

WITT GROUPS OF GRASSMANN VARIETIES


PAUL BALMER AND BAPTISTE CALMÈS


Abstract. We compute the total Witt groups of (split) Grassmann varieties,
over any regular base X. The answer is a free module over the total Witt ring
of X. We provide an explicit basis for this free module, which is indexed by a
special class of Young diagrams, that we call even Young diagrams.
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Introduction


At first glance, it might be surprising for the non-specialist that more than thirty
years after the definition of the Witt group of a scheme, by Knebusch [13], the Witt
group of such a classical variety as a Grassmannian has not been computed yet.
This is especially striking since analogous results for ordinary cohomologies, for
K-theory and for Chow groups have been settled a long time ago. The goal of this
article is to explain how Witt groups differ from these sister theories and to prove
the following:


Main Theorem (See Thm. 6.1). Let X be a regular noetherian and separated
scheme over Z[ 12 ], of finite Krull dimension. Let 0 < d < n be integers and
let GrX(d, n) be the Grassmannian of d-dimensional subbundles of the trivial n-
dimensional vector bundle V = On


X over X. (More generally, we treat any vector
bundle V admitting a complete flag of subbundles.)


Then the total Witt group of GrX(d, n) is a free graded module over the total
Witt group of X with an explicit basis indexed by so-called “even” Young diagrams.
The basis element corresponding to an even Young diagram is essentially the push-
forward of the unit along the inclusion of the corresponding Schubert variety. The


cardinal of this basis equals 2 ·
(d′ + e′)!
d′! · e′!


where d′ =
[d
2


]
and e′ =


[n − d
2


]
.
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Let us explain this statement. The total Witt group refers to the sum of the
Witt groups Wi(X, L)


Wtot(X) =
⊕


i∈Z/4
L∈Pic(X)/2


Wi(X, L)


for all possible shifts i ∈ Z/4 and all possible twists L ∈ Pic(X)/2 in the duality,
see Appendix A. For X = Spec(F ), the spectrum of a field, the total Witt group
boils down to the classical Witt group W(F ) but even in that case the above
Theorem is new and the total Witt group of GrF (d, n) involves non-trivial shifted
and twisted Witt groups. The result has a very round form when stated for total
Witt groups but the classical unshifted Witt groups W0(X, L) can be isolated, as
well as the unshifted and untwisted Witt group W(X) = W0(X,OX). Indeed, the
announced basis consists of homogeneous elements and we describe below how to
read their explicit shifts and twists on the Young diagrams. For instance, it is worth
noting that there are no new interesting antisymmetric forms in the Witt groups
of GrX(d, n), that is, except for those extended from X , see Corollary 6.6.


To describe our basis explicitly, we need to introduce even Young diagrams. We
first consider ordinary Young diagrams sitting in the upper left corner of a rectangle
with d rows and e columns, which we call the frame of the diagram. See Figure 1.


d


e


Λ


Figure 1. Young diagram Λ in (d×e)-frame


We say that such a framed Young diagram Λ is even if all the segments of the
boundary of Λ which are strictly inside the frame have even length. That is, we
allow Λ to have odd-length segments on its boundary only where it touches the
outside frame. See Figure 2 for examples. (In Figures 11, 12 and 13 we further give
all even diagram in (d×e)-frame for (d, e) = (4, 4), (4, 5) and (5, 5), respectively.)
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Figure 2. Five examples of even Young diagrams


We shall see that basis elements are in bijective correspondence with even Young
diagrams in (d×e)-frame, for e := n − d. Moreover, as explained in Section 3, the
Witt class φd,e(Λ) corresponding to such a diagram Λ lives in the Witt group


Wi
(
GrX(d, n), L


)
for the shift i = |Λ| ∈ Z/4 equal to the area of the diagram
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and for the twist L ∈ Pic(GrX(d, n))/2 equal to the class of t(Λ) · ∆ where ∆ ∈
Pic(GrX(d, n)) is the determinant of the tautological bundle and where the integer
t(Λ) is half the perimeter of the diagram Λ (see Figure 8 in Section 3). More
generally, when V is not free but admits a complete flag of subbundles, the twist of
φd,e(Λ) also involves a multiple of the determinant of V , in the direct summand of
Pic(GrX(d, n))/2 coming from Pic(X)/2.


Let us put our result in perspective. In its modern form, see for instance
Laksov [14], the computation of the cohomology (or K-theory, or Chow groups)
of a cellular variety usually relies on four important ingredients, (a)-(d) below. Let
Z ⊂ V be a closed subscheme with open complement U (think of U as an open cell
of V which is an A∗-bundle over some smaller scheme). These results are:


(a) A long exact sequence of localization relating the cohomology of V , the
cohomology of V with support in Z and the cohomology of U .


(b) A dévissage theorem, which identifies the cohomology of Z with the coho-
mology of V with support in Z.


(c) Homotopy invariance, that is the fact that the cohomology of the total
space of an A∗-bundle is the same as the cohomology of the base, which
helps identifying the cohomology of U with something simpler.


(d) A way of splitting the localization long exact sequence for particular cellular
decompositions, usually proving the connecting homomorphism to vanish.


Looking back, it is now less surprising that Witt groups of Grassmann varieties
could not be computed in the 70’s, because most of these tools have only been
constructed recently for Witt groups of schemes. With the notable exception of
projective space over a field, see Arason [2], most of the recent computations for
projective varieties have awaited those tools to be available.


The long exact sequence could only be established by defining first “higher” or
“shifted” Witt groups, as it was done in [3] and [4] in 2000 by the first author using
the framework of triangulated categories. This enabled Walter [19] to compute the
Witt groups of projective bundles by decomposing their derived categories. The
homotopy invariance was proved by Gille [10]. The dévissage theorem is usually a
consequence of the definition of push-forwards and was obtained in the form we need
here by Hornbostel and the second author in [7], although several forms of dévissage
were previously considered by various authors. Finally, point (d) was investigated
by the authors in [6] where it is shown that, under some geometric assumptions,
the connecting homomorphism can be computed by geometric means, using only
push-forwards and pull-backs. This is the part where Witt groups differ in the
most significant way from the sister theories mentioned above. Unlike the case of
oriented cohomology theories in the sense of Levine-Morel [15] or Panin [17], the
connecting homomorphism of point (d) is in general not zero for Witt groups.


We use all the above techniques here, in the case of Grassmann varieties and
their usual cellular decompositions.


Let us now comment on the organization of the paper. Sections 1 and 2 con-
tain preparatory material on Grassmann varieties, desingularizations of Schubert
varieties and even Young diagrams.


Our generators of Wtot
(
GrX(d, n)


)
are defined in Section 3 as push-forwards of


the unit forms of certain desingularized Schubert varieties. The reader should keep
in mind that pushing the unit form is not always possible, due to the presence of
line bundles in the definition of the push-forward. Indeed, for a proper morphism
f : X → Y of equidimension dim(f), between regular noetherian schemes (think
dim f = dim X−dimY ), the push-forward along f is defined between the following
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Witt groups:


(1) Wi+dim f (X, ωf ⊗ f∗L) −→ Wi(Y, L) ,


where the line bundle ωf is the so-called relative line bundle. So, when OX is
not (up to squares) of the form ωf ⊗ f∗L for some line bundle L over Y , one


cannot push-forward the unit form of X , which lives in W0(X,OX). This is why
we start Section 3 by discussing the “parity” of the relevant canonical bundles ωf .
Although somewhat heavy, these computations are elementary and are all based
on a repeated application of the computation of the relative canonical bundle of
a Grassmann bundle (Prop. 1.5). The condition for a Young diagram to be even
implies the existence of such a push-forward for the unit of the desingularized
Schubert cell into the Grassmannian. In fact, we could push-forward the unit forms
for more Schubert cells but these additional generators would be redundant. The
even Young diagrams are chosen so that the corresponding forms are also linearly
independent.


Then, in Section 4, we recall the classical relative cellular structure of the Grass-
mann varieties and in Section 5 the long exact sequence associated to it. In the final
Section 6, we compute how our candidate-generators behave under the morphisms
in the long exact sequence, especially under the connecting homomorphism, which
is most of the time not zero (Cor. 6.7). The proof of the main theorem (Thm. 6.1)
then follows by induction on the rank of the vector bundle V .


This article is written in the language of “functors of points”, which means that
we describe schemes in terms of their points (which are here flags) and morphisms
of schemes as how they act on those points. This method is completely rigorous in
this case. The original source is [8, § I.1] and we also refer the reader to [12, Part 2]
for general considerations on this subject. This language is customary when dealing
with flag varieties, see for instance [14] in which it is used for the computation of
Chow groups of Grassmann varieties.


Convention. Throughout the paper, X stands for a regular noetherian separated
scheme over Z[ 12 ], of finite Krull dimension.


1. Combinatorics of Grassmann and flag varieties


We recall elementary facts about Grassmann varieties and desingularizations of
Schubert cells. We also provide the necessary material about canonical bundles to
treat the push-forward homomorphisms for Witt groups in Section 3.


1.1. Definition. A subbundle P � V of a vector bundle V over a scheme X is
an OX -submodule which is locally a direct summand, i.e. P and V/P are vector
bundles.


1.2. Definition. Let V be a vector bundle of rank n > 0 over a scheme X and let
d be an integer 0 6 d 6 n. We denote by GrX(d,V) the Grassmann bundle over X
parameterizing the subbundles of rank d of V . In the language of functors of points,
it means that for any morphism f : Spec(R) → X , the set GrX(d,V)(R) consists
of the R-submodules P � V(R) = f∗(V) which are direct summands of rank d.


