αK . As a direct consequence of Theorem 2.4, we have the following Corollary

Corollary 2. 11 Let E be a Henselian valued field and D a tame central division al-

gebra over E such that char(Ē) does not divide deg(D). Using the notations of (2.10),

if K is a Kummer subfield of D, then there is a cocycle d′ ∈ Z2(ΓK/ΓE, KUM(K̄/Ē))sym

(for the trivial action of ΓK/ΓE on KUM(K̄/Ē)) and a map ω′ : ΓK/ΓE → Aut(D̄)

which satisfies ω′
γ̄(a) = a for all a ∈ K̄ and γ̄ ∈ ΓK/ΓE, such that :

1. (ω′, i∗d
′) is a factor set of ΓK/ΓE in D̄ cohomologous to res

ΓD/ΓE

ΓK/ΓE
(ω, d), and

2. e∗([d
′]) = [αK ].

Also, as a consequence of Theorem 2.6, we have the following Corollary :

Corollary 2. 12 Let E be a Henselian valued field and D a tame central division

algebra over E such that char(Ē) does not divide deg(D). Assume that Ē contains

enough roots of unity and that (with the notations of (2.10)), there are :

1. a field extension M of Ē in D̄, and a subgroup R of ΓD/ΓE acting trivially on M ,

2. a cocycle d′ ∈ Z2(R, KUM(M/Ē))sym and a map ω′ : R → Aut(D̄) such that

(ω′, i∗d) is a factor set of R in D̄ cohomologous to res
ΓD/ΓE
R (ω, d) and such that

ω′
γ̄(a) = a for all a ∈ M and γ̄ ∈ R.

Then, there exists a Kummer subfield K of D such that :

1. K̄ = M , ΓK/ΓE = R and

2. e∗([d
′]) = [αK ].

Remark 2.13 (1) In the last two corollaries, we can use the group isomorphism

kum(K/E) ∼= kum(GK/GE) and replace the exact sequence of trivial ΓK/ΓE-

modules αGK by another exact sequence of trivial ΓK/ΓE-modules

1 → kum(K̄/Ē)
φ
→ kum(K/E)

ψ
→ ΓK/ΓE → 0

then use it to have necessary and sufficient condition for D to have Kummer subfields.

(2) We have also analogous results to Corollary 2.8 and Corollary 2.9 for tame semi-
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ramified division algebras over Henselian valued fields.

(3) We can drop the assumption that E is Henselian in many results of this paper.

Indeed, let D be a valued central division algebra over a field E, HE be the Henseliza-

tion of D with respect to the restriction of the valuation of D and HD = D ⊗E HE.

Then, one can easily see that GD = G(HD) and GE = G(HE).

Theorem 2. 14 Let F be a graded field, D a semiramified graded division algebra

over F and d the cocycle seen in Remark 1.8. If F0 contains a primitive deg(D)th

root of unity, then the following statements are equivalent :

(1) D is cyclic,

(2) There is a field extension M of F0 in D0 such that :

(i) the extensions M/F0 and D0/M are cyclic, and

(ii) (D0/F0, G, d)⊗F0
M ∼ (D0/M, σ, u) for some generator σ of Gal(D0/M) and

some u ∈ M∗ such that uF ∗
0 generates kum(M/F0).

Proof. This can be proved in the same way as [T86, Theorem 3.1].

Theorem 2. 15 Let F be a graded field, D a semiramified graded division algebra

over F and d the cocycle seen in Remark 1.8. Suppose now that deg(D) is a power

of a prime p and that F0 contains a primitive pth root of unity. Then, the following

statements are equivalent

(1) D is an elementary abelian graded crossed product,

(2) there is a field extension M of F0 in D0 such that M/F0 and D0/M are el-

ementary abelian, and (D0/F0, G, d) represents in Br(D0/F0)/Dec(D0/F0) an ele-

ment of the image of the canonical group homomorphism Br(M/F0)/Dec(M/F0) →

Br(D0/F0)/Dec(D0/F0),

(3) exp(G) = p or p2 and (D0/F0, G, d) represents in Br(D0/F0)/Dec(D0/F0) an

element of the image of the canonical group homomorphism Br(L/F0)/Dec(L/F0) →

Br(D0/F0)/Dec(D0/F0), where L = FixGp(D0) (Gp being the subgoup of G consist-

ing in p-powers of elements of G) (this last condition is void if exp(G) = p since in

this case L = K.)
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Proof. This can be proved in the same way as [T86, Theorem 4.1].

Proposition 2. 16 Let E be a Henselian valued field, D a division algebra over E

such that char(Ē) does not divide deg(D) and H a finite group. Then, D has a tame

Galois subfield with Galois group isomorphic to H if and only if GD has a Galois

graded subfield of Galois group isomorphic to H. Therefore, D is cyclic [resp., an

elementary abelian crossed product] if and only if GD is cyclic [resp., an elementary

abelian graded crossed product].

Proof. Assume that D has a Galois subfield of Galois group isomorphic to H , then

by [HW(1), Theorem 5.2] GK is a Galois graded subfield of GD with Galois group

isomorphic to H . Conversely, assume that GD has a Galois graded subfield L with

Galois group isomorphic to H . Then, again by [HW(1), Theorem 5.2] there is a tame

field extension M of E such that GM ∼= L and Gal(M/E) ∼= H . By [HW(2)99,

Theorem 5.9] M is isomorphic to a subfield of D.

