

VANISHING OF TRACE FORMS IN LOW CHARACTERISTICS


SKIP GARIBALDI


Abstract. A finite-dimensional representation of an algebraic group G gives
a trace symmetric bilinear form on the Lie algebra of G. We give a criterion in
terms of the root system data for this form to vanish. As a corollary, we show
that a Lie algebra of type E8 over a field of characteristic 5 does not have a
so-called “quotient trace form”, answering a question posed in the 1960s.


Let G be an algebraic group over a field F , acting on a finite-dimensional vector
space V via a homomorphism ρ : G → GL(V ). The differential dρ of ρ maps the
Lie algebra Lie(G) of G into gl(V ), and we put Trρ for the symmetric bilinear form


Trρ(x, y) := trace(dρ(x) dρ(y)) for x, y ∈ Lie(G).


We call Trρ a trace form of G. Such forms appear, for example, in the hypotheses
for the Jacobson-Morozov Theorem [Ca, 5.3.1]. We prove:


Theorem A. Assume G is simply connected, split, and almost simple. Then the


following are equivalent:


(a) The characteristic of F is a torsion prime for G.


(b) Every trace form of G is zero.


The set of torsion primes for G is given by the following table, cf. e.g. [St 75,
1.13]:


type of G torsion primes
An, Cn none


Bn (n ≥ 3), Dn (n ≥ 4), G2 2
F4, E6, E7 2, 3


E8 2, 3, 5


A prime p is called a torsion prime for G if the corresponding group G(C) over C


(or, equivalently, its compact form) is such that one of its homology groups, with
coefficients in Z, contains an element of order p.


We also prove a generalization of Theorem A that removes the hypotheses “sim-
ply connected” and “split”; it is somewhat more complicated, so we leave the
statement until Th. D (and Remark 4.6). Replacing the simply connected group G
with a nontrivial quotient G′ changes the situation in two ways: the group G′ has
“fewer” representations and the Lie algebras of G and G′ may be different. These
two changes are reflected in the integers N(G) and E(G) defined below.


As a particular example of Th. A, for G of type E8 over a field of characteristic 2,
3, or 5, Trρ is zero for every representation ρ of G. One may ask whether the same is
true for the representations of the Lie algebra Lie(G). That is, for a representation
ψ of Lie(G), we write Trψ for the bilinear form (x, y) 7→ trace(ψ(x)ψ(y)), and ask
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if Trψ is necessarily zero. We do not know if this holds in characteristic 2 or 3, but
it does in characteristic 5:


Corollary B. If F has characteristic 5 and G is of type E8, then the trace form


of every representation of Lie(G) is zero.


Indeed, we shall prove in §7 a slightly stronger statement, namely that Lie(G)
has no “quotient trace form”, thus answering a question posed in the early 1960s,
see e.g. [Bl, p. 554], [BlZ, p. 543], or [Se, p. 48].


Trace forms on Lie algebras seem to have been studied—motivated by results
from Borel-Mostow [BoM, §3]—as a way of defining a class of Lie algebras that
was small enough to be tractable but large enough to be interesting, see e.g. [Se,
pp. 47–49] and [BlZ]. Since then, tremendous progress has been made: Block,
Premet, Strade, Wilson, and others have classified the simple Lie algebras over
algebraically closed fields of characteristic ≥ 5, see [Strade]. These algebras are of
“classical”, Cartan, or Melikian type, and these types are distinct [Strade, §6.1].
Trace forms are only interesting for algebras of classical type—roughly, the simple
algebras coming from Lie algebras of simple algebraic groups—because every trace


form on a simple algebra of Cartan or Melikian type is zero by [Bl, Cor. 3.1].
Corollary B settles the last remaining question mark regarding the existence of
nonzero trace forms on simple Lie algebras in characteristic ≥ 5, cf. [Bl, Cor. 3.1].


We do not use the Block-Premet-Strade-Wilson techniques here. Rather, we
observe that it suffices to prove Theorem A, etc., for those representations “defined
over Z” and we compute the trace form on those representations (over Z). We
do need to compute the trace form and not just its discriminant; knowing the
discriminant (over Z) only tells you if the form is degenerate in prime characteristic,
whereas we want to know whether the form is zero.


Acknowledgments. It is a pleasure to thank Jean-Pierre Serre for helpful discussions


and for pointing out the utility of the form eb (from [GN], see 3.1) early in this project.


My research was partially supported by NSF grant DMS-0654502.


1. The number N(G) and the Dynkin index


1.1. Fix a simple root system R. We write P for its weight lattice and 〈 , 〉 for
the canonical pairing between P and its dual. Fix a long root α ∈ R and write α∨


for the associated coroot. For each subset X of P that is invariant under the Weyl
group, we put:


N(X) :=
1


2


∑


x∈X


〈x, α∨〉
2


∈ Z
[


1
2


]
.