The scheme GrX(d,V) comes equipped with a smooth structural morphism


π : GrX(d,V) → X and a tautological bundle Td = T
GrX (d,V)


d of rank d, whose
determinant we denote by ∆d.


1.3. Proposition. The scheme GrX(d,V) is smooth over X of relative dimension
d(n − d). For 0 < d < n, the Picard group of GrX(d,V) is given by


Pic(X) ⊕ Z ∼= Pic(GrX(d,V))
(ℓ, m) 7→ π∗(ℓ) + m ∆d.
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In case d = 0 or d = n, the morphism π : GrX(d,V) → X is the identity.


Proof. The Picard group of a regular scheme coincides with its Chow group CH1,
which is computed in [14] for Grassmannians: see Theorem 16 for the case where
X is a field, and §13 to work over a regular base X . Using the Plücker embedding,
one checks that the generator in loc. cit. is indeed ∆d. �


1.4. Corollary. We have Pic
(
GrX(d,V)


)
/2 = Pic(X)/2 ⊕ Z/2 · ∆d. �


1.5. Proposition. The relative canonical bundle ωGrX (d,V)/X of the projection π :
GrX(d,V) → X is ωGrX(d,V)/X = −d detV +n∆d in Pic(GrX(d,V)). In particular,
if V = On


X is trivial, ωGrX (d,V)/X = n ∆d.


Proof. The morphism π is smooth, so ωGrX (d,V)/X is the determinant (highest ex-
terior power) of the relative cotangent bundle of π. This cotangent bundle is the
tautological bundle tensored by the dual of the tautological quotient bundle (see [9,
Appendix B.5.8]). Taking the determinant, we get the result. �


* * *


We now extend the previous results from Grassmannians to some flag varieties.


1.6. Definition. Let k > 1 and (d, e) be a pair of k-tuples of non-negative integers
d = (d1, . . . , dk) and e = (e1, . . . , ek) satisfying


(2) 0 < d1 < · · · < dk and e1 + d1 6 · · · 6 ek + dk .


(The second condition holds in particular if we have e1 6 · · · 6 ek.) Consider a flag


(3) Vd1+e1 � · · · � Vdi+ei
� · · · � Vdk+ek


of vector bundles over X , where � indicates subbundles in the strong sense of
Definition 1.1 and where the rank is given by the index: rkX(Vr) = r.


We associate to this data the scheme F lX(d, e,V•) over X , which parameterizes
the flags of vector bundles Pd1 � Pd2 � · · · � Pdk


such that rkPdj
= dj and Pdj


�


Vdj+ej
. As a functor of points, this gives for any morphism f : Y → X


(4) F lX(d, e,V•)(Y ) :=











0 � Pd1�


e1


� Pd2�


e2


� · · · � Pdk�


ek


0 � f∗Vd1+e1
� f∗Vd2+e2


� · · · � f∗Vdk+ek









,


where all Pdi
are vector bundles over Y of rank di such that all inclusions are


subbundles in the sense of Definition 1.1. The integers along inclusions indicate
codimensions. Following general practice, we shall drop the mention of f∗ in the
sequel. Moreover, to avoid cumbersome notations, unless the original flag (3) varies,
we drop the mention of V• from the notation : F lX(d, e) = F lX(d, e,V•).


1.7. Example. For k = 1, the scheme F lX(d, e) is simply GrX(d1,Vd1+e1).


1.8. Remark. For any choice J of k′ indices among {1, . . . , k}, one can consider
the pair of k′-tuples (d′, e′) obtained from (d, e) by keeping di and ei only for
indices i ∈ J . There is a natural morphism F lX(d, e) → F lX(d′, e′) over X ,
obtained by dropping the Pdj


for the non-chosen indices j.
Furthermore, for any vector bundle V such that Vdk+ek


� V , there is a natural
morphism fd,e,V of schemes over X as follows :


(5)
fd,e,V : F lX(d, e) −→ GrX(d,Vdk+ek


) →֒ GrX(d,V)
(Pd1 , . . . ,Pdk


) 7−→ Pdk
7−→ Pdk


,


where the first morphism is as above and the second is a closed immersion.
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1.9. Definition. The scheme F lX(d, e) is equipped with tautological bundles Tdi
,


1 6 i 6 k, of rank di, whose determinants we denote by ∆di
:= det(Tdi


). The stalk
of Tdi


at a point (Pd1 , . . . ,Pdk
) is Pdi


. In ambiguous cases, the full notation for Tdi


would be T
F lX (d,e,V•)


di
.


1.10. Remark. If ei = 0 then the vector bundles Tdi
= Vdi


and ∆di
= detVdi


are
both extended from X .


1.11. Lemma. Let k > 2 and let (d, e) be a pair of k-tuples satisfying (2). Let V•


be a flag as in (3). Define the (k − 1)-tuples d|k−1
and e|k−1


as the restrictions of


d and e to the first k − 1 entries. Consider the scheme


Y := F lX( d|k−1
, e|k−1


, V• ) ,


which only “uses” the first k − 1 bundles Vd1+e1 � · · · � Vdk−1+ek−1
. Consider


the pull-back to Y of the remaining bundle, still denoted Vdk+ek
. Observe that


T Y
dk−1


� Vdk+ek
and consider the quotient bundle


Ṽ := Vdk+ek
/T Y


dk−1


over Y . It has rank dk − dk−1 + ek. We then have a canonical isomorphism of
schemes over Y (hence over X) :


(6) F lX(d, e,V•) ∼= GrY


(
dk − dk−1, Ṽ


)
.


Under this identification, we have T
F l(d,e,V•)


di
= T Y


di
for all 1 6 i 6 k − 1 and


(7) T
F lY (d,e,V•)


dk
/T


F lY (d,e,V•)
dk−1


= T
GrY (dk−dk−1,Ṽ)


dk−dk−1
.


Proof. This simply amounts to the bijective correspondence between a flag Pd1 �


· · · � Pdk−1
� Pdk


satisfying Pdi
� Vdi+ei


for all 1 6 i 6 k and the following data :


(a) the beginning of this flag Pd1 � · · · � Pdk−1
satisfying Pdi


� Vdi+ei
for all


1 6 i 6 k − 1,
(b) the bundle Pdk


such that Pdk−1
� Pdk


� Vdk+ek


and to observe that (b) is equivalent to a subbundle P̃ � Vdk+ek
/Pdk−1


of rank


dk − dk−1, where P̃ := Pdk
/Pdk−1


. Details are left to the reader. �


1.12. Convention. When using k-tuples d = (d1, . . . , dk), it will unify several
formulas to simply define d0 = 0.


1.13. Proposition. Let d and e be two k-tuples as in (2) and V• be a flag as in (3).


Then F lX(d, e) is smooth over X of relative dimension
∑k


i=1(di − di−1) ei. The
Picard group of F lX(d, e) is generated by Pic(X) and the “new” bundles ∆di


:


(8) Pic(F lX(d, e)) ∼= Pic(X) ⊕
⊕


1 6 i 6 k
s.t. ei 6= 0


Z ∆di
.


The relative canonical bundle ωF lX(d,e)/X is given by the formula


(9)
ωF lX(d,e)/X =


k∑


i=1


(−di + di−1) detVdi+ei
+


+
k−1∑


i=1


(di − di−1 + ei − ei+1)∆di
+ (dk − dk−1 + ek)∆dk


,


where ∆di
= detVdi


if ei = 0 by Remark 1.10 and where we use Convention 1.12.
In particular, for k = 1, this reads ωF lX (d,e)/X = −d1 detVd1+e1 + (d1 + e1)∆d1 .







WITT GROUPS OF GRASSMANN VARIETIES 7


Proof. By induction on k. The case k = 1 is that of a Grassmannian over X
(Example 1.7) so the result follows from Propositions 1.3 and 1.5.


Let now k > 2. Consider Y = F lX(d|k−1, e|k−1,V•) and the bundle Ṽ =


Vdk+ek
/Tdk−1


over Y , as in Lemma 1.11. Recall that rkY (Ṽ) = dk − dk−1 + ek,
which is always strictly positive (dk > dk−1) and which is bigger than or equal to
dk − dk−1 with equality if and only if ek = 0. Equation (6) and Propositions 1.3
and 1.5 immediately give smoothness, the formula for the relative dimension and
that for the Picard group (8). Finally, to prove (9), observe that


ωF lX (d,e)/Y = ωGrY (dk−dk−1,Ṽ) / Y


= (−dk + dk−1) det(Ṽ) + rk(Ṽ)∆
GrY (dk−dk−1,Ṽ)
dk−dk−1


= (−dk + dk−1) det(Ṽ) + rk(Ṽ)
(
∆


F lX(d,e)
dk


− ∆
F lX (d,e)
dk−1


)


= (−dk + dk−1) detVdk+ek
− ek ∆dk−1


+ (dk − dk−1 + ek)∆dk
.


The first equality uses (6), the second comes from Proposition 1.5 and the third
from (7). The last equality is a direct computation (in which we drop the mention of
F lX(d, e) for readability). By induction hypothesis, we get ωY/X from Equation (9)
applied for k − 1, that is, for the flag variety Y . Since ωF lX(d,e)/X = ωF lX (d,e)/Y +
ωY/X over F lX(d, e), we get (9) for k by adding the above. �


1.14. Corollary. Let d and e be two k-tuples as in (2) and V• be a flag as in (3).
Let V be a vector bundle of rank d+ e such that Vdk+ek


�V . The relative canonical
bundle for the morphism fd,e,V : F lX(d, e) → GrX(d,V) of (5) is given by


(10)
ωF lX(d,e)/ GrX (d,V) =


k∑


i=1


(−di + di−1) detVdi+ei
+ dk detV +


+
k−1∑


i=1


(di − di−1 + ei − ei+1)∆di
+ (−dk−1 + ek − e)∆dk


,


where ∆di
= detVdi


if ei = 0 by Remark 1.10 and where we use Convention 1.12.
For k = 1, this reads ωF lX(d,e)/ GrX(d,V) = d1 det(V/Vd1+e1) + (e1 − e)∆d1 .


