VANISHING OF TRACE FORMS IN LOW CHARACTERISTICS

SKIP GARIBALDI

ABSTRACT. A finite-dimensional representation of an algebraic group G gives a trace symmetric bilinear form on the Lie algebra of G. We give a criterion in terms of the root system data for this form to vanish. As a corollary, we show that a Lie algebra of type E_8 over a field of characteristic 5 does not have a so-called "quotient trace form", answering a question posed in the 1960s.

Let G be an algebraic group over a field F, acting on a finite-dimensional vector space V via a homomorphism $\rho: G \to GL(V)$. The differential $d\rho$ of ρ maps the Lie algebra Lie(G) of G into $\mathfrak{gl}(V)$, and we put Tr_{ρ} for the symmetric bilinear form

$$\operatorname{Tr}_{\rho}(x,y) := \operatorname{trace}(\operatorname{d}\rho(x)\operatorname{d}\rho(y)) \quad \text{for } x,y \in \operatorname{Lie}(G).$$

We call Tr_{ρ} a trace form of G. Such forms appear, for example, in the hypotheses for the Jacobson-Morozov Theorem [Ca, 5.3.1]. We prove:

Theorem A. Assume G is simply connected, split, and almost simple. Then the following are equivalent:

- (a) The characteristic of F is a torsion prime for G.
- (b) Every trace form of G is zero.

The set of torsion primes for G is given by the following table, cf. e.g. [St 75, 1.13]:

type of G	torsion primes
A_n, C_n	none
$B_n \ (n \ge 3), \ D_n \ (n \ge 4), \ G_2$	2
F_4, E_6, E_7	2, 3
E_8	2, 3, 5

A prime p is called a torsion prime for G if the corresponding group $G(\mathbb{C})$ over \mathbb{C} (or, equivalently, its compact form) is such that one of its homology groups, with coefficients in \mathbb{Z} , contains an element of order p.

We also prove a generalization of Theorem A that removes the hypotheses "simply connected" and "split"; it is somewhat more complicated, so we leave the statement until Th. D (and Remark 4.6). Replacing the simply connected group G with a nontrivial quotient G' changes the situation in two ways: the group G' has "fewer" representations and the Lie algebras of G and G' may be different. These two changes are reflected in the integers N(G) and E(G) defined below.

As a particular example of Th. A, for G of type E_8 over a field of characteristic 2, 3, or 5, Tr_{ρ} is zero for every representation ρ of G. One may ask whether the same is true for the representations of the Lie algebra $\operatorname{Lie}(G)$. That is, for a representation ψ of $\operatorname{Lie}(G)$, we write Tr_{ψ} for the bilinear form $(x,y) \mapsto \operatorname{trace}(\psi(x)\psi(y))$, and ask

 $2000\ Mathematics\ Subject\ Classification.\ 20G05\ (17B50,\ 17B25).$

1

if Tr_{ψ} is necessarily zero. We do not know if this holds in characteristic 2 or 3, but it does in characteristic 5:

Corollary B. If F has characteristic 5 and G is of type E_8 , then the trace form of every representation of Lie(G) is zero.

Indeed, we shall prove in $\S 7$ a slightly stronger statement, namely that Lie(G) has no "quotient trace form", thus answering a question posed in the early 1960s, see e.g. [Bl, p. 554], [BlZ, p. 543], or [Se, p. 48].

Trace forms on Lie algebras seem to have been studied—motivated by results from Borel-Mostow [BoM, §3]—as a way of defining a class of Lie algebras that was small enough to be tractable but large enough to be interesting, see e.g. [Se, pp. 47–49] and [BlZ]. Since then, tremendous progress has been made: Block, Premet, Strade, Wilson, and others have classified the simple Lie algebras over algebraically closed fields of characteristic ≥ 5 , see [Strade]. These algebras are of "classical", Cartan, or Melikian type, and these types are distinct [Strade, §6.1]. Trace forms are only interesting for algebras of classical type—roughly, the simple algebras coming from Lie algebras of simple algebraic groups—because every trace form on a simple algebra of Cartan or Melikian type is zero by [Bl, Cor. 3.1]. Corollary B settles the last remaining question mark regarding the existence of nonzero trace forms on simple Lie algebras in characteristic ≥ 5 , cf. [Bl, Cor. 3.1].

We do not use the Block-Premet-Strade-Wilson techniques here. Rather, we observe that it suffices to prove Theorem A, etc., for those representations "defined over \mathbb{Z} " and we compute the trace form on those representations (over \mathbb{Z}). We do need to compute the trace form and not just its discriminant; knowing the discriminant (over \mathbb{Z}) only tells you if the form is degenerate in prime characteristic, whereas we want to know whether the form is zero.

Acknowledgments. It is a pleasure to thank Jean-Pierre Serre for helpful discussions and for pointing out the utility of the form \tilde{b} (from [GN], see 3.1) early in this project. My research was partially supported by NSF grant DMS-0654502.

1. The number N(G) and the Dynkin index

1.1. Fix a simple root system R. We write P for its weight lattice and \langle , \rangle for the canonical pairing between P and its dual. Fix a long root $\alpha \in R$ and write α^{\vee} for the associated coroot. For each subset X of P that is invariant under the Weyl group, we put:

$$N(X) := \frac{1}{2} \sum_{x \in X} \langle x, \alpha^{\vee} \rangle^2 \in \mathbb{Z}\left[\frac{1}{2}\right].$$

Note that N(X) does not depend on the choice of α because the long roots are conjugate under the Weyl group.

Furthermore, N(X) is an integer. To see this, note that the reflection s in the hyperplane orthogonal to α satisfies $\langle sx,\alpha^\vee\rangle=\langle x,s\alpha^\vee\rangle=-\langle x,\alpha^\vee\rangle$, so in the definition of N(X), the sum can be taken to run over those x satisfying $x\neq sx$. For such x, we have $\langle x,\alpha^\vee\rangle^2+\langle sx,\alpha^\vee\rangle^2=2\langle x,\alpha^\vee\rangle^2$, proving the claim.

Example 1.2. The computations in [SpSt, pp. 180, 181] show that $N(R) = 2h^{\vee}$, where h^{\vee} denotes the dual Coxeter number of R, which is defined as follows. Fix a

set of simple roots Δ of R. Write $\tilde{\alpha}$ for the highest root; the corresponding coroot $\tilde{\alpha}^{\vee}$ is

$$\tilde{\alpha}^{\vee} = \sum_{\delta \in \Lambda} m_{\delta}^{\vee} \delta^{\vee}$$

for some natural numbers m_{δ}^{\vee} . The dual Coxeter number h^{\vee} is defined by

$$h^{\vee} := 1 + \sum m_{\delta}^{\vee}.$$

In case all the roots of R have the same length, it is the (usual) Coxeter number h and is given in the tables in [B Lie].