Note that N(X) does not depend on the choice of α because the long roots are
conjugate under the Weyl group.


Furthermore, N(X) is an integer. To see this, note that the reflection s in
the hyperplane orthogonal to α satisfies 〈sx, α∨〉 = 〈x, sα∨〉 = −〈x, α∨〉, so in the
definition of N(X), the sum can be taken to run over those x satisfying x 6= sx.


For such x, we have 〈x, α∨〉
2


+ 〈sx, α∨〉
2


= 2〈x, α∨〉
2
, proving the claim.


Example 1.2. The computations in [SpSt, pp. 180, 181] show that N(R) = 2h∨,
where h∨ denotes the dual Coxeter number of R, which is defined as follows. Fix a
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set of simple roots ∆ of R. Write α̃ for the highest root; the corresponding coroot
α̃∨ is


α̃∨ =
∑


δ∈∆


m∨


δ δ
∨


for some natural numbers m∨
δ . The dual Coxeter number h∨ is defined by


h∨ := 1 +
∑


m∨


δ .


In case all the roots of R have the same length, it is the (usual) Coxeter number h
and is given in the tables in [B Lie].


Suppose that there are two different root lengths in R; we write L for the set
of long roots and S for the set of short roots. The arguments in [SpSt] are easily
adapted to show that


N(L) = 2


[
1 +


∑


δ∈∆∩L


m∨


δ


]
and N(S) = 2


∑


δ∈∆∩S


m∨


δ .


We obtain the following numbers:


type of R h h∨ N(L) N(S)
Bn (n ≥ 2) 2n 2n− 1 4(n− 1) 2
Cn (n ≥ 2) 2n n+ 1 4 2(n− 1)


G2 6 4 6 2
F4 12 9 12 6


Definition 1.3. Fix a split almost simple linear algebraic group G over F . Fix
also a pinning of G with respect to some maximal torus T ; this includes a root
system R and a set of simple roots ∆ of G with respect to T . For a representation
ρ of G over F , one defines


N(ρ) :=
∑


dominant weights λ


(
multiplicity of λ
as a weight of ρ


)
·N(Wλ) ∈ Z.


For example, the adjoint representation Ad has N(Ad) = 2h∨ by Example 1.2.
We put:


N(G) := gcdN(ρ),


where the gcd runs over the representations of G defined over F .
The map ρ 7→ N(ρ) is compatible with short exact sequences


(1.4) 0 −−−−→ ρ′ −−−−→ ρ −−−−→ ρ/ρ′ −−−−→ 0


in the sense that
N(ρ) = N(ρ′) +N(ρ/ρ′).


Writing RG for the representation ring of G, we obtain a homomorphism of abelian
groups N : RG→ Z with image N(G) · Z.


In the definition of N(G), it suffices to let the gcd run over generators of RG,
e.g., the irreducible representations of G. For an irreducible representation ρ, the
highest weight λ has multiplicity 1 and all the other weights of ρ are lower in the
partial ordering. Inducting on the partial ordering, we find:


N(G) = gcd
λ∈T∗


N(Wλ).


In particular, N(G) depends only on the root system R and the lattice T ∗, and not
on the field F .
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1.5. When G is simply connected, the number N(ρ) is the Dynkin index of the
representation ρ defined in [D, p. 130] and studied in [Mer], and N(G) is the Dynkin


index of the group G. The Dynkin index of G and of the fundamental irreducible
representations of G (over C) are listed in [LS, Prop. 2.6] or [MPR, pp. 36–44],
correcting some small errors in Dynkin’s calculations. For G simply connected, the


primes dividing N(G) are the torsion primes of G.


Example 1.6. Write Spinn and SOn for the spin and special orthogonal groups of
an n-dimensional nondegenerate quadratic form of maximal Witt index. For n = 3
or n ≥ 5, these groups are split and almost simple of type B or D. The Dynkin
index N(Spinn) is 2; it obviously divides N(SOn). On the other hand, the natural
n-dimensional representation ρ of SOn has N(ρ) = 2, so N(SOn) = 2.


Example 1.7. Write PSp2n for the split adjoint simple group of type Cn; it can
be viewed as Sp2n/µ2. We claim that


N(PSp2n) =


{
2 if n is even


4 if n is odd


for n ≥ 2. The number N(PSp2n) divides 4 and 2(n− 1) by Example 1.2. Further,
N(PSp2n) is even by [Mer, 14.2]. This shows that N(PSp2n) is 2 or 4, and is 2 in
case n is even.