Proof. Subtract (fd,e,V)∗ ωGrX(d,V)/X = −dk detV + (dk + e)∆dk
(Prop. 1.5) from


the bundle ωF lX (d,e)/X given in (9). �


1.15. Remark. When V• = O•


X , all the formulas are simpler, since all the detVi


are zero. This applies in particular when X = Spec(R) for a local ring R .


2. Even Young diagrams


We introduce even Young diagrams that will parameterize the basis of the total
Witt group of the Grassmann variety, to be constructed in Section 3.


2.1. Definition. Let d, e > 1. We shall call Young diagram in (d×e)-frame, or
simply (d, e)-diagram, any d-tuple Λ = (Λ1, Λ2, . . . , Λd) of integers such that:


e > Λ1 > Λ2 > . . . > Λd > 0.


See Figure 1 in the Introduction. The area of Λ is |Λ| = Λ1 + Λ2 + . . . + Λd. These
(d, e)-diagrams are just ordinary Young diagrams displayed in the upper left corner
of a rectangle with d rows and e columns, possibly leaving empty rows below and
empty columns to the right of the Young diagram. So, an ordinary Young diagram
with ρ rows and γ columns defines a (d, e)-diagram for any d > ρ and e > γ.


2.2. Example. We denote by ∅ the empty diagram ∅ = (0, . . . , 0). We denote by
[d × e] the full d × e-rectangle [d × e] = (e, . . . , e) ∈ Nd.
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2.3. Definition. Let d, e > 1 and let Λ be a Young diagram in (d×e)-frame. The
decreasing sequence Λ1 > Λ2 > . . . > Λd can be written in a unique way as a series
of equalities and strict inequalities:


(11) Λ1 = · · · = Λd1
︸ ︷︷ ︸


d1 terms


> Λd1+1 = . . . = Λd2
︸ ︷︷ ︸


d2−d1 terms


> · · · > Λdk−1+1 = · · · = Λdk
︸ ︷︷ ︸


dk−dk−1 terms


= Λd .


Note that dk = d. The integers k > 1 and 0 < d1 < . . . < dk depend on Λ. If we
need to stress this we shall write k = k(Λ) and di = di(Λ) for 1 6 i 6 k(Λ).


For fixed d and e, there is a bijection (pictured on Figure 3) between the Young
diagrams Λ in (d×e)-frame and pairs of k-tuples of integers


(12)
d = (d1, . . . , dk) such that 0 < d1 < · · · < dk = d
e = (e1, . . . , ek) such that 0 6 e1 < · · · < ek 6 e


with 1 6 k 6 d. The integers k = k(Λ) and di = di(Λ) are the above ones and we
set ei = ei(Λ) := e − Λdi


for all i = 1, . . . , k. The converse construction is obvious.


e2


e4


d


k = 4


d4


d3


d2


d1


e


d


e3


d1
e1


e2


k = 3


d2


d3


e


Λ
Λ


e1 =0


e3


Figure 3. Two examples of the two k-tuples (d1, . . . , dk) and
(e1, . . . , ek) corresponding to a Young diagram Λ in (d×e)-frame.


2.4. Definition. Let d, e > 1. Fix a complete flag of vector bundles over X


(13) 0 = V0 � V1 � · · · � Vi � · · · � Vd+e =: V .


Note that we baptize V the bundle of dimension d + e, to lighten notation.
Let Λ be a Young diagram in (d×e)-frame. By Definition 2.3, this amounts to a


pair (d, e) of k-tuples of integers satisfying (12), and hence satisfying (2). We can
now apply Definition 1.6 to d and e and the flag (3) taken from (13) above :
(14)


F lX(d, e,V•; Λ) := F lX(d, e,V•) =











0 � Pd1�


e1


� Pd2�


e2


� · · · � Pdk�


ek


0 � Vd1+e1
� Vd2+e2


� · · · � Vdk+ek









.


As usual, instead of F lX(d, e,V•; Λ), we might simply write F l(Λ) or anything “in
between” depending on what is obvious from the context.


As in (5), there is a natural morphism fΛ from F lX(d, e; Λ) to Gr(d,V)


(15)
fΛ = fd,e;Λ := fd,e,V : F lX(d, e; Λ) −→ Gr(d,V)


(Pd1 , . . . ,Pdk
) 7−→ Pdk


.


When X = Spec(F ) is a field, one can understand the image of fΛ as the subset
of those subspaces Pd � V whose intersection with each Vdi+ei


is of dimension at
least di. This is the classical Schubert cell associated to the diagram Λ. It is pretty
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clear that fΛ is a birational morphism. The advantage of F lX(d, e; Λ) over the
Schubert cell is that F lX(d, e; Λ) is not singular by Proposition 1.13.


2.5. Example. Following up on Example 1.7, when Λ = ∅ is the empty diagram,
that is for k = 1 and e1 = e, we have F lX(∅) = GrX(d,V) and f∅ is the identity.
At the other end, for Λ = [d × e] the whole (d × e)-rectangle, that is for k = 1 and
e1 = 0, we have F lX(d, e; Λ) = GrX(d,Vd) = X and fΛ is a closed immersion.


2.6. Definition. Let Λ be a Young diagram in (d×e)-frame. We define ρ(Λ) ∈
{0, . . . , d} to be the number of non-zero rows of Λ. Complementarily, we define
ζ(Λ) = d − ρ(Λ) to be the number of zero rows at the end of Λ, that is


ρ(Λ) = d and ζ(Λ) = 0 if Λd > 0 ,
ρ(Λ) = dk−1 and ζ(Λ) = d − dk−1 if Λd = 0 .


For the empty diagram, we have ρ(∅) = 0 and ζ(∅) = d.


We are going to use a certain class of (d, e)-diagrams, that we call the even (d, e)-
diagrams. Defining them by a picture is very easy. The condition to be even is that
any segment of the (d, e)-diagram which does not belong to the outer (d×e)-frame
must have even length. See Figure 2. The formal definition is the following.


2.7. Definition. Let Λ be a Young diagram in (d×e)-frame and let d and e be the
associated k-tuples as in Definition 2.3. We say that Λ is even if all the following
conditions are satisfied:


(i) di+1 − di is even for all i = 1, . . . , k − 2 (for k > 3 otherwise no condition),
(ii) ei+1 − ei is even, for all i = 1, . . . , k − 1 (for k > 2),
(iii) when 0 < e1 < e we also require d1 to be even,
(iv) when 0 < ek < e we also require dk − dk−1 to be even.


2.8. Example. For any d, e > 1, both the empty diagram ∅ and the full-rectangle
[d × e] are even (d, e)-diagrams (see Ex. 2.2). Indeed, in both cases, k = 1 and
d = (d), whereas e(∅) = (e) and e([d × e]) = (0); so there is no condition to check.


When d = 1 or e = 1, these are the only even Young diagram in (d×e)-frame.
For more examples, the reader can find all even Young diagrams in the cases


(d, e) = (4, 4), (4, 5) and (5, 5) in Figures 11, 12 and 13, at the end of the paper.


2.9. Remark. Definition 2.7 depends on d and e as well as on the Young diagram Λ.
For an even (d, e)-diagram Λ to remain even in a bigger frame, we might have one
or two more conditions to check, namely (iii) or (iv) in Definition 2.7, in the case
where Λ was touching the right border or the bottom border of its (d×e)-frame.


2.10. Remark. For each even (d, e)-diagram we will construct a basis element in the
total Witt group Wtot


(
GrX(d,V)


)
of the Grassmannian. The proof that these Witt


classes actually form a basis will proceed by induction on d + e = rk(V), using the
long exact sequence of localization associated to a natural “cellular” decomposition
of the Grassmannians. In that proof, we shall need the description in terms of
Young diagrams of the various Witt group homomorphisms appearing in that long
exact sequence. As we shall see, these are the ones of the next propositions. This
explains why the following constructions are relevant here.


2.11. Proposition. Let d, e > 2.


(a) There is a bijection
{


even Young (d, e − 1)-diagrams
Λ′ such that ζ(Λ′) is even


}


oo ≃ //
{


even Young (d, e)-diagrams
Λ such that Λd > 0


}


Λ′ � // (Λ′
1 + 1, . . . , Λ′


d + 1)


(Λ1 − 1, . . . , Λd − 1) Λ
�oo
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(b) There is a bijection
{


even Young (d, e)-diagrams
Λ such that Λd = 0


}


oo ≃ //
{


even Young (d − 1, e)-diagrams
Λ′′ such that Λ′′


d−1 is even


}


Λ
� // Λ|d−1,e


(Λ′′
1 , . . . , Λ′′


d−1, 0) Λ′′�oo


(c) There is a bijection
{


even Young (d − 1, e)-diagrams
Λ′′ such that Λ′′


d−1 is odd


}


oo ≃ //
{


even Young (d, e − 1)-diagrams
Λ′ such that ζ(Λ′) is odd


}


Λ′′ � // (Λ′′
1 − 1, . . . , Λ′′


d−1 − 1, 0)


(1 + Λ′
1, . . . , 1 + Λ′


d−1) Λ′�oo


Proof. The proof essentially consists in checking that the announced constructions
are well-defined and that they preserve even diagrams. Checking that they are mu-
tually inverse constructions is straightforward. The notation Λ|d−1,e


is the obvious


one : we view a diagram with empty last row in a smaller frame. All this is most
easily performed and followed on pictures. For instance, the maps from left to right
are pictured in the upper parts of Figures 4, 5 and 6 below. �


even


odd


e − 1 e


dd


0


Figure 4. Morphism ῑ (and later ι∗) on various (d, e − 1)-diagrams Λ′.
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e


d − 1d


0


e


Figure 5. Morphism κ̄ (and later κ) on various (d, e)-diagrams Λ.


e


d


e − 1


0


d − 1


odd


even


Figure 6. Morphism ∂̄ (and later ∂) on various (d − 1, e)-diagrams Λ′′.


