SK₁ OF AZUMAYA ALGEBRAS OVER HENSEL PAIRS

ROOZBEH HAZRAT

ABSTRACT. Let A be an Azumaya algebra of constant rank n over a Hensel pair (R, I) where R is a semilocal ring with n invertible in R. Then the reduced Whitehead group $SK_1(A)$ coincides with its reduction $SK_1(A/IA)$. This generalizes the result of [6] to non-local Henselian rings.

Let A be an Azumaya algebra over a ring R of constant rank n. There exists an étale faithfully flat splitting ring $R \subseteq S$ for A, i.e., $A \otimes_R S \cong M_n(S)$. This provides the notion of the reduced norm (and reduced trace) for A ([10], III, §1). Denote by SL(1,A) the set of all elements of A with reduced norm 1. SL(1,A) is a normal subgroup of A^* , the invertible elements of A (see Saltman [14], Theorem 4.3). Since the reduced norm map respects the scaler extensions, it defines the smooth group scheme $SL_{1,A}: T \to SL(1,A_T)$ where $A_T = A \otimes_R T$ for an R-algebra T. Consider the short exact sequence of smooth group schemes

$$1 \longrightarrow \operatorname{SL}_{1,A} \longrightarrow \operatorname{GL}_{1,A} \xrightarrow{\operatorname{Nrd}} G_m \longrightarrow 1$$

where $GL_{1,A}: T \to A_T^*$ and $G_m(T) = T^*$ for an R-algebra T. This exact sequence induces the long exact étale cohomology

$$(1) \qquad 1 \longrightarrow \operatorname{SL}(1,A) \longrightarrow A^* \xrightarrow{\operatorname{Nrd}} R^* \longrightarrow H^1_{et}(R,\operatorname{SL}(1,A)) \longrightarrow H^1_{et}(R,\operatorname{GL}(1,A)) \longrightarrow \cdots$$

Let A' denote the commutator subgroup of A^* . One defines the reduced Whitehead group of A as $SK_1(A) = SL(1,A)/A'$ which is a subgroup of (non-stable) $K_1(A) = A^*/A'$. Let I be an ideal of R. Since the reduced norm is compatible with extensions, it induces the map $SK_1(A) \to SK_1(\bar{A})$, where $\bar{A} = A/IA$. A natural question arises here is, under what circumstances and for what ideals I of R, this homomorphism would be a mono or/and epi and thus the reduced Whitehead group of A coincides with its reduction. The following observation shows that even in the case of a split Azumaya algebra, these two groups could differ: consider the split Azumaya algebra $A = M_n(R)$ where R is an arbitrary commutative ring. In this case the reduced norm coincides with the ordinary determinant and $SK_1(A) = SL_n(R)/[GL_n(R), GL_n(R)]$. There are examples such that $SK_1(A) \neq 1$, in fact not even torsion. But in this setting, obviously $SK_1(\bar{A}) = 1$ for $\bar{A} = A/mA$ where m is a maximal ideal of R (for some examples see Rosenberg [13], Chapter 2).

If I is contained in the Jacobson radical J(R), then $IA \subset J(A)$ (see, e.g., Lemma 1.4 [4]) and (non-stable) $K_1(A) \to K_1(\bar{A})$ is surjective, thus its restriction to SK₁ is also surjective.

It is observed by Grothendieck ([5], Theorem 11.7) that if R is a local Henselian ring with maximal ideal I and G is an affine, smooth group scheme, then $H^1_{et}(R,G) \to H^1_{et}(R/I,G/IG)$ is an isomorphism. This was further extended to Hensel pairs by Strano [15]. Now if further

R is a semilocal ring then $H_{et}^1(R, GL(1, A)) = 0$, and thus from the sequece (1) it follows

The aim of this note is to prove that for the Hensel pair (R, I) where R is a semilocal ring, the map $SK_1(A) \to SK_1(\bar{A})$ is also an isomorphism. This extends the result of [6] to non-local Henselian rings.

Recall that the pair (R, I) where R is a commutative ring and I an ideal of R is called a Hensel pair if for any polynomial $f(x) \in R[x]$, and $b \in R/I$ such that $\bar{f}(b) = 0$ and $\bar{f}'(b)$ is invertible in R/I, then there is $a \in R$ such that $\bar{a} = b$ and f(a) = 0 (for other equivalent conditions, see Raynaud [12], Chap. XI).

In order to prove this result, we use a recent result of Vasertein [17] which establishes the (Dieudonnè) determinant in the setting of semilocal rings. The crucial part is to prove a version of Platonov's congruence theorem [11] in the setting of an Azumaya algebra over a Hensel pair. The approach to do this was motivated by Suslin in [16]. We also need to use the following facts established by Greco in [3, 4].