Suppose that n is odd. We must show that N(Wλ) is divisible by 4 for every
element λ of the root lattice of PSp2n. We use the same notation as [Mer, §14] for
the weights of PSp2n: they are a sum


∑n
i=1 xiei such that


∑
xi is even. The Weyl


group W is a semidirect product of (Z/2Z)n (acting by flipping the signs of the ei)
and the symmetric group on n letters (acting by permuting the ei). Taking X for
the (Z/2Z)n-orbit of


∑
xiei, we have


(1.8)
1


2


∑


x∈X


〈
∑


i


xiei, (2en)
∨


〉2


= 2r−1x2
n


where r denotes the number of nonzero xi’s, cf. [Mer, pf. of Lemma 14.2]. If r = 1,
then the unique nonzero xi is even, and we find that for r 6= 2, the sum—hence
also N(W


∑
xiei)—is divisible by 4. Suppose that x1, x2 are the only nonzero xi’s;


then by (1.8) we have:


N(W (x1e1 + x2e2)) =


{
2(n− 1)(x2


1 + x2
2) if x1 6= ±x2


2(n− 1)x2
1 if x1 = ±x2.


As n is odd, N(W (x1e1 + x2e2)) is divisible by 4, which completes the proof of the
claim.


Example 1.9. For G adjoint of type E7, we have N(G) = 12. To see this, we note


that N(G) is divisible by N of the universal covering G̃ of G (which is 12) and that


N(G) divides 2h∨ = 36 by Example 1.2. For the minuscule representation ρ of G̃,


we have dim ρ = 56 and N(ρ) = 12. The representation ρ⊗2 of G̃ factors through
G and by the “derivation formula”


N(ρ1 ⊗ ρ2) = (dim ρ1) ·N(ρ2) + (dim ρ2) ·N(ρ1)


(see e.g. [Mer, p. 122]) we have


N(ρ⊗2) = 2(dim ρ)N(ρ) = 26 · 3 · 7.
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It follows that N(G) equals 12, as claimed.


2. The Lie algebra of G


2.1. Let G be a split almost simple algebraic group over F . We fix a pinning for G;
it gives a split form GZ of G over Spec Z such that the base change Z → F sends
GZ to G. Similarly the pinning gives a Z-form TZ of the maximal torus T . We have
a Cartan decomposition of the Lie algebra of GZ:


(2.2) Lie(GZ) = Lie(TZ) ⊕
⊕


α∈R
Zxα


and


(2.3) Lie(TZ) = {h ∈ Lie(TC) | µ(h) ∈ Z for all µ ∈ T ∗}.


see [St 68, p. 64]. Note that Lie(G) is naturally identified with Lie(GZ) ⊗Z F and
similarly for Lie(T ).


2.4. Write G̃ for the universal covering of G; we use the obvious analogues of


the notations in 2.1 for G̃. The group G acts on G̃ by conjugation, hence also on


Lie(G̃). If the kernel of the map G̃→ G is étale, then the representation Lie(G̃) is
equivalent to the adjoint representation on Lie(G). But in prime characteristic, this


need not hold. In any case, the natural map Lie(G̃) → Lie(G) is an isomorphism
on the F -span of the xα’s.


2.5. We claim that Lie(G̃) is a Weyl module for G in the sense of [J, p. 183], i.e.,
its character is given by Weyl’s formula and it is generated as a G-module by a
highest weight vector. The first condition holds by (2.2), so it suffices to check the
second.


To check that the submodule Gxα̃ generated by the highest weight vector xα̃ is


all of Lie(G̃), one quickly reduces to checking that Gxα̃ contains Lie(T̃Z). Equation


(2.3) gives a natural isomorphism Z[R∨]
∼
−→ Lie(T̃Z) where T̃Z is the maximal torus


in G̃Z mapping onto TZ. We write (as is usual) hα for the image of α∨ under this
map. As [xα, x−α] = hα, the claim is proved.


See [Hi] or [Ho] for descriptions of the composition series of Lie(G̃).


3. The number E(G)


Definition 3.1. Maintain the notation of the preceding section. The Killing form


on Lie(G̃Z) is divisible by 2h∨ [GN] and dividing by 2h∨ gives an indivisible even


symmetric bilinear form b̃ on Lie(G̃Z) such that


(3.2) b̃(hα, hα) = 2 and b̃(xα, x−α) = 1


for long roots α, see [SpSt, p. 181] or [B Lie, Lemma VIII.2.4.3]. For a short root


β, we have: b̃(hβ , hβ) = 2c and b̃(xβ , x−β) = c, where c is the square-length ratio of
α to β. For example, G = SLn has Lie algebra the trace zero n-by-n matrices, and


the form b̃ is the usual trace bilinear form (x, y) 7→ trace(xy), cf. [B Lie, Exercise
VIII.13.12].