2.12. Corollary. Let R be a ring, for instance R = Z or later R = Wtot(X). For
each d, e ∈ N let F(d, e) be the free R-module on the set of even (d, e)-diagrams.
Then for any d, e > 1, the following cyclic sequence is exact everywhere


(16)


F(d, e)
κ̄


��
F(d, e − 1)


ῑ
33


F(d − 1, e)


∂̄


gg


where the homomorphisms ῑ, κ̄ and ∂̄ are defined on the basis elements by the
constructions of Proposition 2.11, whenever they make sense, and by zero otherwise.
See Figures 4, 5 and 6. More precisely, we have:


The homomorphism ῑ : F(d, e − 1) → F(d, e) is defined on the basis by


(17) ῑ(Λ′) =


{
(Λ′


1 + 1, . . . , Λ′
d + 1) if ζ(Λ′) is even


0 if ζ(Λ′) is odd.


The homomorphism κ̄ : F(d, e) → F(d − 1, e) is defined on the basis by


(18) κ̄(Λ) =


{
Λ|d−1,e


if Λd = 0


0 if Λd > 0 .
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The homomorphism ∂̄ : F(d − 1, e) → F(d, e − 1) is defined on the basis by


(19) ∂̄(Λ′′) =


{
(Λ′′


1 − 1, . . . , Λ′′
d−1 − 1, 0) if Λ′′


d−1 is odd
0 if Λ′′


d−1 is even.


Proof. Indeed, the sequence (16) is even “split” exact as follows:
⊕


Λ s.t.
Λd=0


R · Λ ⊕
⊕


Λ s.t.
Λd>0


R · Λ


κ̄ =


(
0 0


iso 0


)


��
⊕


Λ′ s.t.
ζ(Λ′) even


R · Λ′ ⊕
⊕


Λ′ s.t.
ζ(Λ′


d) odd


R · Λ′


ῑ =


(
0 0


iso 0


) 55


⊕


Λ′′ s.t.
Λ′′


d−1 is odd


R · Λ′′ ⊕
⊕


Λ′′ s.t.
Λ′′


d−1 is even


R · Λ′′


∂̄ =


(
0 0


iso 0


)
dd


where “iso” indicates an isomorphism induced by a bijection of the corresponding
basis elements, according to Proposition 2.11. �


3. Generators of the total Witt group


For this section, let Λ be a Young diagram in (d×e)-frame and recall the k-tuples
d and e associated to Λ in Definition 2.3.


3.1. Remark. Our goal is to construct classes in the total Witt group of GrX(d,V)
by pushing-forward the unit form 1 ∈ W0(F lX(Λ)) along the morphism fΛ :
F lX(Λ) → GrX(d,V) of (15). As recalled in (1), this push-forward only exists
conditionally, namely only when the class of ωF lX (Λ)/ GrX(d,V) in Pic(F lX(Λ))/2
belongs to the image of


(fΛ)∗ : Pic(GrX(d,V))/2 −→ Pic(F lX(Λ))/2 .


This is true if and only if the following conditions are satisfied:


(a) di − di−1 + ei+1 − ei is even for every i = 2, . . . , k − 1 (for k > 3)
(b) when 0 < e1 < e, require moreover d1 + e2 − e1 even.


We shall be more precise in Proposition 3.8 below but the reader can verify our
claim using (10) in Corollary 1.14. In that expression, every term coming from X
will also come from GrX(d,V) since fΛ is a morphism over X . This also applies to
∆d1 = detVd1 in case e1 = 0. Finally, the term in ∆d also comes from GrX(d,V)


since (fΛ)∗
(
∆


GrX(d,V)
d


)
= ∆


F lX (Λ)
d , as can be checked on the tautological bundles.


Conditions (a) and (b) hold in particular when Λ is even in the sense of Defi-
nition 2.7. Indeed, for such Λ not only the sum di − di−1 + ei+1 − ei is even but
actually each term di − di−1 and ei+1 − ei is. Compare Figure 7.


2


3


4


Figure 7. Framed Young diagram satisfying Conditions (a)
and (b) of Remark 3.1 but which is not even (at all).
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When (a) and (b) hold (e.g. for Λ even), there exists a line bundle L on GrX(d,V)
such that ωfΛ + f∗


Λ(L) = 0 in Pic(F lX(Λ))
/
2. Therefore, the push-forward (1)


applied to f = fΛ and i = − dim(fΛ) yields a homomorphism :


W0
(
F l(Λ), 0


)
= W0


(
F l(Λ), ωfΛ + f∗


Λ(L))
) (fΛ)∗


→W|Λ|
(
GrX(d,V), L


)
.


(Use that dim(fΛ) = dimF lX(Λ) − dimGrX(d,V) = −|Λ| by Propositions 1.3
and 1.13.) Consequently, we can produce a Witt class (fΛ)∗(1) over GrX(d,V).
This is what we are going to do below for Λ even, making the class of L in
Pic(GrX(d,V))/2 more explicit in terms of the diagram Λ.


3.2. Remark. The perimeter of a Young diagram Λ is an even integer. Indeed,
from the lower-left corner of Λ to its upper-right corner, there are two paths which
follow the boundary (the upper path and the lower path) and they have the same
length, namely the lattice distance between these two corners.


3.3. Definition. Let Λ be a Young diagram. We define t(Λ) ∈ Z/2 to be the class
of half the perimeter of Λ. From the above remark, t(Λ) is also the class of the
(lattice) distance from the lower-left corner of Λ to its upper-right corner. That is :


t(Λ) = [Λ1 + ρ(Λ)] ∈ Z/2


where ρ(Λ) is the number of non-zero rows of Λ (Def. 2.6). Note that this Definition
does not depend on an ambient frame.


3.4. Remark. On an even Young diagram Λ in (d×e)-frame, there is another way
to read t(Λ) ∈ Z/2 on the diagram. Add the (parity of) the length of the segments
where Λ touches the right and the bottom of the frame. See Figure 8. This is
justified and generalized in Proposition 3.5.


t(Λ) = 1


1


2
1


1


5


4


t(Λ) = 0 t(Λ) = 1 t(Λ) = 0t(Λ) = 0


Figure 8. Class t(Λ) ∈ Z/2 for different Λ.


3.5. Proposition. Let Λ be an even Young diagram in (d×e)-frame and let d, e
be the associated k-tuples (Def. 2.3). Then t(Λ) = [di + (e − ej)] ∈ Z/2 for any
i, j ∈ {1, . . . , k} such that ei < e (only i = k should be avoided when ek = e).


Proof. Measure the half-perimeter of Λ as the length of the lower boundary of Λ,
from the lower-left corner of Λ to its upper-right corner (see Rem. 3.2). Since Λ
is even, all segments on this lower half-perimeter which are not on the outside
frame have even length. So, the only two segments to contribute to the lower
half-perimeter with possible odd length, are on the outside (d×e)-frame, i.e. :


• the vertical segment most to the right, which has length d1, and
• the lowest horizontal segment, which has length e− ek when Λ touches the


lower part of the (d×e)-frame (otherwise ek = e and this length is even).


In any case, this shows that t(Λ) = [d1 + (e − ek)] ∈ Z/2, that is, the announced
formula for i = 1 and j = k. The other formulas follow from this one since by
Definition 2.7 the successive differences di − di−1 and ej+1 − ej are even for all
i = 2, . . . , k − 1, for all j = 1, . . . , k − 1, and also for i = k when ek < e. �
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3.6. Definition. Let Λ be an even Young diagram in (d×e)-frame. We define the
twist T (Λ) of Λ as the following class in Pic(GrX(d,V))/2 = Pic(X)/2 ⊕ Z/2∆d


(see Cor. 1.4) :


T (Λ) = T (Λ, d, e) = ρ(Λ) · detV + t(Λ) · ∆d ,


where we recall that ρ(Λ) is the number of non-zero rows of Λ (Def. 2.6).


3.7. Remark. The important part of T (Λ) is of course t(Λ)∆d, which is not coming
from the base X . For instance, when V is trivial, the other term disappears; this
holds in particular when X = Spec(R) for a local ring R


3.8. Proposition. Let Λ be an even Young diagram in (d×e)-frame. Then


ωfΛ + f∗
Λ(T (Λ)) = 0 in Pic


(
F lX(Λ)


)/
2 .


Proof. Suppose k(Λ) > 2. Remove from (10) all even coefficients coming from the
fact that Λ is even and use Proposition 3.5 for i = k − 1 and j = k. This gives in
Pic


(
F lX(Λ)


)/
2 :


ωfΛ = d1 detVd1+e1 + (d + dk−1) detVd+ek
+ d detV + d1 ∆d1 + t(Λ)∆d .