Proposition 1 ([4], Prop. 1.6). Let R be a commutative ring, A be an R-algebra, integral over R and finite over its center. Let B be a commutative R-subalgebra of A and I an ideal of R. Then $IA \cap B \subseteq \sqrt{IB}$.

Corollary 2 ([3], Cor. 4.2). Let (R, I) be a Hensel pair and let $J \subseteq \sqrt{I}$ be an ideal of R. Then (R, J) is a Hensel pair.

Theorem 3 ([3], Th. 4.6). Let (R, I) be a Hensel pair and let B be a commutative R-algebra integral over R. Then (B, IB) is a Hensel pair.

We are in a position to prove the main Theorem of this note.

Theorem 4. Let A be an Azumaya algebra of constant rank m over a Hensel pair (R, I) where R is a semilocal ring with m invertible in R. Then $SK_1(A) \cong SK_1(\bar{A})$ where $\bar{A} = A/IA$.

Proof. Since for any $a \in A$, $\overline{\mathrm{Nrd}_A(a)} = \mathrm{Nrd}_{\bar{A}}(\bar{a})$, it follows that there is a homomorphism $\phi: \mathrm{SL}(1,A) \to \mathrm{SL}(1,\bar{A})$. We first show that $\ker \phi \subseteq A'$, the commutator subgroup of A^* . In the setting of valued division algebras, this is the Platonov congruence theorem [11]. We shall prove this in several steps. Clearly $\ker \phi = \mathrm{SL}(1,A) \cap 1 + IA$. Note that A is a free R-module (see [1], II, §5.3, Prop. 5). Set $m = n^2$.

1. The group 1 + I is uniquely n-divisible and 1 + IA is n-divisible.

Let $a \in 1 + I$. Consider $f(x) = x^n - a \in R[x]$. Since n is invertible in R, $\bar{f}(x) = x^n - 1 \in \bar{R}[x]$ has a simple root. Now this root lifts to a root of f(x) as (R, I) is a Hensel pair. This shows that 1 + I is n-divisible. Now if $(1 + a)^n = 1$ where $a \in I$, then $a(a^{n-1} + na^{n-2} + \cdots + n) = 0$. Since the second factor is invertible, a = 0, and it follows that 1 + I is uniquely n-divisible.

Now let $a \in 1 + IA$. Consider the commutative ring $B = R[a] \subseteq A$. By Theorem 3, (B, IB) is a Hensel pair. On the other hand by Prop. 1, $IA \cap B \subseteq \sqrt{IB}$. Thus by Cor. 2, $(B, IA \cap B)$ is also a Hensel pair. But $a \in 1 + IA \cap B$. Applying the Hensel lemma as in the above, it follows that a has a n-th root and thus 1 + IA is n-divisible.

2.
$$\operatorname{Nrd}_A(1 + IA) = 1 + I$$
.

From compatibility of the reduced norm, it follows that $\operatorname{Nrd}_A(1+IA) \subseteq 1+I$. Now using the fact that 1+I is n-divisible, the equality follows.

3.
$$SK_1(A)$$
 is n^2 -torsion.

We first establish that $N_{A/R}(a) = \operatorname{Nrd}_A(a)^n$. One way to see this is as follows. Since A is an Azumaya algebra of constant rank n, then $i: A \otimes A^{op} \cong \operatorname{End}_R(A) \cong M_{n^2}(R)$ and there is an étale faithfully flat S algebra such that $j: A \otimes S \cong M_n(S)$. Consider the following diagram

$$A \otimes A^{op} \otimes S \xrightarrow{i \otimes 1} \operatorname{End}_{R}(A) \otimes S \xrightarrow{\cong} \operatorname{End}_{S}(A \otimes S) \xrightarrow{\cong} M_{n^{2}}(S)$$

$$\downarrow \qquad \qquad \qquad \downarrow \psi$$

$$A^{op} \otimes A \otimes S \xrightarrow{1 \otimes j} A^{op} \otimes M_{n}(S) \xrightarrow{\cong} M_{n}(A^{op} \otimes S) \xrightarrow{\cong} M_{n^{2}}(S)$$

where the automorphism ψ is the compositions of isomorphisms in the diagram. By a theorem of Artin (see, e.g., [10], §III, Lemma 1.2.1), one can find an ètale faithfully flat S algebra T such that $\psi \otimes 1 : M_{n^2}(T) \to M_{n^2}(T)$ is an inner automorphism. Now the determinant of the element $a \otimes 1 \otimes 1$ in the first row is $N_{A/R}(a)$ and in the second row is $Nrd_A(a)^n$ and since $\psi \otimes 1$ is inner, thus they coincide.