The natural map Lie(G̃Z) → Lie(GZ) is an inclusion and extending scalars to Q


gives an isomorphism. Therefore, b̃ gives a rational-valued symmetric bilinear form
on Lie(GZ). We define E(G) to be the smallest positive rational number such that
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E(G) · b̃ is integer-valued on Lie(GZ); we write b for this form. Note that E(G) is
an integer by (3.2).


Clearly, E(G) depends only on the root system of G and the character lattice
T ∗ viewed as a sublattice of the weight lattice, and not on the field F .


3.3. Write Ḡ for the adjoint group of G; we use the obvious analogues of the
notations in 2.1 for Ḡ. We have a commutative diagram


Q∨ ∼
−−−−→ Lie(T̃Z)


y
y


P∨ ∼
−−−−→ Lie(TZ)


where Q∨ and P∨ are the root and weight lattices of the dual root system. The


form b̃ restricts to be an inner product on Q∨ such that the square-length of a short
coroot α∨ is 2. This inner product extends to a rational-valued inner product on


P∨, and E(Ḡ) is the smallest positive integer such that E(Ḡ) · b̃ is integer-valued
on P∨.


Example 3.4. Consider the case where G is PSp2n for some n ≥ 2, i.e., adjoint


of type Cn. In the notation of the tables in [BLie], the form b̃ is twice the usual


scalar product, i.e., b̃(ei, ej) = 2δij (Kronecker delta). The fundamental weight ωn
has b̃(ωn, ωn) = n/2. Checking b̃(ωi, ωj) for all i, j, shows that E(Ḡ) is 1 if n is
even and 2 if n is odd.


Example 3.5. Suppose that all the roots of G have the same length, so that we
may identify the root system R with its dual and normalize lengths so that 〈 , 〉 is


symmetric and equals b̃.
(1): E(Ḡ) is the exponent of P/Q, the weight lattice modulo the root lattice.


Indeed, the natural isomorphism between P and Lie(T̄Z) shows that E(Ḡ) is the
smallest natural number such that E(Ḡ)·〈 , 〉 is integer-valued on P×P , equivalently,
the smallest natural number e such that eP is contained in Q; this is the exponent
of P/Q.


(2): The bilinear form


b̃ : Lie(G̃Z) × Lie(ḠZ) → Q


has image Z and identifies Lie(ḠZ) with HomZ(Lie(G̃Z),Z). (On the span of the
xα’s, this is clear from (3.2). On the Cartan subalgebras, it amounts to the state-
ment that 〈 , 〉 identifies P with Hom(Q,Z).) It follows that Lie(Ḡ), as a G-module,


is the dual of Lie(G̃), i.e., Lie(Ḡ) is the module denoted by H0(α̃) in [J].


Example 3.6. For n = 3 or n ≥ 5, we claim that E(SOn) = 1.
For n odd, SOn is adjoint of type Bℓ for ℓ = (n−1)/2, and we compute as in 3.3


and Example 3.4. The dual root system is of type Cℓ, and the form b̃ is the usual
scalar product, i.e., b(ei, ej) = δij . The fundamental weight ωi is e1 + e2 + · · ·+ ei,
so E(SO2ℓ+1) = 1.


For n even, SOn has type Dℓ for ℓ = n/2. The character group T ∗ of a maximal
torus in SOn consists of the weights whose restriction to the center of Spinn is 0 or
agrees with the vector representation, i.e., the weights


∑
ciωi such that cℓ−1 + cℓ
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is even. It follows that that the cocharacter lattice T∗ is generated by the (co)root
lattice and


ωℓ−1 + ωℓ = α1 + 2α2 + · · · + (ℓ − 2)αℓ−2 +
ℓ− 1


2
(αℓ−1 + αℓ).


We have:


b̃(ωℓ−1 + ωℓ, ωℓ−1 + ωℓ) = 〈ωℓ−1 + ωℓ, ωℓ−1 + ωℓ〉 = ℓ− 1 ∈ Z,


so the form b̃ is integer-valued on T∗ and E(SO2ℓ) = 1.


Example 3.7. For n ≥ 3, write HSpin4n for the nontrivial quotient of Spin4n that
is neither SO4n nor adjoint. A calculation like the one in Example 3.6 gives:


E(HSpin4n) =


{
1 if n is even


2 if n is odd.


4. Main results


The integer-valued symmetric bilinear form b on Lie(GZ) defined in 3.1 gives by
scalar extension a symmetric bilinear form on Lie(G) which we denote by b/F .


Proposition 4.1. Let ρ be a representation of a split and almost simple algebraic


group G over F . Then:


(1) E(G) divides N(ρ).


(2) Trρ = N(ρ)
E(G)b/F .


The following example is really the crux of the proof of the proposition.