Now observe that d1 detVd1+e1 + d1 ∆d1 = 0 in Pic
(
F lX(Λ)


)/
2. Indeed, either


e1 > 0 hence d1 is even, or e1 = 0 hence ∆d1 = detVd1 by Remark 1.10. So, we
can simplify the above equation in Pic


(
F lX(Λ)


)/
2 :


ωfΛ = (d + dk−1) detVd+ek
+ d detV + t(Λ)∆d .


Now, if ek < e then dk − dk−1 is even and ρ(Λ) = d ; on the other hand, if ek = e,
then ρ(Λ) = dk−1. In any case, the above expression becomes ρ(Λ) detV+ t(Λ)∆d,
which is T (Λ) by Definition 3.6.


Similarly, the case k(Λ) = 1 is an easy consequence of Corollary 1.14. �


3.9. Proposition. Let Λ be an even Young diagram in (d×e)-frame. Then the
push-forward for Witt groups induced by fΛ : F lX(Λ) −→ GrX(d,V) yields a ho-
momorphism:


W0
(
F lX(Λ), 0


)
= W0


(
F lX(Λ) , ωfΛ + f∗


Λ(T (Λ))
) (fΛ)∗


→W|Λ|
(
GrX(d,V), T (Λ)


)


where the first identification comes from Proposition 3.8 (see Appendix A).


Proof. Apply push-forward (1), for i = − dim(fΛ) = |Λ| and L = T (Λ), as explained
in Remark 3.1. �


3.10. Definition. Let Λ be an even Young diagram in (d×e)-frame. By Propo-
sition 3.9, we can push-forward along fΛ : F lX(Λ) → GrX(d,V) the unit form
1 ∈ W0(F lX(Λ), 0) to our announced Witt class


(20) φd,e(Λ) := (fΛ)∗(1) ∈ W|Λ|
(
GrX(d,V) , T (Λ)


)
.


3.11. Example. Let Λ = ∅ be the empty Young diagram in (d×e)-frame, which
is even, as we know. Then φd,e(∅) = 1 ∈ W0(GrX(d,V), 0) is the unit form on the
Grassmannian. Indeed, f∅ : F lX(d, e; ∅) → GrX(d,V) is the identity.


3.12. Definition. Let d, e > 1. Consider the free Wtot(X)-module


FX(d, e) :=
⊕


Λ even


Wtot(X) · Λ


with (formal) basis given by the even Young diagrams Λ in (d×e)-frame. We have
an obvious Z/2-grading on FX(d, e) given by t(Λ) ∈ Z/2 = Z/2 ∆d (Def. 3.3) :


FX(d, e) =
⊕


t∈Z/2


⊕


Λ even
t(Λ)=t ∆d


Wtot(X) · Λ .
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Now since Wtot(X) is a graded ring over Z/4 ⊕ Pic(X)/2 (see Appendix), we can
extend this grading to FX(d, e) by letting Λ have degree |Λ| + ρ(Λ) detV in Z/4 ⊕
Pic(X)/2. Combining both observations, FX(d, e) becomes a graded abelian group
over Z/4⊕Pic(X)/2⊕Z/2. The latter is isomorphic to Z/4⊕Pic(GrX(d,V))/2 by
Corollary 1.4. Explicitly, Λ has degree


(21)
|Λ| + ρ(Λ) detV + t(Λ)∆d = |Λ| + T (Λ) in
Z/4 ⊕ Pic(X)/2 ⊕ Z/2 ∆d


∼= Z/4 ⊕ Pic(GrX(d,V))/2 .


We Wtot(X)-linearly extend the φd,e(Λ) of Definition 3.10 into a homomorphism


(22)
φd,e : FX(d, e) −→ Wtot


(
GrX(d,V)


)


Λ 7−→ φd,e(Λ) ,


which is homogeneous (of degree zero) with respect to the above grading, by (20).


3.13. Proposition. Let d, e ≥ 2 and let V1 := Vd+e−1 in the complete flag (13).
With FX(d, e) graded as above over Z/4⊕Pic(X)/2⊕Z/2 ∆d, the homomorphisms
ῑ, κ̄ and ∂̄ of Corollary 2.12 are not always homogeneous (when V/V1 is not trivial
in Pic(X)/2). More precisely, they behave as follows :


(a) ῑ is indeed homogeneous of degree
(
d , d (V/V1) , 1


)
.


(b) κ̄ sends degree (s, ℓ, t) into degree
(
s , ℓ + t · (V/V1) , t


)
.


(c) ∂̄ sends degree (s, ℓ, t) into degree
(
s − d + 1 , ℓ + (t − d) (V/V1) , t − 1


)
.


Proof. This is a direct inspection of the behavior of deg(φd,e(Λ)) given in (21) under
the combinatorial constructions of Corollary 2.12. We leave this to the reader. �


3.14. Corollary. When V/V1 is trivial (e.g. when V• = O•


X , e.g. when X = Spec(R)
with R a field or a local ring) then ῑ, κ̄ and ∂̄ are homogeneous. �


3.15. Remark. Our main result is that φd,e is an isomorphism for all d, e > 1. We
shall prove it by induction on d+e. The case d = 1 or e = 1 is that of the projective
bundle P(V). In that case, Walter [19] has proved


(23) Wtot(P(V)) = Wtot(X) · 1Pm ⊕ Wtot(X) · ξ


where ξ ∈ Wd+e−1(P(V), ωπ) is such that π∗(ξ) = 1 ∈ W0(X) and π : P(V) → X is
the structure morphism. We use the assumption that V has a complete flag to get
the above closed formula, see [19, Proposition 8.1]. One can check that ξ is equal to
φ(Λ), up to a unit, where Λ = [d× e] is the only non-empty even diagram in (d×e)-


frame in our case. Formula (23) was also proved in the case V = Od+e
X in [5], using


methods closer to the present geometric philosophy. We could therefore assume the
starting point of the induction (i.e. the case d = 1 or e = 1). Nevertheless, our
proof of the induction step can be adapted to give this initial step as well. So, to
be self-contained, we indicate how to do this in Proposition 6.4.


4. Cellular decomposition


We describe the usual relative cellular decomposition of Grassmannians. Fix
d, e > 2 for the whole section.


4.1. Notation. Fix a complete flag V• of vector bundles on X


0 = V0 � V1 � · · · � Vd+e = V ,


as in (13). We set V1 = Vd+e−1 to be the codimension one subbundle of V . We
have an obvious closed immersion GrX(d,V1) →֒ GrX(d,V), of codimension d,
whose open complement we denote by UX(d,V•).


4.2. Notation. Let Pd � V be a subbundle of rank d. We write Pd⋪̇V1 to express
that Pd is not a subbundle of V1 but moreover satisfies the equivalent conditions :
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(a) The natural map from Pd/(Pd ∩ V1) = (Pd + V1)/V1 into V/V1 is an
isomorphism.


(b) Pd ∩ V1 is a subbundle of Pd (in the strong sense of Definition 1.1).


Over a field, this amounts to Pd 6⊂ V1 but this is not sufficient in general.


4.3. Definition. Using notations of Section 1, we have a commutative diagram


(24)


GrX(d,V1)
� � ι //| GrX(d,V) UX(d,V•)? _υoo ◦


α


��


H
h


υ̃


uukkkkkkkkkkkkkk


◦


F lX((d − 1, d), (e, e − 1))


π̃


OO


� � ι̃ //| F lX((d − 1, d), (e, e))


π


OO


α̃ // F lX(d − 1,V1) .


which looks as follows on points :


(25)


{Pd � V1}
� � ι //| {Pd � V} {Pd⋪̇V1}? _υoo ◦


G
g


υ̃


ttjjjjjjjjjjjjjjjjj


◦ α


��
{Pd−1 � Pd � V1}


π̃


OO


� � ι̃ //| {Pd−1 � Pd � V | Pd−1 � V1}


π


OO


α̃ // {Pd−1 � V1} .


Here ι, ι̃, π, π̃ and α̃ are the obvious morphisms ; the morphism υ̃ maps Pd to the
flag Pd−1 � Pd with Pd−1 := Pd ∩ V1 (see Not. 4.2) ; finally α is defined as α̃ ◦ υ̃.


4.4. Proposition. In Diagram (24), the scheme F lX((d−1, d), (e, e)) is the blow-up
of GrX(d,V) along GrX(d,V1) with exceptional fiber F lX((d − 1, d), (e, e − 1)).


Proof. We can reduce to the case where X is affine and V is free and then to
X = Spec(Z) by compatibility of blow-ups with pull-back diagrams. We omit
X in the notation in the rest of the proof. Now, we first show that there is a
morphism from the announced blow-up B to F l((d−1, d), (e, e)) and then that this
morphism is an isomorphism. The inverse image of Gr(d,V) in F l((d− 1, d), (e, e))
is F l((d−1, d), (e, e−1)) = PY (V1/Pd−1) where Y = Gr(d−1,V1), by construction.
It includes in F l((d−1, d), (e, e)) = PY (V/Pd−1), so it is locally Pe−1 ⊂ Pe hence an
effective Cartier divisor (i.e. a closed subscheme locally given by a principal ideal).
By the universal property of the blow-up construction (see [16, § 8.1.2, Corollary
1.16]) we thus obtain a map f : B → F l((d − 1, d), (e, e)), such that π ◦ f = π′,
where π′ : B → Gr(d,V) is the structural morphism of the blow-up. In particular,
f is a finite (check over Gr(d,V1) and U(d,V)) birational morphism to a normal
variety, so it is an isomorphism: it is locally a finite morphism Spec(S) → Spec(R)
where R is integrally closed. �


4.5. Definition. Let BX(d,V•) = F lX((d−1, d), (e, e)) be the blow-up of GrX(d,V)
along GrX(d,V1) and let EX(d,V•) = F lX((d− 1, d), (e, e− 1)) be the exceptional
fiber. By (24), GrX(d,V) admits a decomposition like in [6, Hypothesis 1.2], namely


(26)


GrX(d,V1)
� � ι //| GrX(d,V) UX(d,V•)? _υoo ◦


H
h


υ̃


uukkkkkkkkkkkkkkk


◦ α


��
EX(d,V•)


π̃


OO


� � ι̃ //| BX(d,V•)


π


OO


α̃ // GrX(d − 1,V1) .