Suppose that there are two different root lengths in R; we write L for the set of long roots and S for the set of short roots. The arguments in [SpSt] are easily adapted to show that

$$N(L) = 2 \left[1 + \sum_{\delta \in \Delta \cap L} m_{\delta}^{\vee} \right] \quad \text{and} \quad N(S) = 2 \sum_{\delta \in \Delta \cap S} m_{\delta}^{\vee}.$$

We obtain the following numbers:

Definition 1.3. Fix a split almost simple linear algebraic group G over F. Fix also a pinning of G with respect to some maximal torus T; this includes a root system R and a set of simple roots Δ of G with respect to T. For a representation ρ of G over F, one defines

$$N(\rho) := \sum_{\text{dominant weights } \lambda} \left(\substack{\text{multiplicity of } \lambda \\ \text{as a weight of } \rho} \right) \cdot N(W\lambda) \quad \in \mathbb{Z}.$$

For example, the adjoint representation Ad has $N(\mathrm{Ad})=2h^\vee$ by Example 1.2. We put:

$$N(G) := \gcd N(\rho),$$

where the gcd runs over the representations of G defined over F.

The map $\rho \mapsto N(\rho)$ is compatible with short exact sequences

$$(1.4) 0 \longrightarrow \rho' \longrightarrow \rho \longrightarrow \rho/\rho' \longrightarrow 0$$

in the sense that

$$N(\rho) = N(\rho') + N(\rho/\rho').$$

Writing RG for the representation ring of G, we obtain a homomorphism of abelian groups $N: RG \to \mathbb{Z}$ with image $N(G) \cdot \mathbb{Z}$.

In the definition of N(G), it suffices to let the gcd run over generators of RG, e.g., the irreducible representations of G. For an irreducible representation ρ , the highest weight λ has multiplicity 1 and all the other weights of ρ are lower in the partial ordering. Inducting on the partial ordering, we find:

$$N(G) = \gcd_{\lambda \in T^*} N(W\lambda).$$

In particular, N(G) depends only on the root system R and the lattice T^* , and not on the field F.

1.5. When G is simply connected, the number $N(\rho)$ is the Dynkin index of the representation ρ defined in [D, p. 130] and studied in [Mer], and N(G) is the Dynkin index of the group G. The Dynkin index of G and of the fundamental irreducible representations of G (over \mathbb{C}) are listed in [LS, Prop. 2.6] or [MPR, pp. 36–44], correcting some small errors in Dynkin's calculations. For G simply connected, the primes dividing N(G) are the torsion primes of G.

Example 1.6. Write Spin_n and SO_n for the spin and special orthogonal groups of an n-dimensional nondegenerate quadratic form of maximal Witt index. For n=3 or $n\geq 5$, these groups are split and almost simple of type B or D. The Dynkin index $N(\operatorname{Spin}_n)$ is 2; it obviously divides $N(\operatorname{SO}_n)$. On the other hand, the natural n-dimensional representation ρ of SO_n has $N(\rho)=2$, so $N(\operatorname{SO}_n)=2$.

Example 1.7. Write PSp_{2n} for the split adjoint simple group of type C_n ; it can be viewed as Sp_{2n}/μ_2 . We claim that

$$N(\mathrm{PSp}_{2n}) = \begin{cases} 2 & \text{if } n \text{ is even} \\ 4 & \text{if } n \text{ is odd} \end{cases}$$

for $n \ge 2$. The number $N(\operatorname{PSp}_{2n})$ divides 4 and 2(n-1) by Example 1.2. Further, $N(\operatorname{PSp}_{2n})$ is even by [Mer, 14.2]. This shows that $N(\operatorname{PSp}_{2n})$ is 2 or 4, and is 2 in case n is even.

Suppose that n is odd. We must show that $N(W\lambda)$ is divisible by 4 for every element λ of the root lattice of PSp_{2n} . We use the same notation as [Mer, §14] for the weights of PSp_{2n} : they are a sum $\sum_{i=1}^n x_i e_i$ such that $\sum x_i$ is even. The Weyl group W is a semidirect product of $(\mathbb{Z}/2\mathbb{Z})^n$ (acting by flipping the signs of the e_i) and the symmetric group on n letters (acting by permuting the e_i). Taking X for the $(\mathbb{Z}/2\mathbb{Z})^n$ -orbit of $\sum x_i e_i$, we have

(1.8)
$$\frac{1}{2} \sum_{x \in X} \left\langle \sum_{i} x_{i} e_{i}, (2e_{n})^{\vee} \right\rangle^{2} = 2^{r-1} x_{n}^{2}$$

where r denotes the number of nonzero x_i 's, cf. [Mer, pf. of Lemma 14.2]. If r = 1, then the unique nonzero x_i is even, and we find that for $r \neq 2$, the sum—hence also $N(W \sum x_i e_i)$ —is divisible by 4. Suppose that x_1, x_2 are the only nonzero x_i 's; then by (1.8) we have:

$$N(W(x_1e_1 + x_2e_2)) = \begin{cases} 2(n-1)(x_1^2 + x_2^2) & \text{if } x_1 \neq \pm x_2\\ 2(n-1)x_1^2 & \text{if } x_1 = \pm x_2. \end{cases}$$

As n is odd, $N(W(x_1e_1+x_2e_2))$ is divisible by 4, which completes the proof of the claim.

Example 1.9. For G adjoint of type E_7 , we have N(G)=12. To see this, we note that N(G) is divisible by N of the universal covering \widetilde{G} of G (which is 12) and that N(G) divides $2h^{\vee}=36$ by Example 1.2. For the minuscule representation ρ of \widetilde{G} , we have dim $\rho=56$ and $N(\rho)=12$. The representation $\rho^{\otimes 2}$ of \widetilde{G} factors through G and by the "derivation formula"

$$N(\rho_1 \otimes \rho_2) = (\dim \rho_1) \cdot N(\rho_2) + (\dim \rho_2) \cdot N(\rho_1)$$

(see e.g. [Mer, p. 122]) we have

$$N(\rho^{\otimes 2}) = 2(\dim \rho)N(\rho) = 2^6 \cdot 3 \cdot 7.$$

It follows that N(G) equals 12, as claimed.