Example 4.2. Suppose that ρ is a Weyl module of G. There is a Z-form ρZ of ρ


and composing ρZ with the natural homomorphism G̃Z → GZ gives a representation


ρ̃Z of G̃Z.
We first compute Treρ over C. If we decompose the representation ρ with re-


spect to the action of T̃ and write Vµ for the eigenspace relative to the weight
µ, then hα acts on Vµ by scalar multiplication by 〈µ, α∨〉, hence Trρ(hα, hα) =∑


dim(Vµ)〈µ, α∨〉2. By putting together the µ in an orbit Wλ (where λ is domi-
nant) and taking α to be a long root, one gets:


(4.3) Treρ(hα, hα) = 2N(ρ).


The represenation Lie(G̃Z)⊗C is irreducible and has a nondegenerate G̃/C-invariant
symmetric bilinear form, so by Schur’s Lemma we have:


Hom eG/C


(Lie(G̃) ⊗ C, (Lie(G̃)∗) ⊗ C) = C.


In particular, Treρ equals z b̃ for some complex number z and


2N(ρ) = Treρ(hα, hα) = z b̃(hα, hα) = 2z.


Hence Treρ = N(ρ) b̃.


Now Lie(GZ) ⊗ C is naturally identified with Lie(G̃Z) ⊗ C, so the form Trρ on


Lie(GZ) is exactly N(ρ) b̃, i.e.,


(4.4) Trρ =
N(ρ)


E(G)
b.
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As the representation ρ of G is defined over Z, the form Trρ is integer-valued. But
b is indivisible, and it follows that E(G) divides N(ρ).


By extending scalars, equation (4.4) holds with b replaced by b/F . This verifies
Prop. 4.1 for the Weyl module ρ.


Proof of Prop. 4.1. The number N(ρ) depends only on the class of ρ in the rep-
resentation ring RG. As the Weyl modules generate RG as an abelian group and
E(G) divides N(ψ) for every Weyl module ψ by Example 4.2, (1) follows.


For (2), we note that the map ρ 7→ Trρ−(N(ρ)/E(G)) b/F is compatible with
exact sequences like (1.4) in the sense that Trρ = Trρ′ + Trρ/ρ′ . We obtain a
homomorphism of abelian groups


RG→ symmetric bilinear forms on Lie(G)


that vanishes on the Weyl modules by Example 4.2, hence is zero. �


The form b/F is not zero, because b is indivisible (as a form over Z). Proposition
4.1 immediately gives:


Theorem C. Let ρ be a representation of a split and almost simple algebraic group


G over F . Then Trρ is zero if and only if the characteristic of F divides N(ρ)/E(G).
�


Theorem D. Assume G is split and almost simple. Then the following are equiv-


alent:


(a) The characteristic of F divides the integer N(G)/E(G).
(b) Every trace form of G is zero.


Proof of Th. D. The number N(G) is defined to be gcdN(ρ) as ρ varies over the
representations ρ of G defined over F . Therefore,


N(G)/E(G) = gcd
ρ
{N(ρ)/E(G)}.


The theorem now follows from Th. C. �


Theorem A is the special case of Th. D where G is simply connected. (Indeed,
for G simply connected, E(G) is 1 and the primes dividing N(G) are the torsion
primes of G by 1.5.) Although Th. A is weaker, it has a much simpler condition
(a).


Example 4.5. Suppose that the characteristic of F is an odd prime p, and let n
be a natural number divisible by charF .


(1): The groups SLn and PGLn act naturally by conjugation on the n-by-n
matrices Mn(F ). For this representation ρ, the number N(ρ) is 2n (by Example
1.2), hence the corresponding trace form is zero on Lie(SLn). But the trace form
is nonzero on Lie(PGLn), as one finds by checking directly or looking ahead to
Prop. 5.1 below; the radical is the (codimension 1) image of Lie(SLn).


(2): If p2 divides n, then p divides N(G)/E(G) for G = SLn /µp by Prop. 5.1.
Theorem D says that every trace form of G is zero, even though the universal
covering SLn and adjoint group PGLn have representations with nonzero trace
forms. (I thank George McNinch for suggesting Lie(G) as an interesting example.
The representation Lie(G) of G is not only reducible, it is a direct sum of the image
of Lie(SLn) and a 1-dimensional subspace.)
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Remark 4.6 (Non-split groups). One can extend Prop. 4.1 and Theorems A, C, and
D to the case where G is nonsplit as follows. Assume G is absolutely almost simple
and fix a pinning of G over a separable closure Fsep of F . For a representation ρ of
G (over F ), define N(ρ) to be the integer calculated as in 1.3 relative to the pinning
over Fsep. We define N(G) to be gcdN(ρ) as ρ varies over the representations of
G defined over F . We take E(G) to be the number given by the pinning over Fsep


as in §3. (Note that with these extended definitions, N(G) now depends on the
field F , but E(G) does not.) Proposition 4.1 (applied to the split group over Fsep)
implies that E(G) divides N(G). Similarly, Theorems A, C, and D hold with the
hypothesis “absolutely almost simple” instead of “split and almost simple”.