It is easy to see that α is an Ae-bundle because UX(d,V•) is canonically isomorphic
to PY (V/T Y


d−1) \ PY (V1/T Y
d−1) where Y = GrX(d− 1,V1), with α corresponding to


the structural morphism to Y .


4.6. Remark. We can compute the relevant Picard groups and canonical bundles,
via the methods of Section 1. Let us start with Picard groups, using (8). Since







WITT GROUPS OF GRASSMANN VARIETIES 17


Pic(X) is a direct summand of the Picard group of all schemes in (26), we focus on
the relative Picard groups Pic(−)/ Pic(X). In short “Pic(−)/ Pic(X) of (26)” is


(27)


Z∆d


π̃∗=( 0
1 )


��


Z∆d
ι∗=1oo


π∗=( 0
1 )


��


υ∗=1 // Zυ∗(∆d) = Zα∗(∆d−1)


Z∆d−1 ⊕ Z∆d Z∆d−1 ⊕ Z∆d
ι̃∗=( 1 0


0 1 )
oo


υ̃∗=( 1 1 )
iiiiii


44iiiiii


Z∆d−1
α̃∗=( 1


0 )
oo


α∗=1


OO


(In the case X = Spec(R) for a local ring R, the Picard groups are exactly as
above.) Here we used that the closed subscheme GrX(d,V1) is of codimension
d > 2 in GrX(d,V) to see that υ∗ : Pic(GrX(d,V)) ∼= Pic(UX(d,V•)). We also used
that e > 2, otherwise e− 1 = 0 and ∆d−1 ∈ Pic(X) by Remark 1.10. (When d = 1,
resp. e = 1, we loose all components Z∆d−1, resp. all components Z∆d, in the
previous diagram.) Alternatively, (27) follows from the computation of the Picard
groups provided in [6, Proposition A.6]. Finally, the maps into the upper corner of
Diagram (27) are obtained from


(28) υ∗(∆d) − α∗(∆d−1) = V/V1 ,


which follows from Condition (a) in Notation 4.2.
We shall use push-forward along some morphisms of (26). The relevant relative


canonical bundles are given by Corollary (1.14) :


ωι = −∆d + d (V/V1)(29)


ωπ = (d − 1)∆d−1 + (1 − d)∆d + (d − 1)V/V1(30)


ωι̃ = V/V1 + ∆d−1 − ∆d(31)


ωπ̃ = d ∆d−1 + (1 − d)∆d .(32)


Again, when the fixed complete flag V• = O•


X is trivial, the “noise” V/V1 vanishes.


We end this Section with two geometric lemmas which will be useful in the proof
of the main theorem.


4.7. Lemma. Let d, e > 2 and let Λ be an even Young (d, e)-diagram with empty last
row (i.e. Λk = 0, i.e. ζ(Λ) > 0). Hence Λ|d−1,e


is an even (d− 1, e)-diagram. Then


the base-change to UX(d,V•) of the morphisms fd,e;Λ and fd−1,e;Λ|d−1,e
coincide,


that is, we have two cartesian squares:


(33)


GrX(d,V)


2


UX(d,V•)? _υoo α //


2


GrX(d − 1,V1)


F lX(d, e; Λ)


fd,e;Λ


OO


U ′? _oo α′
//


OO


F lX(d − 1, e; Λ|d−1,e
) .


fd−1,e;Λ|d−1,e


OO


Proof. Let us check this on points. Let d and e be the k-tuples associated to Λ
as usual (Def. 2.3). We need to distinguish two cases, namely dk − dk−1 > 1 and
dk − dk−1 = 1.


When dk > dk−1 +1, that is, when there is more than one zero line at the end of
Λ (i.e. ζ(Λ) > 1), we then have k(Λ|d−1,e


) = k(Λ) = k and the k-tuples d(Λ|d−1,e
)


and e(Λ|d−1,e
) are almost the same as d and e except for the last entry of d(Λ|d−1,e


)


which becomes d − 1. Diagram (33) then looks as follows on points (as usual the
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Pi and P ′
j are “variables” whereas the Vi belong to the fixed complete flag):


{Pd �V} {Pd ⋪̇V1} {P ′
d−1 �V1}


· · · � Pdk−1


�


ek−1


� Pd


�


e


· · ·�Vdk−1+ek−1
� V
















· · · � Pdk−1


�


ek−1


� Pd


�


e


· · ·�Vdk−1+ek−1
� V
















V1


⋪̇


· · · � Pdk−1


�


ek−1


� P ′
d−1


�


e


· · ·�Vdk−1+ek−1
� V1
















? _oo α //


fd,e;Λ


OO OO


fd−1,e;Λ|d−1,e


OO


? _oo α′
//


2 2


where the morphisms α sends Pd to P ′
d−1 := Pd ∩ V1 and similarly for α′ .


On the other hand, when dk = dk−1 + 1, that is, when Λ has only one zero line
(i.e. ζ(Λ) = 1), then we have k(Λ|d−1,e


) = k(Λ) − 1 = k − 1 and the (k − 1)-tuples


d(Λ|d−1,e
) and e(Λ|d−1,e


) are respectively d and e truncated from their last entry.


Diagram (33) then looks as follows on points:


{Pd �V} {Pd ⋪̇V1} {P ′
d−1 �V1}


· · · � Pdk−1


�


ek−1


� Pd


�


e


· · ·�Vdk−1+ek−1
� V
















· · · � Pdk−1


�


ek−1


� Pd


�


e


· · ·�Vdk−1+ek−1
� V
















V1


⋪̇


· · · � Pdk−1


�


ek−1


· · ·�Vdk−1+ek−1
















? _oo α //


fd,e;Λ


OO OO


fd−1,e;Λ|d−1,e


OO


? _oo α′
//


2 2


where α still sends Pd to P ′
d−1 := Pd ∩ V1 and where fd−1,e;Λ|d−1,e


sends a flag


to Pdk−1
. Note that in this case, α′ drops the last subspace Pd in the flag.


In both cases, it is easy to check that the two squares are cartesian. �


4.8. Lemma. Let d, e > 2 and let Λ′′ be an even (d−1, e)-diagram such that Λ′′
d−1 is


odd. Hence we can consider the even (d, e−1)-diagram Λ′ = (Λ′′
1−1, . . . , Λ′′


d−1−1, 0).
Then, there exists a commutative diagram:


(34)


GrX(d,V1) EX(d,V•)
α̃ ι̃ //π̃oo GrX(d − 1,V1)


F lX(d, e − 1; Λ′)


fd,e−1;Λ′


OO


F ′


f ′


OO


//
π′


oo


2


F lX(d − 1, e; Λ′′)


fd−1,e;Λ′′


OO


where EX(d,V•) is the exceptional fiber of Diagram (26) and where the right-hand
square is cartesian. Moreover, either π′ is an isomorphism or the scheme F ′ (with
the morphism π′) identifies with the blow-up of F lX(d, e − 1; Λ′) along a closed
regular subscheme of odd codimension.


Proof. Let k = k(Λ′′), d = d(Λ′′) and e = e(Λ′′) as usual (Def. 2.3). We need to
distinguish two cases, namely Λ′′


d−1 > 1 and Λ′′
d−1 = 1.


Suppose first that Λ′′
d−1 > 1. Then k(Λ′) = k + 1 and d(Λ′) and e(Λ′) are just


d(Λ′′) and e(Λ′′) with one more entry at the end, namely d and e − 1 respectively.
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We can describe the pull-back in Diagram (34) as follows (on points):


{Pd−1 �Pd �V1} {Pd−1 �V1}


Pd1�


� · · · � Pd−1


�


� Pd


�


Vd1+e1
� · · ·�Vd−1+ek


�V1
















Pd1�


� · · · � Pd−1


�


Vd1+e1
� · · ·�Vd−1+ek
















f ′


OO OO
//


//


2


This pull-back F ′ is F lX(d, e − 1; Λ′). So, take π′ = id. The morphism f ′


composed with π̃ sends a flag Pd1 � · · · � Pd−1 � Pd to Pd and so does fd,e−1;Λ′ .