Therefore if $a \in SL(1, A)$, then $N_{A/R}(a) = 1$. We will show that $a^{n^2} \in A'$. Consider the sequence of R-algebra homomorphism

$$f: A \to A \otimes A^{op} \to \operatorname{End}_R(A) \cong M_{n^2}(R) \hookrightarrow M_{n^2}(A)$$

and the R-algebra homomorphism $i: A \to M_{n^2}(A)$ where a maps to aI_{n^2} , where I_{n^2} is the identity matrix of $M_{n^2}(A)$. Since R is a semilocal ring, the Skolem-Noether theorem is present in this setting (see Prop. 5.2.3 in [10]) and thus there is $g \in GL_{n^2}(A)$ such that $f(a) = gi(a)g^{-1}$. Also, since A is a finite algebra over R, A is a semilocal ring. Since n is invertible in R, by Vaserstein's result [17], the Dieudonnè determinant extends to the setting of $M_{n^2}(A)$. Taking the determinant from f(a) and $gi(a)g^{-1}$, it follows that $1 = N_{A/R}(a) = a^{n^2}c_a$ where $c_a \in A'$. This shows that $SK_1(A)$ is n^2 -torsion.

4. Platonov Congruence Theorem: $SL(1, A) \cap 1 + IA \subseteq A'$.

Let $a \in SL(1,A) \cap 1 + IA$. By (1), there is $b \in 1 + IA$ such that $b^{n^2} = a$. Then $Nrd_A(a) = Nrd_A(b)^{n^2} = 1$. By (2), $Nrd_A(b) \in 1 + I$ and since 1 + I is uniquely n-divisible,

 $\operatorname{Nrd}_A(b) = 1$, so $b \in \operatorname{SL}(1, A)$. By (3), $b^{n^2} \in A'$, so $a \in A'$. Thus $\ker \phi \subseteq A'$ where $\phi : \operatorname{SL}(1, A) \to \operatorname{SL}(1, \bar{A})$.

It is easy to see that ϕ is surjective. In fact, if $\bar{a} \in \operatorname{SL}(1,\bar{A})$ then $1 = \operatorname{Nrd}_{\bar{A}}(\bar{a}) = \overline{\operatorname{Nrd}_{A}(a)}$ thus, $\operatorname{Nrd}_{A}(a) \in 1 + I$. By (1), there is $r \in 1 + I$ such that $\operatorname{Nrd}_{A}(ar^{-1}) = 1$ and $\overline{ar^{-1}} = \bar{a}$. Thus ϕ is an epimorphism. Consider the induced map $\bar{\phi} : \operatorname{SL}(1,A) \to \operatorname{SL}(1,\bar{A})/\bar{A}'$. Since $I \subseteq J(R)$, and by (3), $\ker \phi \subseteq A'$ it follows that $\ker \bar{\phi} = A'$ and thus $\bar{\phi} : \operatorname{SK}_{1}(A) \cong \operatorname{SK}_{1}(\bar{A})$. \square

Let R be a semilocal ring and (R, J(R)) a Hensel pair. Let A be an Azumaya algebra over R of constant rank n and n invertible in R. Then by Theorem 4, $\mathrm{SK}_1(A) \cong \mathrm{SK}_1(\bar{A})$ where $\bar{A} = A/J(R)A$. But J(A) = J(R)A, so $\bar{A} = M_{k_1}(D_1) \times \cdots M_{k_r}(D_r)$ where D_i are division algebras. Thus $\mathrm{SK}_1(A) \cong \mathrm{SK}_1(\bar{A}) = \mathrm{SK}_1(D_1) \cdots \times \mathrm{SK}_1(D_r)$.

Using a result of Goldman [2], one can remove the condition of Azumaya algebra having a constant rank from the Theorem.

Corollary 5. Let A be an Azumaya algebra over a Hensel pair (R, I) where R is semilocal and the least common multiple of local ranks of A over R is invertible in R. Then $SK_1(A) \cong SK_1(\bar{A})$ where $\bar{A} = A/IA$.

Proof. One can decompose R uniquely as $R_1 \oplus \cdots \oplus R_t$ such that $A_i = R_i \otimes_R A$ have constant ranks over R_i which coincide with local ranks of A over R (see [2], §2 and Theorem 3.1). Since (R_i, IR_i) are Hensel pairs, the result follows by using Theorem 4.