Remark 4.7 (char. 2). Readers familiar with characteristic 2 might prefer to consider
the quadratic form


sρ : x 7→ − trace
(
∧2dρ(x)


)


instead of the symmetric bilinear form Trρ. The form sρ gives the negative of
the “degree 2” coefficient of the characteristic polynomial of dρ(x). (Because
dρ(Lie(G)) consists of trace zero matrices, sρ is the map x 7→ trace(dρ(x)2)/2;
our definition has the advantage that it obviously makes sense also in characteristic
2.) The bilinear form derived from sρ—i.e., (x, y) 7→ sρ(x+ y) − sρ(x) − sρ(y)—is
Trρ.


Theorem A is easy to extend. In case G is simply connected, Lie(G) is a Weyl
module by 2.5 and sρ is zero if and only if Trρ is zero by [Ga, Prop. 6.4(1)]. That
is, conditions (a) and (b) in Th. A are equivalent to:


(c) For every representation ρ of G, the quadratic form sρ is zero.


Alternatively, one can proceed as follows. The bilinear form b̃ on Lie(G̃Z) is even
[GN, Prop. 4], so it is the bilinear form derived from a unique quadratic form q̃


on Lie(G̃Z). The form q̃ extends to a rational-valued quadratic form on Lie(GZ)
and we write Eq(G) for the smallest positive rational number such that Eq(G) q̃
is integer-valued on Lie(GZ). It is easy to see that Eq(G) is E(G) or 2E(G), and
both cases can occur. (E.g., take G = SO2ℓ with ℓ odd or even, respectively.) The
statements and proofs of Theorems C and D go through if we replace Trρ, E(G),
and b with sρ, Eq(G), and Eq(G) q̃ respectively.


5. The ratio N(G)/E(G) for G = SLn /µm


With Theorem D in hand, it remains to determine the primes dividingN(G)/E(G)
for each group G. In this section, we fix natural numbers m and n with m dividing
n, and we prove:


Proposition 5.1. For G = SLn /µm, the primes dividing N(G)/E(G) are precisely


the primes dividing {
gcd(m,n/m) if m is odd


2 gcd(m,n/m) if m is even.


Here µm denotes the group scheme of m-th roots of unity, identified with the
corresponding scalar matrices in SLn.


In the important special cases where G is simply connected (m = 1), G is
adjoint (m = n), or n is square-free, the gcd in the proposition is 1, and we have
that N(G)/E(G) is 1 if m is odd and 2 if m is even.
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Lemma 5.2.


E(SLn /µm) =
m


gcd(m,n/m)
.


Proof. Use the notation of [B Lie] for the simple roots and fundamental weights of
the root system An−1 of SLn. Let Λ denote the lattice generated by the root lattice
Q and


β :=
n


m
ωn−1 =


1


m
(α1 + 2α2 + · · · + (n− 1)αn−1) .


We claim that Λ is identified with the cocharacter lattice T∗ for a pinning of
SLn /µm. Certainly, Λ/Q is cyclic of order m, so it suffices to check that the set
of inner products (Λ, T ∗) consists of integers. But T ∗ is the collection of weights∑
ciωi with ci ∈ Z such that


∑n−1
i=1 ici is divisible by m. We have:


〈
β,
∑


ciωi


〉
=
∑


i


1


m
ici ∈ Z


(∑
ciωi ∈ T ∗


)
,


which proves that T∗ = Λ as claimed.
Finally, we compute:


〈β, αn−1〉 =
n


m
∈ Z and 〈β, β〉 =


〈
1


m


∑
iαi,


n


m
ωn−1


〉
=
n(n− 1)


m2
.


Since m divides n, it is relatively prime to n− 1, so the minimum multiplier of 〈 , 〉
that takes integer values on T∗ is m/gcd(m,n/m), as claimed. �


5.3. Weights of representations of SLn /µm. Fix the “usual” pinning of SLn,
where the torus T consists of diagonal matrices and the dominant weights are the
maps (


t1


. ..
tn


)
7→


n−1∏


i=1


tei


i


where e1 ≥ e2 ≥ · · · ≥ en−1 ≥ 0. Such a weight restricts to x 7→ x
P
ei on the


center of SLn; in particular, m divides
∑
ei for every dominant weight λ of a


representation of SLn /µm. The proof of [Mer, Lemma 11.4] shows that m divides
N(Wλ), hence m divides N(SLn /µm).