Suppose now that Λ′′
d−1 = 1. Then k(Λ′) = k and e(Λ′) = e(Λ′′), whereas


d(Λ′) is obtained from d(Λ′′) by replacing its last entry by d. We can describe the
pull-back in Diagram (34) as follows:


{Pd−1 �Pd �V1} {Pd−1 �V1}


Pd1


�


� · · · � Pdk−1
� Pd−1


�


� Pd


�


Vd1+e1
� · · ·�Vdk−1+ek−1


�Vd+e−2 �V1
















Pd1�


� · · · � Pd−1


�


Vd1+e1
� · · ·�Vd+e−2
















f ′


OO OO
//


//


2


where f ′ is the obvious morphism. The left-hand square of (34) is defined by :


{Pd �V1} {Pd−1 �Pd �V1}


Pd1�


� · · · � Pdk−1


�


� Pd


�


Vd1+e1
� · · ·�Vdk−1+ek−1


�V1
















Pd1�


� · · · � Pdk−1
� Pd−1


�


� Pd


�


Vd1+e1
� · · ·�Vdk−1+ek−1


�Vd+e−2 �V1
















OO


f ′


OO
π̃oo


π′
oo


The morphism π′ : F ′ → F lX(d, e − 1; Λ′) simply drops Pd−1 in this case.
Let V2 := Vd+e−2 and Y := F lX((d1, . . . , dk−1), (e1, . . . , ek−1),V•). We have


F lX(d, e−1; Λ′) = GrY (d−dk−1,V
1/Tdk−1


) by Lemma 1.11. As in Definition 4.5, we


consider the blow-up BY (d−dk−1 , V2/Tdk−1�V1/Tdk−1) of GrY (d−dk−1,V
1/Tdk−1


)


along the closed regular immersion of GrY (d−dk−1,V
2/Tdk−1


). By Proposition 4.4,
this blow-up coincides with F ′ and the morphism π of (25) here becomes the above
morphism π′. In other words, the following diagram commutes:


F lX(d, e − 1; Λ′) F ′π′
oo


GrY (d − dk−1,V
1/Tdk−1


) BY (d − dk−1, V
2/Tdk−1 � V1/Tdk−1


) .
“π”oo


The closed immersion GrY (d − dk−1,V
2/Tdk−1


) →֒ GrY (d − dk−1,V
1/Tdk−1


) is of
odd codimension equal to d − dk−1. �


5. Push-forward, pull-back and connecting homomorphism


We describe the long exact sequence on Witt groups associated to the geometric
decomposition GrX(d,V) = GrX(d,V1)∪UX(d,V•), considered in Section 4. Recall
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the important Diagram (26):


(26)


GrX(d,V1)
� � ι //| GrX(d,V) UX(d,V•)? _υoo


H
h


υ̃


uukkkkkkkkkkkkkkk


◦


α


��
EX(d,V•)


π̃


OO


� � ι̃ //| BX(d,V•)


π


OO


α̃ // GrX(d − 1,V1) .


5.1. Notation. On Witt groups, α∗ : Wtot(GrX(d − 1,V1))
∼
→ Wtot(UX(d,V•)) is


an isomorphism by homotopy invariance and we define


κ := (α∗)−1υ∗ : Wtot(GrX(d,V)) −→ Wtot(GrX(d − 1,V1)) .


5.2. Proposition. Let L ∈ Pic(GrX(d,V))/2. Then define L′ := ωι + ι∗(L) in
Pic(GrX(d,V1))/2 and L′′ := (α∗)−1(υ∗(L)) in Pic(GrX(d − 1,V1))/2. There is a
long exact sequence


· · ·Wi−d(GrX(d,V1), L′)
ι∗ // Wi(GrX(d,V), L)


κ // Wi(GrX(d − 1,V1), L′′)
BC


GF ∂
��


Wi−d+1(GrX(d,V1), L′)
ι∗ // Wi+1(GrX(d,V), L)


κ // Wi+1(GrX(d − 1,V1), L′′) · · ·


Proof. This is the long exact sequence of localization [3] associated to the codi-
mension d closed immersion GrX(d,V1) ⊂ GrX(d,V) in which we used dévissage to


replace Wi
Gr(d,V1)(GrX(d,V), L) by Wi−d(GrX(d,V1), L′) and homotopy invariance


to replace Wi(UX(d,V•), υ
∗L) by Wi(GrX(d − 1,V1), L′′). See [6, Sequence (11)].


�


5.3. Corollary. For d, e > 2, there is a 3-term exact sequence of total Witt groups


(35) Wtot(GrX(d,V1))
ι∗ // Wtot(GrX(d,V))


κ // Wtot(GrX(d − 1,V1))
BC@A


∂


OO


Proof. Add the long exact sequences of Proposition 5.2 over L ∈ Pic(GrX(d,V))/2 =
Pic(X)/2 ⊕ Z/2 ∆d and i ∈ Z/4. All three schemes have the same Picard groups
(d, e > 2) by (27). So when L runs among all possible values of Pic(GrX(d,V))/2,
so does L′ in Pic(GrX(d,V1))/2 and L′′ in Pic(GrX(d − 1,V1))/2. �


5.4. Remark. When d = 1, one can define the sum of the above proof but for
each L′′ ∈ Pic(GrX(d − 1,V1)/2, and each i ∈ Z/4, the Witt group Wi(GrX(d −
1,V1), L′′) will appear twice. This is explained in Remark 4.6 : the kernel of the
homomorphism Pic(GrX(d,V))/2 −→ Pic(GrX(d − 1,V1))/2 is Z/2 · ∆d . In this
case, the third “total” Witt group of (35) must be replaced by two copies of it.


Similarly, when e = 1, the total Witt group of GrX(d,V1) will appear twice in
the first entry of (35). See more in Remark 6.3.


5.5. Remark. All three groups in (35) are graded over


Z/4 ⊕ Pic(X)/2 ⊕ Z/2 ∆d .


The homomorphisms ι∗, κ and ∂ are not always homogeneous when the line bundle
V/V1 is not trivial (in Pic(X)/2). Indeed, the same happens as in Proposition 3.13 :


(a) ι∗ is indeed homogeneous of degree
(
d , −d · V/V1 , 1


)
.


(b) κ sends degree (s, ℓ, t) into degree
(
s , ℓ + t · (V/V1) , t


)
.


(c) ∂ sends degree (s, ℓ, t) into degree
(
s − d + 1 , ℓ + (t − d) (V/V1) , t − 1


)
.


Note that if we restrict attention to the significant part of the twist (the part Z/2 ∆d


not coming from X), κ leaves it unchanged, and ι∗ and ∂ change it.
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Finally, we shall also use the following general fact about push-forwards along
blow-up morphisms.


5.6. Proposition. Let X be a noetherian scheme (quasi-compact and quasi-separated
is enough) and let Z →֒ X be a regular immersion of pure codimension d. Let
π : B → X be the blow-up of X along Z. Then :


(a) There is a natural isomorphism Rπ∗(OB) ∼= OX in the derived category
of X.


(b) Assume further that X is regular and that ωB/X is a square (which happens
exactly when d is odd by [6, Proposition A.11 (iii)]). Then the push-forward
π∗ : W0(B) → W0(X) maps the unit class 1B to the unit class 1X. (This
is even true on the level of forms, without taking Witt classes.)


Proof. (a) can be found in SGA 6, see [1, Lemme VII.3.5, p. 441] or the more recent
account in [18, Lemme 2.3 (a)].


(b) follows from (a). Indeed, when d = 1, we have B = X and there is nothing to
prove. When d > 3 then line bundles over X , and homomorphisms between them,
are determined by their restriction to the open complement U = X r Z of Z since
Z is of codimension at least 2. By the base-change formula for push-forward, and
since π|


π−1(U)
: π−1(U) → U is an isomorphism, the result follows. �


5.7. Remark. The main application of the previous result will appear at a slightly
technical moment below. Yet, it also has a reassuring application, namely that our
candidate-generators φd,e(Λ) do not really depend on the chosen desingularization
F l(Λ) of the Schubert subvariety corresponding to the Young diagram Λ. Indeed the
unit will remain the unit when pushed-forward between two such desingularizations,
if one is obtained from the other by blow-up. (The condition on the relative bundle
being even is automatically satisfied if they both have even relative bundle with
respect to the Grassmannian.)


6. Main result


We are now ready to state and prove the main result of the paper.


6.1. Theorem. Let d, e > 1. Let X be a regular scheme over Z[ 12 ]. Let V be a
vector bundle of rank d + e which admits a complete flag (13) of subbundles. (For
instance, when V is free.) Then, the elements φd,e(Λ) of Definition 3.10, for Λ


even, form a basis of the graded Wtot(X)-module Wtot(GrX(d,V)).


Proof. The proof occupies most of this Section. We fix a complete flag


0 = V0 � V1 � · · · � Vd+e = V .


We set as before V1 := Vd+e−1.
The idea of the proof is very simple; it is an induction on rk(V) = d + e. The


case d = 1 or e = 1 is slightly particular and treated on its own (see Remark 3.15
or Remark 6.3), so we assume d, e > 2 and the result proved for vector bundles of
rank smaller than d + e.


The induction step is immediate by the 5-Lemma once we have established the
commutativity of the following (horizontally-periodic) diagram:
(36)


FX(d, e − 1)
ῑ //


φd,e−1 ≃


��


FX(d, e)
κ̄ //


φd,e


��


FX(d − 1, e)
∂̄ //


φd−1,e ≃


��


FX(d, e − 1)


φd,e−1 ≃


��
Wtot(GrX(d,V1))


ι∗ // Wtot(GrX(d,V))
κ // Wtot(GrX(d − 1,V1))


∂ // Wtot(GrX(d,V1))
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whose first row is the exact sequence of Corollary 2.12 and whose second row is the
exact sequence (35).


To check that Diagram (36) commutes amounts to control how the morphisms
ι∗, κ and ∂ behave on the elements φd,e(Λ) constructed in Def. 3.10. Recall that the
φd,e(Λ) are only defined when Λ is even. Note that Proposition 3.13 and Remark 5.5
imply that commutativity of (36) makes sense as far as degrees as concerned. So,
rephrasing the commutativity of (36), the core of the proof is the following:


6.2. Proposition. Let d, e > 2. Keep notations as above.


(a) Let Λ′ be an even Young diagram in (d×(e − 1))-frame. The push-forward
ι∗ satisfies the following (see Figure 4):


ι∗(φd,e−1(Λ
′)) = φd,e(ῑ(Λ


′)) .


(b) Let Λ be an even Young diagram in (d×e)-frame. The “restriction” mor-
phism κ satisfies the following (see Figure 5):


κ(φd,e(Λ)) = φd−1,e(κ̄(Λ)) .