2. The Lie algebra of ${\cal G}$

2.1. Let G be a split almost simple algebraic group over F. We fix a pinning for G; it gives a split form $G_{\mathbb{Z}}$ of G over Spec \mathbb{Z} such that the base change $\mathbb{Z} \to F$ sends $G_{\mathbb{Z}}$ to G. Similarly the pinning gives a \mathbb{Z} -form $T_{\mathbb{Z}}$ of the maximal torus T. We have a Cartan decomposition of the Lie algebra of $G_{\mathbb{Z}}$:

(2.2)
$$\operatorname{Lie}(G_{\mathbb{Z}}) = \operatorname{Lie}(T_{\mathbb{Z}}) \oplus \bigoplus_{\alpha \in R} \mathbb{Z} x_{\alpha}$$

and

(2.3)
$$\operatorname{Lie}(T_{\mathbb{Z}}) = \{ h \in \operatorname{Lie}(T_{\mathbb{C}}) \mid \mu(h) \in \mathbb{Z} \text{ for all } \mu \in T^* \}.$$

see [St 68, p. 64]. Note that Lie(G) is naturally identified with $\text{Lie}(G_{\mathbb{Z}}) \otimes_{\mathbb{Z}} F$ and similarly for Lie(T).

- **2.4.** Write \widetilde{G} for the universal covering of G; we use the obvious analogues of the notations in 2.1 for \widetilde{G} . The group G acts on \widetilde{G} by conjugation, hence also on $\mathrm{Lie}(\widetilde{G})$. If the kernel of the map $\widetilde{G} \to G$ is étale, then the representation $\mathrm{Lie}(\widetilde{G})$ is equivalent to the adjoint representation on $\mathrm{Lie}(G)$. But in prime characteristic, this need not hold. In any case, the natural map $\mathrm{Lie}(\widetilde{G}) \to \mathrm{Lie}(G)$ is an isomorphism on the F-span of the x_{α} 's.
- **2.5.** We claim that $\text{Lie}(\hat{G})$ is a Weyl module for G in the sense of [J, p. 183], i.e., its character is given by Weyl's formula and it is generated as a G-module by a highest weight vector. The first condition holds by (2.2), so it suffices to check the second.

To check that the submodule $Gx_{\tilde{\alpha}}$ generated by the highest weight vector $x_{\tilde{\alpha}}$ is all of $\text{Lie}(\widetilde{G})$, one quickly reduces to checking that $Gx_{\tilde{\alpha}}$ contains $\text{Lie}(\widetilde{T}_{\mathbb{Z}})$. Equation (2.3) gives a natural isomorphism $\mathbb{Z}[R^{\vee}] \xrightarrow{\sim} \text{Lie}(\widetilde{T}_{\mathbb{Z}})$ where $\widetilde{T}_{\mathbb{Z}}$ is the maximal torus in $\widetilde{G}_{\mathbb{Z}}$ mapping onto $T_{\mathbb{Z}}$. We write (as is usual) h_{α} for the image of α^{\vee} under this map. As $[x_{\alpha}, x_{-\alpha}] = h_{\alpha}$, the claim is proved.

See [Hi] or [Ho] for descriptions of the composition series of $\text{Lie}(\widetilde{G})$.

3. The number
$$E(G)$$

Definition 3.1. Maintain the notation of the preceding section. The Killing form on $\operatorname{Lie}(\widetilde{G}_{\mathbb{Z}})$ is divisible by $2h^{\vee}$ [GN] and dividing by $2h^{\vee}$ gives an indivisible even symmetric bilinear form \widetilde{b} on $\operatorname{Lie}(\widetilde{G}_{\mathbb{Z}})$ such that

(3.2)
$$\widetilde{b}(h_{\alpha}, h_{\alpha}) = 2$$
 and $\widetilde{b}(x_{\alpha}, x_{-\alpha}) = 1$

for long roots α , see [SpSt, p. 181] or [B Lie, Lemma VIII.2.4.3]. For a short root β , we have: $\tilde{b}(h_{\beta}, h_{\beta}) = 2c$ and $\tilde{b}(x_{\beta}, x_{-\beta}) = c$, where c is the square-length ratio of α to β . For example, $G = \operatorname{SL}_n$ has Lie algebra the trace zero n-by-n matrices, and the form \tilde{b} is the usual trace bilinear form $(x, y) \mapsto \operatorname{trace}(xy)$, cf. [B Lie, Exercise VIII.13.12].

The natural map $\operatorname{Lie}(\widetilde{G}_{\mathbb{Z}}) \to \operatorname{Lie}(G_{\mathbb{Z}})$ is an inclusion and extending scalars to \mathbb{Q} gives an isomorphism. Therefore, \widetilde{b} gives a rational-valued symmetric bilinear form on $\operatorname{Lie}(G_{\mathbb{Z}})$. We define E(G) to be the smallest positive rational number such that

 $E(G) \cdot \widetilde{b}$ is integer-valued on $\text{Lie}(G_{\mathbb{Z}})$; we write b for this form. Note that E(G) is an integer by (3.2).

Clearly, E(G) depends only on the root system of G and the character lattice T^* viewed as a sublattice of the weight lattice, and not on the field F.

3.3. Write \bar{G} for the adjoint group of G; we use the obvious analogues of the notations in 2.1 for \bar{G} . We have a commutative diagram

$$\begin{array}{ccc} Q^{\vee} & \stackrel{\sim}{\longrightarrow} & \mathrm{Lie}(\widetilde{T}_{\mathbb{Z}}) \\ \downarrow & & \downarrow \\ P^{\vee} & \stackrel{\sim}{\longrightarrow} & \mathrm{Lie}(T_{\mathbb{Z}}) \end{array}$$

where Q^{\vee} and P^{\vee} are the root and weight lattices of the dual root system. The form \tilde{b} restricts to be an inner product on Q^{\vee} such that the square-length of a short coroot α^{\vee} is 2. This inner product extends to a rational-valued inner product on P^{\vee} , and $E(\bar{G})$ is the smallest positive integer such that $E(\bar{G}) \cdot \tilde{b}$ is integer-valued on P^{\vee} .

Example 3.4. Consider the case where G is PSp_{2n} for some $n \geq 2$, i.e., adjoint of type C_n . In the notation of the tables in [B Lie], the form \widetilde{b} is twice the usual scalar product, i.e., $\widetilde{b}(e_i, e_j) = 2\delta_{ij}$ (Kronecker delta). The fundamental weight ω_n has $\widetilde{b}(\omega_n, \omega_n) = n/2$. Checking $\widetilde{b}(\omega_i, \omega_j)$ for all i, j, shows that $E(\overline{G})$ is 1 if n is even and 2 if n is odd.