We recall how to compute N(Wλ) from [Mer, p. 136]. Write a1 > a2 > · · · >
ak−1 > ak = 0 for the distinct values of the exponents ei in λ, where ai appears ri
times, so that n =


∑
ri. We have:


(5.4) N(Wλ) =
(n− 2)!


r1! r2! · · · rk!



n
(
∑


i


ria
2
i


)
−


(
∑


i


riai


)2

 .


Example 5.5. Let λ be a weight of G and let ri, ai be as in 5.3. Suppose that


v2


(∑
riai


)
≥ v2(n) > 0,


where v2(x) is the 2-adic valuation of x, i.e., the exponent of the largest power of
2 dividing x. We claim that


(5.6) v2(N(Wλ)) > v2(n).
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Write
∑
riai = 2θt and n = 2νu where θ = v2(


∑
riai) and ν = v2(n). Our


hypothesis is that 0 < ν ≤ θ. We may rewrite (5.4) as:


(5.7) N(Wλ) =
(n− 2)!


r1! r2! · · · rk!


[
u


(
∑


i


ria
2
i


)
− 22θ−νt2


]
· 2ν .


Write ℓ for the minimum of v2(ri), and fix an index j such that v2(rj) = ℓ. Note
that since


∑
ri = n, we have ℓ ≤ ν ≤ 2θ − ν.


The first term on the right side of (5.7) has 2-adic value ≥ −ℓ [Mer, p. 137].
The term in brackets has value ≥ ℓ. Therefore, to prove claim (5.6), it suffices to
consider the case where v2(


∑
ria


2
i ) = ℓ and the first term on the right side of (5.7)


has value −ℓ; this latter condition implies that


(5.8) s2(n− 1) = s2(r1) + · · · + s2(rj−1) + s2(rj − 1) + s2(rj+1) + · · · + s2(rk),


where s2 denotes the number of 1’s appearing in the binary representation of the
integer [Mer, p. 137]. That is, when adding up the numbers r1, . . . , rj−1, rj −
1, rj+1, . . . , rk in base 2 (to get n− 1), there are no carries.


Suppose first that ℓ<ν. Equation (5.8) implies that there are exactly two indices,
say, j, j′ with v2(rj) = v2(rj′ ) = ℓ. As 2ℓ+1 divides


∑
riai, it also divides rjaj +


rj′aj′ , hence aj and aj′ have the same parity. It follows that 2ℓ+1 divides rja
2
j+rj′a


2
j′


and the term in brackets in (5.7) has 2-adic valuation > ℓ and we are done in this
case.


We are left with the case where ℓ = ν. By (5.8), rj is the unique ri with 2-adic
valuation ℓ. As v2(


∑
ria


2
i ) = ℓ, the number aj is odd and we have:


ℓ = v2


(∑
riai


)
= θ ≥ ν = ℓ.


Hence both u(
∑
ria


2
i ) and 22θ−νt have 2-adic valuation ℓ. It follows that the term


in brackets in (5.7) has 2-adic valuation strictly greater than ℓ, and claim (5.6) is
proved.


Proof of Prop. 5.1. We write G for SLn /µm. For an upper bound, N(G) divides
2n by Example 1.2. Also, the dominant weight λ with e1 = m and ei = 0 for
i > 1 belongs to T ∗ and has N(Wλ) = m2 by (5.4), so N(G) divides m2. Applying
Lemma 5.2 gives:


gcd(m,n/m) divides N(G)/E(G) divides gcd(m,n/m) gcd(m, 2n/m).


This completes the proof for m odd.
Clearly, an odd prime divides N(G)/E(G) if and only if it divides gcd(m,n/m).


So suppose that m is even and 2 does not divide gcd(m,n/m), i.e., v2(m) = v2(n).
Then every weight of a representation of G satisfies the hypotheses of Example 5.5,
hence v2(N(G)) > v2(n) = v2(m). By Lemma 5.2, v2(E(G)) = v2(m), so 2 divides
N(G)/E(G). This completes the proof of Prop. 5.1. �


6. The ratio N(G)/E(G) for simple G


The purpose of this section is to compute the primes dividing N(G)/E(G) for
all almost simple split groups G. The results are given in Table I. We write PSOn


for the adjoint group of SOn; when n is odd it is the same as SOn.


6.1. Justification of Table I. We now justify the claims about N(G)/E(G)
given in Table I. For G simply connected, E(G) is 1 and N(G) is divisible precisely
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G primes dividing N(G)/E(G)


SLn /µm see Prop. 5.1
Sp2n none
SOn, Spinn, and PSOn for n = 3 and n ≥ 5 2
HSpin4n for n ≥ 3, PSp2n, E6 adjoint 2
E6 simply connected, E7, F4, G2 2, 3
E8 2, 3, 5


Table I. The primes dividing N(G)/E(G).


by the torsion primes of G, see 1.5. We assume that G is not simply connected and


write G̃ for the universal covering of G; obviously N(G̃) divides N(G).
For G = PSp2n, SOn, or adjoint of type E7, one combines Examples 1.7 and 3.4;


1.6 and 3.6; or 1.9 and 3.5, respectively.
For G adjoint of type Dn, we have E(G) = 2 by Example 3.5. Also, 4 divides


N(G) by [Mer, 15.2]. On the other hand, the spinor representations of G̃ have
Dynkin index 2n−3 [LS], and it is easy to use this as in Example 1.9 to construct
a representation ρ of G with N(ρ) a power of 2. This shows that N(G)/E(G) is a
power of 2 and is not 1.