Remark. We recall that if E is a Henselian valued field and D is an inertially

split division algebra over E with D̄ commutative, then D is a tame semiramified

division algebra over E (see [M07, Proposition 2.6]). The reader can then see that

similar results to Theorem 2.14, Theorem 2.15 in the case of tame semiramified divi-

sion algebras over a Henselian valued field were proved in [MorSe95]. Using Theorem

2.14, Theorem 2.15, we get the next two Corollaries of [MorSe95]. In the next section,

we will prove these two corollaries without assuming that Ē contains primitive roots

of unity.

Corollary 2. 17 [MorSe95, Corollary 5.5] Let E be a Henselian valued field and D

a tame semiramified division algebra of prime power degree over E. Suppose that

char(Ē) does not divide deg(D) and Ē contains a primitive deg(D)th root of unity

and that rk(ΓD/ΓE) ≥ 3, then D is non-cyclic.

Proof. We have rk(Gal(GD0/GE0)) = rk(Gal(D̄/Ē)) = rk(ΓD/ΓE) ≥ 3. So by

Theorem 2.14(2(i)) GD is non-cyclic. Hence, by Proposition 2.16, D is non-cyclic.
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Corollary 2. 18 [MorSe95, Corollary 5.7] Let E be a Henselian valued field and D a

tame semiramified division algebra of prime power degree pn over E (p being a prime

integer and n ∈ IN∗). Suppose that Ē contains a primitive pth root of unity and that

p3 divides exp(ΓD/ΓE), then D has no elementary abelian maximal subfield.

Proof. This follows by Theorem 2.15 and Proposition 2.16.

3 Non-cyclic and non-elementary abelian crossed product

tame semiramified division algebras

Let E be a Henselian valued field and D a tame semiramified division algebra of

prime power degree pn over a Henselian valued field E such that char(Ē) 6= p. In

this section, we aim to show that if rk(ΓD/ΓE) ≥ 3, then D is non-cyclic [Proposition

3.1], and that if p3 divides exp(ΓD/ΓF ), then D has no elementary abelian maximal

subfield [Proposition 3.2].

Proposition 3. 1 Let E be a Henselian valued field and D a semiramified division

algebra of degree n over E. Assume char(Ē) does not divide n and suppose K is a

cyclic maximal subfield of D. Then, ΓK/ΓE and ΓD/ΓK are cyclic. So, ΓD/ΓE is

generated by two elements. In particular, if n is a prime power and rk(ΓD/ΓE) ≥ 3,

then D is non-cyclic.

Proof. Let M be the inertial lift of K̄ over E in K (see [JW90, Theorem 2.8 and

Theorem 2.9]). Since K is cyclic and totally ramified over M , then ΓK/ΓE(= ΓK/ΓM)

is cyclic. Furthermore, we have ΓD/ΓK
∼= (ΓD/ΓE)/(ΓK/ΓE) ∼= Gal(D̄/Ē)/Gal(D̄/K̄) ∼=

Gal(K̄/Ē) ∼= Gal(M/E) (for the second equivalence, see that K is a totally ramified

maximal subfield of the semiramified division algebra CM
D ). So, ΓD/ΓK is cyclic. Let

γ1 + ΓE be a generator of ΓK/ΓE and γ2 + ΓK a generator of ΓD/ΓK , then for any

α ∈ ΓD/ΓE , there are positive integers n1 and n2 such that α = n1γ1 + n2γ2 + ΓE . If

n is a prime power, then rk(ΓD/ΓE) ≤ 2.
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Proposition 3. 2 Let E be a Henselian valued field and D a tame semiramified

division algebra of prime power degree pn over E (p being a prime integer and n ∈

IN∗). If char(Ē) 6= p and p3 divides exp(Gal(D̄/Ē)), then D has no elementary

abelian maximal subfield.

Proof. Suppose that K is an elementary abelian maximal subfield of D, then K̄/Ē

is elementary abelian. Therefore, for any σ ∈ Gal(D̄/Ē), σp ∈ Gal(D̄/K̄). Let M be

the inertial lift of K̄ over E in K. Then, K is a Galois totally ramified field extension

of M and Gal(K/M) ∼= ΓK/ΓM . Moreover, since CM
D is tame semiramified, then

Gal(D̄/K̄) = Gal(D̄/M̄) ∼= ΓK/ΓM(∼= Gal(K/M)). Hence, σp2

= idD̄. A contradic-

tion.

Remark 3.3 (1) We recall that we saw in [M07, Proposition 4.6] that if E is a

Henselian valued field and D is a nondegenerate tame semiramified division algebra

of prime power degree over E, then D has an elementary abelian maximal subfield if

and only if ΓD/ΓF is elementary abelian.

(2) As showed in [T86] with Malcev-Neumann division algebras, one can use Propo-

sition 3.1 and Proposition 3.2 to prove the following result : Let m and n be integers

which have the same prime factors and such that m divides n, and let k be an infi-

nite field. If there is a prime p 6= char(k) such that p2 divides m and p3 divides n,

then Saltman’s universal division algebras of exponent m and degree n over k are not

crossed products.
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