Example 3.5. Suppose that all the roots of G have the same length, so that we may identify the root system R with its dual and normalize lengths so that \langle , \rangle is symmetric and equals \widetilde{b} .

(1): $E(\bar{G})$ is the exponent of P/Q, the weight lattice modulo the root lattice. Indeed, the natural isomorphism between P and $\text{Lie}(\bar{T}_{\mathbb{Z}})$ shows that $E(\bar{G})$ is the smallest natural number such that $E(\bar{G}) \cdot \langle \ , \rangle$ is integer-valued on $P \times P$, equivalently, the smallest natural number e such that eP is contained in Q; this is the exponent of P/Q.

(2): The bilinear form

$$\widetilde{b}$$
: Lie($\widetilde{G}_{\mathbb{Z}}$) × Lie($\overline{G}_{\mathbb{Z}}$) $\to \mathbb{Q}$

has image \mathbb{Z} and identifies $\operatorname{Lie}(\bar{G}_{\mathbb{Z}})$ with $\operatorname{Hom}_{\mathbb{Z}}(\operatorname{Lie}(\widetilde{G}_{\mathbb{Z}}), \mathbb{Z})$. (On the span of the x_{α} 's, this is clear from (3.2). On the Cartan subalgebras, it amounts to the statement that $\langle \, , \, \rangle$ identifies P with $\operatorname{Hom}(Q,\mathbb{Z})$.) It follows that $\operatorname{Lie}(\bar{G})$, as a G-module, is the dual of $\operatorname{Lie}(\tilde{G})$, i.e., $\operatorname{Lie}(\bar{G})$ is the module denoted by $H^0(\tilde{\alpha})$ in [J].

Example 3.6. For n = 3 or $n \ge 5$, we claim that $E(SO_n) = 1$.

For n odd, SO_n is adjoint of type B_ℓ for $\ell = (n-1)/2$, and we compute as in 3.3 and Example 3.4. The dual root system is of type C_ℓ , and the form \tilde{b} is the usual scalar product, i.e., $b(e_i, e_j) = \delta_{ij}$. The fundamental weight ω_i is $e_1 + e_2 + \cdots + e_i$, so $E(SO_{2\ell+1}) = 1$.

For n even, SO_n has type D_ℓ for $\ell = n/2$. The character group T^* of a maximal torus in SO_n consists of the weights whose restriction to the center of $Spin_n$ is 0 or agrees with the vector representation, i.e., the weights $\sum c_i\omega_i$ such that $c_{\ell-1} + c_{\ell}$

is even. It follows that that the cocharacter lattice T_* is generated by the (co)root lattice and

$$\omega_{\ell-1} + \omega_{\ell} = \alpha_1 + 2\alpha_2 + \dots + (\ell-2)\alpha_{\ell-2} + \frac{\ell-1}{2}(\alpha_{\ell-1} + \alpha_{\ell}).$$

We have:

$$\widetilde{b}(\omega_{\ell-1} + \omega_{\ell}, \omega_{\ell-1} + \omega_{\ell}) = \langle \omega_{\ell-1} + \omega_{\ell}, \omega_{\ell-1} + \omega_{\ell} \rangle = \ell - 1 \in \mathbb{Z},$$

so the form \widetilde{b} is integer-valued on T_* and $E(SO_{2\ell}) = 1$.

Example 3.7. For $n \geq 3$, write $\operatorname{HSpin}_{4n}$ for the nontrivial quotient of Spin_{4n} that is neither SO_{4n} nor adjoint. A calculation like the one in Example 3.6 gives:

$$E(\mathrm{HSpin}_{4n}) = \begin{cases} 1 & \text{if } n \text{ is even} \\ 2 & \text{if } n \text{ is odd.} \end{cases}$$

4. Main results

The integer-valued symmetric bilinear form b on $Lie(G_{\mathbb{Z}})$ defined in 3.1 gives by scalar extension a symmetric bilinear form on Lie(G) which we denote by $b_{/F}$.

Proposition 4.1. Let ρ be a representation of a split and almost simple algebraic group G over F. Then:

- (1) E(G) divides $N(\rho)$. (2) $\operatorname{Tr}_{\rho} = \frac{N(\rho)}{E(G)} b_{/F}$.

The following example is really the crux of the proof of the proposition.

Example 4.2. Suppose that ρ is a Weyl module of G. There is a \mathbb{Z} -form $\rho_{\mathbb{Z}}$ of ρ and composing $\rho_{\mathbb{Z}}$ with the natural homomorphism $G_{\mathbb{Z}} \to G_{\mathbb{Z}}$ gives a representation $\widetilde{\rho}_{\mathbb{Z}}$ of $G_{\mathbb{Z}}$.

We first compute $\operatorname{Tr}_{\widetilde{\rho}}$ over \mathbb{C} . If we decompose the representation ρ with respect to the action of \widetilde{T} and write V_{μ} for the eigenspace relative to the weight μ , then h_{α} acts on V_{μ} by scalar multiplication by $\langle \mu, \alpha^{\vee} \rangle$, hence $\operatorname{Tr}_{\rho}(h_{\alpha}, h_{\alpha}) = \sum \dim(V_{\mu})\langle \mu, \alpha^{\vee} \rangle^{2}$. By putting together the μ in an orbit $W\lambda$ (where λ is dominant) and taking α to be a long root, one gets:

(4.3)
$$\operatorname{Tr}_{\widetilde{\rho}}(h_{\alpha}, h_{\alpha}) = 2 N(\rho).$$

The representation $\mathrm{Lie}(\widetilde{G}_{\mathbb{Z}})\otimes\mathbb{C}$ is irreducible and has a nondegenerate $\widetilde{G}_{/\mathbb{C}}$ -invariant symmetric bilinear form, so by Schur's Lemma we have:

$$\operatorname{Hom}_{\widetilde{G}_{/\mathbb{C}}}(\operatorname{Lie}(\widetilde{G})\otimes\mathbb{C},(\operatorname{Lie}(\widetilde{G})^*)\otimes\mathbb{C})=\mathbb{C}.$$

In particular, $\operatorname{Tr}_{\widetilde{\rho}}$ equals $z\widetilde{b}$ for some complex number z and

$$2N(\rho) = \operatorname{Tr}_{\widetilde{\rho}}(h_{\alpha}, h_{\alpha}) = z \, \widetilde{b}(h_{\alpha}, h_{\alpha}) = 2z.$$

Hence $\operatorname{Tr}_{\widetilde{\rho}} = N(\rho) \widetilde{b}$.