Remarks 6. Let D be a tame unramified division algebra over a Henselian field F, i.e., the valued group of D coincide with valued group of F and $\operatorname{chr}(\bar{F})$ does not divide the index of D (see [18] for a nice survey on valued division algebras). Jacob and Wadsworth observed that V_D is an Azumaya algebra over its center V_F (Theorem 3.2 in [18] and Example 2.4 in [8]). Since $D^* = F^*U_D$ and $V_D \otimes_{V_F} F \simeq D$, it can be seen that $\operatorname{SK}_1(D) = \operatorname{SK}_1(V_D)$. On the other hand our main Theorem states that $\operatorname{SK}_1(V_D) \simeq \operatorname{SK}_1(\bar{D})$. Comparing these, we conclude the stability of SK_1 under reduction, namely $\operatorname{SK}_1(D) \simeq \operatorname{SK}_1(\bar{D})$ (compare this with the original proof, Corollary 3.13 [11]).

Now consider the group $CK_1(A) = A^*/R^*A'$ for the Azumaya algebra A over the Hensel pair (R, I). A proof similar to Theorem 3.10 in [6], shows that $CK_1(A) \cong CK_1(\bar{A})$. Thus in the case of tame unramified division algebra D, one can observe that $CK_1(D) \cong CK_1(\bar{D})$.

For an Azumaya algebra A over a semilocal ring R, by (1) one has

$$R^*/\operatorname{Nrd}_A(A^*) \cong H^1_{\operatorname{\acute{e}t}}(R,\operatorname{SL}(1,A)).$$

If (R, I) is also a Hensel pair, then by the Grothendieck-Strano result,

$$R^*/\mathrm{Nrd}_A(A^*) \cong H^1_{\mathrm{\acute{e}t}}(R,\mathrm{SL}(1,A)) \cong H^1_{\mathrm{\acute{e}t}}(\bar{R},\mathrm{SL}(1,\bar{A})) \cong \bar{R}^*/\mathrm{Nrd}_{\bar{A}}(\bar{A}^*).$$

However specializing to a tame unramified division algebra D, the stability does not follow in this case. In fact for a tame and unramified division algebra D over a Henselian field F with the valued group Γ_F and index n one has the following exact sequence (see [7], Theorem 1):

$$1 \longrightarrow H^1(\overline{F}, \mathrm{SL}(1, \overline{D})) \longrightarrow H^1(F, \mathrm{SL}(1, D)) \longrightarrow \Gamma_F/n\Gamma_F \longrightarrow 1.$$

Acknowledgement. I would like to thank IHES, where part of this work has been done in Summer 2006.

References

- [1] N. Bourbaki, Commutative Algebra, Chapters 1–7, Springer-Verlag, New York, 1989.
- [2] O. Goldman, Determinants in projective modules, Nagoya Math. J. 3 (1966), 7–11.
- [3] S. Greco, Algebras over nonlocal Hensel rings, J. Algebra, 8 (1968), 45–59.
- [4] S. Greco, Algebras over nonlocal Hensel rings II, J. Algebra, 13, (1969), 48–56.
- [5] A. Grothendieck, Le groupe de Brauer. III: Dix exposés la cohomologie des schémas, North Holland, Amsterdam, 1968.
- [6] R. Hazrat, Reduced K-theory of Azumaya algebras, J. Algebra, 305 (2006), 687–703.
- [7] R. Hazrat, On the first Galois cohomology group of the algebraic group $SL_1(D)$, Preprint
- [8] Jacob, B.; Wadsworth, A. Division algebras over Henselian fields, J. Algebra 128 (1990), no. 1, 126–179.
- [9] T.Y. Lam, A first course in noncommutative rings, Springer-Verlag, New York, 1991.
- [10] M.-A. Knus, Quadratic and Hermitian forms over rings, Springer-Verlag, Berlin, 1991.
- [11] V.P. Platonov, The Tannaka-Artin problem and reduced K-theory, Math USSR Izv. 10 (1976) 211–243.
- [12] M. Raynaud, Anneaux locaux Hensèliens, LNM, 169, Springer-Verlag, 1070.
- [13] J. Rosenberg, Algebraic K-theory and its applications, GTM, 147. Springer-Verlag, 1994.
- [14] D. Saltman, Lectures on division algebras, RC Series in Mathematics, AMS, no. 94, 1999.
- [15] R. Strano, Principal homogenous spaces over Hensel rings, Proc. Amer. Math. Soc. 87, No. 2, 1983, 208–212.
- [16] A. Suslin, SK₁ of division algebras and Galois cohomology, 75–99, Adv. Soviet Math., 4, AMS, 1991.
- [17] L. Vaserstein, On the Whitehead determinant for semilocal rings, J. Algebra 283 (2005), 690–699.
- [18] A. Wadsworth, Valuation theory on finite dimensional division algebras, Fields Inst. Commun. 32, Amer. Math. Soc., Providence, RI, (2002), 385–449.

DEPT. OF PURE MATHEMATICS, QUEEN'S UNIVERSITY, BELFAST BT7 1NN, UNITED KINGDOM *E-mail address*: r.hazrat@qub.ac.uk