Now let G = HSpin4n for some n ≥ 3. The dual of the center of Spin4n is the
Klein four-group, and we write χ for the unique element that vanishes on the kernel
of the map Spin4n → HSpin4n. The gcd of N(Wλ) as λ varies over the weights
that restrict to χ (respectively, 0) on the center of Spin4n is 22n−3 (resp., divisible
by 4) by [Mer, p. 146], hence N(G) is a power of 2 and at least 4. On the other
hand, E(HSpin4n) is 1 or 2. We conclude that N(G)/E(G) is a power of 2 and is
not 1.


For G adjoint of type E6, the number N(G) is divisible by N(G̃) = 6 and divides
2h∨ = 24 by Example 1.2. By Example 3.5, N(G)/E(G) is 2, 4, or 8.


7. Trace forms and Lie algebras


We assume in this section that G is absolutely almost simple, split, and simply


connected and that the characteristic of F is neither 2 nor 3. Write c for the center
of Lie(G); the quotient g := Lie(G)/c is a simple Lie algebra [St 61, 2.6(5)]. Over
an algebraically closed field, the algebras g arising in this way are sometimes called
“simple Lie algebras of classical type” (even when the root system R is exceptional).


Proposition 7.1. If g has a representation ψ over F with Trψ nonzero, then G
has an irreducible representation ρ over F such that Trρ is not zero and whose


differential vanishes on c.


Proof. Replacing ψ with one of the irreducible quotients in its composition series,
we may assume that ψ is irreducible. Then ψ is restricted by [Bl, Th. 5.1] (using
that F has characteristic 6= 2, 3). Because the projection Lie(G) → g is restricted,
the composition gives a restricted irreducible representation of Lie(G), which is the
differential of a representation of G by [Cu] and [St 63]. (These references only give
a representation of G defined over an algebraic closure of F , but G is split, so the
irreducible representations of G over F are in natural one-to-one correspondence
with those over an algebraic closure.) �
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Because of our hypothesis on the characteristic, Lie(G) is not simple only for
groups of type An−1 where n is divisible by the characteristic of F . In that case,
Lie(G) is sln and its center c consists of the scalar matrices F · 1.


Corollary 7.2 (Block [Bl, Th. 6.2]). If charF divides n, then every representation


of sln/c has zero trace form.


Proof. Suppose that sln/c has a representation with a nonzero trace form. Then
SLn has an irreducible representation ρ such that Trρ is not zero and dρ vanishes
on the scalar matrices. Identifying the center of SLn with the (non-reduced) group
scheme µn identifies the restriction of ρ to µn with a map x 7→ xℓ. Our hypothesis
on dρ says that ℓ is divisible by the characteristic p of F , hence ρ factors through
the natural map SLn → SLn /µp. It follows from 5.3 that N(ρ) is divisible by p.
Hence Trρ vanishes by Th. C, a contradiction. �


We close by proving a stronger version of Cor. B from the introduction. For a
Lie algebra L over F and a representation ψ of L, write radψ for the radical of the
trace bilinear form Trψ; it is an ideal of L. We prove:


Corollary B′. For every representation ψ of every Lie algebra L over a field of


characteristic 5, the quotient L/ radψ is not isomorphic to the Lie algebra of an


algebraic group of type E8.


That is, over a field of characteristic 5, the Lie algebra of a group of type E8


“has no quotient trace form”.


Proof of Cor. B′. Suppose the corollary is false. That is, suppose that there is a
group G of type E8 and a Lie algebra L with a representation ψ and a surjection
π : L→ Lie(G) with kernel the radical of Trψ.


By [Bl, Lemma 2.1], we may assume that the radical of Trψ is contained in
the center of L, i.e., L is a central extension of Lie(G). It follows that there is a
map f : Lie(G) → L such that πf is the identity [St 62, Th. 6.1(c)]. Clearly, the
representation ψf of Lie(G) has nonzero trace form.


As Lie(G) is simple, we can apply Prop. 7.1 and deduce that the algebraic group
of type E8 over F has a representation ρ such that Trρ is not zero, but this is
impossible by Theorem A. �


Note that in the course of proving Corollary B′ we have also proved Cor. B.
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