Now $\text{Lie}(G_{\mathbb{Z}}) \otimes \mathbb{C}$ is naturally identified with $\text{Lie}(\widetilde{G}_{\mathbb{Z}}) \otimes \mathbb{C}$, so the form Tr_{ρ} on $\operatorname{Lie}(G_{\mathbb{Z}})$ is exactly $N(\rho)$ b, i.e.,

(4.4)
$$\operatorname{Tr}_{\rho} = \frac{N(\rho)}{E(G)} b.$$

As the representation ρ of G is defined over \mathbb{Z} , the form Tr_{ρ} is integer-valued. But b is indivisible, and it follows that E(G) divides $N(\rho)$.

By extending scalars, equation (4.4) holds with b replaced by $b_{/F}$. This verifies Prop. 4.1 for the Weyl module ρ .

Proof of Prop. 4.1. The number $N(\rho)$ depends only on the class of ρ in the representation ring RG. As the Weyl modules generate RG as an abelian group and E(G) divides $N(\psi)$ for every Weyl module ψ by Example 4.2, (1) follows.

For (2), we note that the map $\rho \mapsto \operatorname{Tr}_{\rho} - (N(\rho)/E(G)) b_{/F}$ is compatible with exact sequences like (1.4) in the sense that $\operatorname{Tr}_{\rho} = \operatorname{Tr}_{\rho'} + \operatorname{Tr}_{\rho/\rho'}$. We obtain a homomorphism of abelian groups

$$RG \rightarrow \boxed{ \text{symmetric bilinear forms on Lie}(G) }$$

that vanishes on the Weyl modules by Example 4.2, hence is zero.

The form $b_{/F}$ is not zero, because b is indivisible (as a form over \mathbb{Z}). Proposition 4.1 immediately gives:

Theorem C. Let ρ be a representation of a split and almost simple algebraic group G over F. Then Tr_{ρ} is zero if and only if the characteristic of F divides $N(\rho)/E(G)$.

Theorem D. Assume G is split and almost simple. Then the following are equivalent:

- (a) The characteristic of F divides the integer N(G)/E(G).
- (b) Every trace form of G is zero.

Proof of Th. D. The number N(G) is defined to be $\gcd N(\rho)$ as ρ varies over the representations ρ of G defined over F. Therefore,

$$N(G)/E(G)=\gcd_{\rho}\{N(\rho)/E(G)\}.$$

The theorem now follows from Th. C.

Theorem A is the special case of Th. D where G is simply connected. (Indeed, for G simply connected, E(G) is 1 and the primes dividing N(G) are the torsion primes of G by 1.5.) Although Th. A is weaker, it has a much simpler condition (a).

Example 4.5. Suppose that the characteristic of F is an odd prime p, and let n be a natural number divisible by char F.

- (1): The groups SL_n and PGL_n act naturally by conjugation on the *n*-by-*n* matrices $M_n(F)$. For this representation ρ , the number $N(\rho)$ is 2n (by Example 1.2), hence the corresponding trace form is zero on $Lie(SL_n)$. But the trace form is nonzero on $Lie(PGL_n)$, as one finds by checking directly or looking ahead to Prop. 5.1 below; the radical is the (codimension 1) image of $Lie(SL_n)$.
- (2): If p^2 divides n, then p divides N(G)/E(G) for $G = \mathrm{SL}_n/\mu_p$ by Prop. 5.1. Theorem D says that every trace form of G is zero, even though the universal covering SL_n and adjoint group PGL_n have representations with nonzero trace forms. (I thank George McNinch for suggesting $\mathrm{Lie}(G)$ as an interesting example. The representation $\mathrm{Lie}(G)$ of G is not only reducible, it is a direct sum of the image of $\mathrm{Lie}(\mathrm{SL}_n)$ and a 1-dimensional subspace.)

Remark 4.6 (Non-split groups). One can extend Prop. 4.1 and Theorems A, C, and D to the case where G is nonsplit as follows. Assume G is absolutely almost simple and fix a pinning of G over a separable closure $F_{\rm sep}$ of F. For a representation ρ of G (over F), define $N(\rho)$ to be the integer calculated as in 1.3 relative to the pinning over $F_{\rm sep}$. We define N(G) to be $\gcd N(\rho)$ as ρ varies over the representations of G defined over F. We take E(G) to be the number given by the pinning over $F_{\rm sep}$ as in §3. (Note that with these extended definitions, N(G) now depends on the field F, but E(G) does not.) Proposition 4.1 (applied to the split group over $F_{\rm sep}$) implies that E(G) divides N(G). Similarly, Theorems A, C, and D hold with the hypothesis "absolutely almost simple" instead of "split and almost simple".

Remark 4.7 (char. 2). Readers familiar with characteristic 2 might prefer to consider the quadratic form

$$s_{\rho} \colon x \mapsto -\operatorname{trace}\left(\wedge^2 d\rho(x)\right)$$

instead of the symmetric bilinear form Tr_{ρ} . The form s_{ρ} gives the negative of the "degree 2" coefficient of the characteristic polynomial of $\mathrm{d}\rho(x)$. (Because $\mathrm{d}\rho(\mathrm{Lie}(G))$ consists of trace zero matrices, s_{ρ} is the map $x\mapsto \mathrm{trace}(\mathrm{d}\rho(x)^2)/2$; our definition has the advantage that it obviously makes sense also in characteristic 2.) The bilinear form derived from s_{ρ} —i.e., $(x,y)\mapsto s_{\rho}(x+y)-s_{\rho}(x)-s_{\rho}(y)$ —is Tr_{ρ} .

Theorem A is easy to extend. In case G is simply connected, Lie(G) is a Weyl module by 2.5 and s_{ρ} is zero if and only if Tr_{ρ} is zero by [Ga, Prop. 6.4(1)]. That is, conditions (a) and (b) in Th. A are equivalent to:

(c) For every representation ρ of G, the quadratic form s_{ρ} is zero.

Alternatively, one can proceed as follows. The bilinear form b on $\mathrm{Lie}(\tilde{G}_{\mathbb{Z}})$ is even [GN, Prop. 4], so it is the bilinear form derived from a unique quadratic form \widetilde{q} on $\mathrm{Lie}(\widetilde{G}_{\mathbb{Z}})$. The form \widetilde{q} extends to a rational-valued quadratic form on $\mathrm{Lie}(G_{\mathbb{Z}})$ and we write $E_q(G)$ for the smallest positive rational number such that $E_q(G)\widetilde{q}$ is integer-valued on $\mathrm{Lie}(G_{\mathbb{Z}})$. It is easy to see that $E_q(G)$ is E(G) or 2E(G), and both cases can occur. (E.g., take $G = \mathrm{SO}_{2\ell}$ with ℓ odd or even, respectively.) The statements and proofs of Theorems C and D go through if we replace Tr_{ρ} , E(G), and b with s_{ρ} , $E_q(G)$, and $E_q(G)\widetilde{q}$ respectively.

5. The ratio
$$N(G)/E(G)$$
 for $G = \operatorname{SL}_n/\mu_m$

With Theorem D in hand, it remains to determine the primes dividing N(G)/E(G) for each group G. In this section, we fix natural numbers m and n with m dividing n, and we prove:

Proposition 5.1. For $G = \operatorname{SL}_n/\mu_m$, the primes dividing N(G)/E(G) are precisely the primes dividing

$$\begin{cases} \gcd(m, n/m) & \text{if } m \text{ is odd} \\ 2\gcd(m, n/m) & \text{if } m \text{ is even.} \end{cases}$$

Here μ_m denotes the group scheme of m-th roots of unity, identified with the corresponding scalar matrices in SL_n .

In the important special cases where G is simply connected (m = 1), G is adjoint (m = n), or n is square-free, the gcd in the proposition is 1, and we have that N(G)/E(G) is 1 if m is odd and 2 if m is even.

Lemma 5.2.

$$E(\operatorname{SL}_n/\boldsymbol{\mu}_m) = \frac{m}{\gcd(m, n/m)}.$$

Proof. Use the notation of [B Lie] for the simple roots and fundamental weights of the root system A_{n-1} of SL_n . Let Λ denote the lattice generated by the root lattice Q and

$$\beta := \frac{n}{m} \omega_{n-1} = \frac{1}{m} (\alpha_1 + 2\alpha_2 + \dots + (n-1)\alpha_{n-1}).$$

We claim that Λ is identified with the cocharacter lattice T_* for a pinning of SL_n/μ_m . Certainly, Λ/Q is cyclic of order m, so it suffices to check that the set of inner products (Λ, T^*) consists of integers. But T^* is the collection of weights $\sum c_i \omega_i$ with $c_i \in \mathbb{Z}$ such that $\sum_{i=1}^{n-1} i c_i$ is divisible by m. We have:

$$\left\langle \beta, \sum c_i \omega_i \right\rangle = \sum_i \frac{1}{m} i c_i \in \mathbb{Z} \quad \left(\sum c_i \omega_i \in T^* \right),$$

which proves that $T_* = \Lambda$ as claimed.

Finally, we compute:

$$\langle \beta, \alpha_{n-1} \rangle = \frac{n}{m} \in \mathbb{Z} \quad \text{and} \quad \langle \beta, \beta \rangle = \left\langle \frac{1}{m} \sum i \alpha_i, \frac{n}{m} \omega_{n-1} \right\rangle = \frac{n(n-1)}{m^2}.$$

Since m divides n, it is relatively prime to n-1, so the minimum multiplier of \langle , \rangle that takes integer values on T_* is $m/\gcd(m,n/m)$, as claimed.

5.3. Weights of representations of SL_n/μ_m . Fix the "usual" pinning of SL_n , where the torus T consists of diagonal matrices and the dominant weights are the maps

$$\begin{pmatrix} t_1 & & \\ & \ddots & \\ & & t_n \end{pmatrix} \mapsto \prod_{i=1}^{n-1} t_i^{e_i}$$

where $e_1 \geq e_2 \geq \cdots \geq e_{n-1} \geq 0$. Such a weight restricts to $x \mapsto x^{\sum e_i}$ on the center of SL_n ; in particular, m divides $\sum e_i$ for every dominant weight λ of a representation of $\operatorname{SL}_n/\mu_m$. The proof of [Mer, Lemma 11.4] shows that m divides $N(W\lambda)$, hence m divides $N(\operatorname{SL}_n/\mu_m)$.

We recall how to compute $N(W\lambda)$ from [Mer, p. 136]. Write $a_1 > a_2 > \cdots > a_{k-1} > a_k = 0$ for the distinct values of the exponents e_i in λ , where a_i appears r_i times, so that $n = \sum r_i$. We have:

(5.4)
$$N(W\lambda) = \frac{(n-2)!}{r_1! \, r_2! \cdots r_k!} \left[n \left(\sum_i r_i a_i^2 \right) - \left(\sum_i r_i a_i \right)^2 \right].$$

Example 5.5. Let λ be a weight of G and let r_i, a_i be as in 5.3. Suppose that

$$v_2\left(\sum r_i a_i\right) \ge v_2(n) > 0,$$

where $v_2(x)$ is the 2-adic valuation of x, i.e., the exponent of the largest power of 2 dividing x. We claim that

$$(5.6) v_2(N(W\lambda)) > v_2(n).$$

Write $\sum r_i a_i = 2^{\theta} t$ and $n = 2^{\nu} u$ where $\theta = v_2(\sum r_i a_i)$ and $\nu = v_2(n)$. Our hypothesis is that $0 < \nu \le \theta$. We may rewrite (5.4) as:

(5.7)
$$N(W\lambda) = \frac{(n-2)!}{r_1! \, r_2! \cdots r_k!} \left[u \left(\sum_i r_i a_i^2 \right) - 2^{2\theta - \nu} t^2 \right] \cdot 2^{\nu}.$$

Write ℓ for the minimum of $v_2(r_i)$, and fix an index j such that $v_2(r_j) = \ell$. Note that since $\sum r_i = n$, we have $\ell \leq \nu \leq 2\theta - \nu$.

The first term on the right side of (5.7) has 2-adic value $\geq -\ell$ [Mer, p. 137]. The term in brackets has value $\geq \ell$. Therefore, to prove claim (5.6), it suffices to consider the case where $v_2(\sum r_i a_i^2) = \ell$ and the first term on the right side of (5.7) has value $-\ell$; this latter condition implies that

$$(5.8) \quad s_2(n-1) = s_2(r_1) + \dots + s_2(r_{j-1}) + s_2(r_j-1) + s_2(r_{j+1}) + \dots + s_2(r_k),$$

where s_2 denotes the number of 1's appearing in the binary representation of the integer [Mer, p. 137]. That is, when adding up the numbers $r_1, \ldots, r_{j-1}, r_j - 1, r_{j+1}, \ldots, r_k$ in base 2 (to get n-1), there are no carries.

Suppose first that $\ell < \nu$. Equation (5.8) implies that there are exactly two indices, say, j, j' with $v_2(r_j) = v_2(r_{j'}) = \ell$. As $2^{\ell+1}$ divides $\sum r_i a_i$, it also divides $r_j a_j + r_{j'} a_{j'}$, hence a_j and $a_{j'}$ have the same parity. It follows that $2^{\ell+1}$ divides $r_j a_j^2 + r_{j'} a_{j'}^2$ and the term in brackets in (5.7) has 2-adic valuation $> \ell$ and we are done in this case.

We are left with the case where $\ell = \nu$. By (5.8), r_j is the unique r_i with 2-adic valuation ℓ . As $v_2(\sum r_i a_i^2) = \ell$, the number a_j is odd and we have:

$$\ell = v_2 \left(\sum r_i a_i \right) = \theta \ge \nu = \ell.$$

Hence both $u(\sum r_i a_i^2)$ and $2^{2\theta-\nu}t$ have 2-adic valuation ℓ . It follows that the term in brackets in (5.7) has 2-adic valuation strictly greater than ℓ , and claim (5.6) is proved.

Proof of Prop. 5.1. We write G for SL_n/μ_m . For an upper bound, N(G) divides 2n by Example 1.2. Also, the dominant weight λ with $e_1=m$ and $e_i=0$ for i>1 belongs to T^* and has $N(W\lambda)=m^2$ by (5.4), so N(G) divides m^2 . Applying Lemma 5.2 gives:

gcd(m, n/m) divides N(G)/E(G) divides gcd(m, n/m) gcd(m, 2n/m).

This completes the proof for m odd.

Clearly, an odd prime divides N(G)/E(G) if and only if it divides $\gcd(m, n/m)$. So suppose that m is even and 2 does not divide $\gcd(m, n/m)$, i.e., $v_2(m) = v_2(n)$. Then every weight of a representation of G satisfies the hypotheses of Example 5.5, hence $v_2(N(G)) > v_2(n) = v_2(m)$. By Lemma 5.2, $v_2(E(G)) = v_2(m)$, so 2 divides N(G)/E(G). This completes the proof of Prop. 5.1.

6. The ratio
$$N(G)/E(G)$$
 for simple G

The purpose of this section is to compute the primes dividing N(G)/E(G) for all almost simple split groups G. The results are given in Table I. We write PSO_n for the adjoint group of SO_n ; when n is odd it is the same as SO_n .

6.1. Justification of Table I. We now justify the claims about N(G)/E(G) given in Table I. For G simply connected, E(G) is 1 and N(G) is divisible precisely

G	primes dividing $N(G)/E(G)$
$\mathrm{SL}_n/oldsymbol{\mu}_m$	see Prop. 5.1
Sp_{2n}	none
SO_n , $Spin_n$, and PSO_n for $n=3$ and $n \geq 5$	2
$\operatorname{HSpin}_{4n}$ for $n \geq 3$, PSp_{2n} , E_6 adjoint	2
E_6 simply connected, E_7 , F_4 , G_2	2, 3
E_8	2, 3, 5

Table I. The primes dividing N(G)/E(G).

by the torsion primes of G, see 1.5. We assume that G is not simply connected and write \widetilde{G} for the universal covering of G; obviously $N(\widetilde{G})$ divides N(G).

For $G = PSp_{2n}$, SO_n , or adjoint of type E_7 , one combines Examples 1.7 and 3.4; 1.6 and 3.6; or 1.9 and 3.5, respectively.

For G adjoint of type D_n , we have E(G)=2 by Example 3.5. Also, 4 divides N(G) by [Mer, 15.2]. On the other hand, the spinor representations of \widetilde{G} have Dynkin index 2^{n-3} [LS], and it is easy to use this as in Example 1.9 to construct a representation ρ of G with $N(\rho)$ a power of 2. This shows that N(G)/E(G) is a power of 2 and is not 1.

Now let $G = \mathrm{HSpin}_{4n}$ for some $n \geq 3$. The dual of the center of Spin_{4n} is the Klein four-group, and we write χ for the unique element that vanishes on the kernel of the map $\mathrm{Spin}_{4n} \to \mathrm{HSpin}_{4n}$. The gcd of $N(W\lambda)$ as λ varies over the weights that restrict to χ (respectively, 0) on the center of Spin_{4n} is 2^{2n-3} (resp., divisible by 4) by [Mer, p. 146], hence N(G) is a power of 2 and at least 4. On the other hand, $E(\mathrm{HSpin}_{4n})$ is 1 or 2. We conclude that N(G)/E(G) is a power of 2 and is not 1.

For G adjoint of type E_6 , the number N(G) is divisible by $N(\widetilde{G}) = 6$ and divides $2h^{\vee} = 24$ by Example 1.2. By Example 3.5, N(G)/E(G) is 2, 4, or 8.

7. Trace forms and Lie algebras

We assume in this section that G is absolutely almost simple, split, and simply connected and that the characteristic of F is neither 2 nor 3. Write \mathfrak{c} for the center of $\mathrm{Lie}(G)$; the quotient $\overline{\mathfrak{g}} := \mathrm{Lie}(G)/\mathfrak{c}$ is a simple Lie algebra [St 61, 2.6(5)]. Over an algebraically closed field, the algebras $\overline{\mathfrak{g}}$ arising in this way are sometimes called "simple Lie algebras of classical type" (even when the root system R is exceptional).

Proposition 7.1. If $\overline{\mathfrak{g}}$ has a representation ψ over F with Tr_{ψ} nonzero, then G has an irreducible representation ρ over F such that Tr_{ρ} is not zero and whose differential vanishes on \mathfrak{c} .

Proof. Replacing ψ with one of the irreducible quotients in its composition series, we may assume that ψ is irreducible. Then ψ is restricted by [Bl, Th. 5.1] (using that F has characteristic $\neq 2,3$). Because the projection $\text{Lie}(G) \to \overline{\mathfrak{g}}$ is restricted, the composition gives a restricted irreducible representation of Lie(G), which is the differential of a representation of G by [Cu] and [St 63]. (These references only give a representation of G defined over an algebraic closure of F, but G is split, so the irreducible representations of G over F are in natural one-to-one correspondence with those over an algebraic closure.)

Because of our hypothesis on the characteristic, Lie(G) is not simple only for groups of type A_{n-1} where n is divisible by the characteristic of F. In that case, Lie(G) is \mathfrak{sl}_n and its center \mathfrak{c} consists of the scalar matrices $F \cdot 1$.

Corollary 7.2 (Block [Bl, Th. 6.2]). If char F divides n, then every representation of $\mathfrak{sl}_n/\mathfrak{c}$ has zero trace form.

Proof. Suppose that $\mathfrak{sl}_n/\mathfrak{c}$ has a representation with a nonzero trace form. Then SL_n has an irreducible representation ρ such that Tr_ρ is not zero and $\mathrm{d}\rho$ vanishes on the scalar matrices. Identifying the center of SL_n with the (non-reduced) group scheme μ_n identifies the restriction of ρ to μ_n with a map $x\mapsto x^\ell$. Our hypothesis on $\mathrm{d}\rho$ says that ℓ is divisible by the characteristic p of F, hence ρ factors through the natural map $\mathrm{SL}_n\to\mathrm{SL}_n/\mu_p$. It follows from 5.3 that $N(\rho)$ is divisible by p. Hence Tr_ρ vanishes by Th. C, a contradiction.

We close by proving a stronger version of Cor. B from the introduction. For a Lie algebra L over F and a representation ψ of L, write rad ψ for the radical of the trace bilinear form Tr_{ψ} ; it is an ideal of L. We prove:

Corollary B'. For every representation ψ of every Lie algebra L over a field of characteristic 5, the quotient $L/\operatorname{rad}\psi$ is not isomorphic to the Lie algebra of an algebraic group of type E_8 .

That is, over a field of characteristic 5, the Lie algebra of a group of type E_8 "has no quotient trace form".

Proof of Cor. B'. Suppose the corollary is false. That is, suppose that there is a group G of type E_8 and a Lie algebra L with a representation ψ and a surjection $\pi: L \to \text{Lie}(G)$ with kernel the radical of Tr_{ψ} .

By [Bl, Lemma 2.1], we may assume that the radical of Tr_{ψ} is contained in the center of L, i.e., L is a central extension of $\operatorname{Lie}(G)$. It follows that there is a map $f: \operatorname{Lie}(G) \to L$ such that πf is the identity [St 62, Th. 6.1(c)]. Clearly, the representation ψf of $\operatorname{Lie}(G)$ has nonzero trace form.

As Lie(G) is simple, we can apply Prop. 7.1 and deduce that the algebraic group of type E_8 over F has a representation ρ such that Tr_{ρ} is not zero, but this is impossible by Theorem A.

Note that in the course of proving Corollary B' we have also proved Cor. B.

References

- [Bl] R.E. Block, Trace forms on Lie algebras, Canad. J. Math. 14 (1962), 553–564.
- [BIZ] R.E. Block and H. Zassenhaus, The Lie algebras with a nondegenerate trace form, Illinois J. Math. 8 (1964), 543–549.
- [BoM] A. Borel and G.D. Mostow, On semi-simple automorphisms of Lie algebras, Ann. Math.(2) 61 (1955), 389–405.
- [B Lie] N. Bourbaki, Lie groups and Lie algebras, Springer-Verlag, Berlin, 2002.
- [Ca] R.W. Carter, Finite groups of Lie type: conjugacy classes and complex characters, Wiley-Interscience, 1985.
- [Cu] C.W. Curtis, Representations of Lie algebras of classical type with applications to linear groups, J. Math. Mech. 9 (1960), 307–326.
- [D] E.B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. (2) 6 (1957), 111–244, [Russian original: Mat. Sbornik N.S. 30(72) (1952), 349–462].
- [Ga] S. Garibaldi, Orthogonal representations of twisted forms of SL_2 , 2007, preprint.

- [GN] B.H. Gross and G. Nebe, Globally maximal arithmetic groups, J. Algebra 272 (2004), no. 2, 625–642.
- [Hi] G. Hiss, Die adjungierten Darstellungen der Chevalley-Gruppen, Arch. Math. (Basel) 42 (1984), 408–416.
- [Ho] G.M.D. Hogeweij, Almost-classical Lie algebras. I, II, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), no. 4, 441–460.
- [J] J.C. Jantzen, Representations of algebraic groups, second ed., Math. Surveys and Monographs, vol. 107, Amer. Math. Soc., 2003.
- [LS] Y. Laszlo and C. Sorger, The line bundles on the moduli of parabolic G-bundles over curves and their sections, Ann. Ec. Norm. Sup. (4) 30 (1997), 499–525.
- [Mer] A.S. Merkurjev, Rost invariants of simply connected algebraic groups, Cohomological invariants in Galois cohomology, University Lecture Series, vol. 28, Amer. Math. Soc., 2003, with a section by S. Garibaldi.
- [MPR] W.G. McKay, J. Patera, and D.W. Rand, Tables of representations of simple Lie algebras. volume 1: exceptional simple Lie algebras, Centre de Recherches Mathématiques, Montreal, 1990.
- [Se] G.B. Seligman, Modular Lie algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 40, Springer, 1967.
- [SpSt] T.A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), Lecture Notes in Math., vol. 131, Springer, Berlin, 1970, pp. 167–266.
- [St 61] R. Steinberg, Automorphisms of classical Lie algebras, Pacific J. Math. 11 (1961), 1119–1129 [= Collected Papers, pp. 101–111].
- [St 62] _____, Générateurs, relations et revêtements de groupes algébriques, Colloque sur la Théorie des Groupes Algébriques (Bruxelles), Centre Belge de Recherches Math., 1962, pp. 113–127 [= Collected Papers, pp. 133–147].
- [St 63] , Representations of algebraic groups, Nagoya Math. J. **22** (1963), 33–56 [= Collected Papers, pp. 149–172].
- [St 68] _____, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968.
- [St 75] ______, Torsion in reductive groups, Adv. Math. **15** (1975), no. 1, 63–92 [= Collected Papers, pp. 415–444].
- [Strade] H. Strade, Simple Lie algebras over fields of positive characteristic. I, de Gruyter Expositions in Mathematics, vol. 38, Walter de Gruyter & Co., Berlin, 2004.

Department of Mathematics & Computer Science, Emory University, Atlanta, GA 30322, USA

E-mail address: skip@member.ams.org URL: http://www.mathcs.emory.edu/~skip/