(c) Let Λ′′ be an even Young diagram ((d − 1)×e)-frame. The connecting ho-
momorphism ∂ satisfies the following (see Figure 6):


∂(φd−1,e(Λ
′′)) = φd,e−1(∂̄(Λ′′)) .


Proof. Recall from Corollary 2.12 that the definitions of ῑ, κ̄ and ∂̄ each involve two
cases. The general organization of the proof is to start by proving the equations
of (a), (b) and (c) in the first cases (the non-zero ones). The remaining cases will
be easy to deduce from these.


Interesting case of (a). Let Λ′ be an even (d, e − 1)-diagram such that ζ(Λ′) is
even. Let d and e be the corresponding k-tuples (Def. 2.3). By assumption we can
consider the even (d, e)-diagram ῑ(Λ′) := (Λ′


1 + 1, . . . , Λ′
d + 1). Observe that it has


the same associated k-tuples (with respect to the (d×e)-frame). From (14), it is
then easy to see that F lX(d, e − 1; Λ′) = F lX(d, e; ῑ(Λ′)) and that the diagram


GrX(d,V1)
ι // GrX(d,V)


F lX(d, e − 1; Λ′)


fd,e−1;Λ′


OO


F lX(d, e; ῑ(Λ′))


fd,e,ῑ(Λ′)


OO


commutes. In that case, (a) follows by composition of push-forwards.


Interesting case of (b). Let Λ be an even (d, e)-diagram such that Λd = 0. Let d
and e be the corresponding k-tuples (Def. 2.3). By assumption we can consider the
even (d − 1, e)-diagram κ̄(Λ) := Λ|d−1,e


. We then have two cartesian squares:


GrX(d,V)


2


UX(d,V•)? _υoo α //


2


GrX(d − 1,V1)


F lX(d, e; Λ)


fd,e;Λ


OO


U ′? _oo //


OO


F lX(d − 1, e; κ̄(Λ))


fd−1,e;κ̄(Λ)


OO


by Lemma 4.7. Replacing κ by its definition (see 5.1) and using that α∗ is an
isomorphism, the equality in (b) claims that


υ∗(φd,e(Λ)) = α∗(φd−1,e(Λ|d−1,e
)) in Wtot(UX(d,V•)) .


This follows by base change on the above two cartesian squares (see [7], the hori-
zontal morphisms are smooth, so flat, and the vertical maps are proper, including
U ′ → UX(d,V•)). Both sides of the above equation are equal in Wtot(UX(d,V•))
to the push-forward of the same 1U ′ ∈ W0(U ′) along U ′ → UX(d,V•).
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Interesting case of (c). Let Λ′′ be an even (d − 1, e)-diagram such that Λ′′
d−1 is


odd. Let d and e be the corresponding k-tuples (Def. 2.3). By assumption, we can
consider the even (d, e − 1)-diagram


∂̄(Λ′′) := (Λ′′
1 − 1, . . . , Λ′′


d−1 − 1, 0) .


The twist t(Λ′′) is given by t(Λ′′) = [d + 1] ∈ Z/2. Using Diagram (27) and
Equation (30), one can easily check that this is the twist for which the connecting
homomorphism ∂ can be computed by first pulling back to EX(d,V•) and then
pushing-forward to GrX(d,V1), see [6, Theorem 2.6]. By Lemma 4.8, we have the
right-hand cartesian square in the following commutative diagram:


GrX(d,V1) EX(d,V•)
π̃oo α̃ι̃ //


2


GrX(d − 1,V1)


F lX(d, e − 1; ∂̄(Λ′′))


fd,e−1;∂̄(Λ′′)


OO


F ′


OO


π′
oo // F lX(d − 1, e; Λ′′) .


fd−1,e;Λ′′


OO


We can now compute ∂(φd−1,e(Λ
′′)) by base-change on the right-hand square and


composition of push-forwards, starting with the unit form on F lX(d−1, e; Λ′′). The
key point is to check that π′


∗ preserves this unit form. By Lemma 4.8, we know
that π′ is either an isomorphism or a blow-up along a closed regular immersion of
odd codimension. In both cases π′


∗(1) = 1 by Proposition 5.6 and we get the result.


Remaining cases. At this stage, we have proved the equations of (a), (b) and (c)
in the first cases (the non-zero ones). In the remaining cases, both sides of these
equations are zero, as easily follows from the above cases and diagram chase in (36).


For instance, let us prove that both sides of (b) vanish for an even (d, e)-diagram
Λ such that Λd > 0. Since κ̄(Λ) = 0 it suffices to show κ(φd,e(Λ)) = 0. By
Corollary 2.12, there exists an even (d, e − 1)-diagram Λ′ such that ζ(Λ′) is even
and ῑ(Λ′) = Λ. We have established equation (a) for such Λ′. Applying κ to this
equation gives κι∗(φd,e−1(Λ


′)) = κ(φd,e(Λ)) hence the result since κ ι∗ = 0. The
other cases (Λ′ with ζ(Λ′) odd and Λ′′ with Λ′′


d−1 even) can be proved similarly. �


6.3. Remark. Following up on Remark 3.15, we now unfold the case d = 1 (resp.
e = 1) of our constructions from Sections 4 and 5. The difference comes from the
apparition of GrX(0,V1) (resp. GrX(d,Vd)), which is simply X , in which case the
Picard groups do not look like in (27). This involves an artificial total Witt group
of GrX(0,V1) (resp. GrX(d,Vd)) in the localization long exact sequence (35), not
summing on its “own” twists but on the “ambient” twists of GrX(d,V), as explained
in Remark 5.4. Proposition 6.2 then becomes the following (only the cases involving
X are covered, the other ones having already been done).


6.4. Proposition. Let d = 1 (resp. e = 1) and let 1i, i ∈ Z/2 be two copies of the
unit form on X, one for each twist in Z/2 ∆d of the ambient GrX(d,V). As before,
[d × e] is the full diagram and ∅ is the empty one. When e = 1, the push-forward
satisfies the following:


(37) ι∗(1d+1) = 0 and ι∗(1d) = φd,1([d × 1]).


When d = 1, the morphism κ satisfies the following:


(38) κ(φ1,e(∅)) = 10


When d = 1 (resp. e = 1), the connecting homomorphism ∂ satisfies the following:


(39) ∂(11) = φ1,e(∅) and ∂(10) = 0 (resp. ∂([(d − 1) × 1]) = 1d+1) .
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ι∗


10


11


10


11


10


Gr(1,V2)


11


X XX


κ ∂


Gr(1,Ve)Gr(1,Ve)


11


10


Gr(1,Ve+1) X


1d+1


1d


1d+1


1d


Gr(d,Vd+1) XX Gr(d − 1,Vd)


Figure 9. Image of the generating elements by the morphisms ι∗,
κ and ∂ in three special cases when d = 1, e = 1 and d = e = 1.
No arrow means mapped to zero.


Since the proof works as the one of the previous proposition, we leave the details
to the reader. See Figure 9.


The induction step in the proof of Theorem 6.1 then also works in the case
d = 1 or e = 1, using FX(0, e) = FX(d, 0) = Wtot(X).10 ⊕ Wtot(X).11. Its proof is
therefore completed. �


6.5. Remark. Of course every φd,e(Λ) has a particular shift and twist. When


X is local, and more generally when Wtot(X) = W0(X), one obtains a basis of


Wi(GrX(d,V), L), for i ∈ Z/4 and L ∈ Pic /2 fixed, by selecting the generators
φd,e(Λ) with shift i and twist L.


6.6. Corollary. Let d′ (resp. e′) be the integral part of d/2 (resp. e/2) and consider


the binomial coefficient
(
a+b


a


)
= (a+b)!


a!b! . As modules over Wtot(X), the total Witt


group of GrX(d,V) is free of rank 2
(
d′


e′


)
. If we assume moreover that Wtot(X) =


W0(X), for instance for X local, then


• the classical Witt group of symmetric forms W0(GrX(d,V), 0) has rank
(
d′+e′


e′


)
,


• the classical Witt group of antisymmetric forms W2(GrX(d,V), 0) is zero.
• the Witt groups W1(GrX(d,V), 1) and W3(GrX(d,V), 1) are zero.


Proof. Let “4-block” mean “2 × 2 square”. Every even Young diagram Λ is either


(a) a union of 4-blocks and φ(Λ) is in W0(GrX(d,V), 0),
(b) a single row plus 4-blocks (e even) and φ(Λ) is in We(GrX(d,V), 1),


(c) a single column plus 4-blocks (d even) and φ(Λ) is in Wd(GrX(d,V), 1),
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(d) a single row and a single column plus 4-blocks (d and e odd) and φ(Λ) is in


Wd+e−1(GrX(d,V), 0).


All possibilities (a)-(d) are exclusive and can be enumerated easily by counting
the diagrams of 4-blocks, which amounts to counting the usual Young diagrams in


(d′×e′)-frame. We get
(
d′+e′


e′


)
elements in case (a), and the other results depend on


the parities of d and e but are also very easy to figure out in each case. �


6.7. Corollary. The connecting homomorphism ∂ is zero (and thus the long exact
sequence (35) for GrX(d,V) decomposes as split short exact sequences as for Chow
groups) if and only if both d and e are even.


Proof. Looking back at the proof of the main theorem, and at (19) (or Figure 6),
we see that ∂ is zero if and only if there is no even (d− 1, e)-diagram Λ′′ such that
Λ′′


d−1 is odd. This implies that e is even (otherwise Λ′′ = [(d − 1)× e] would be an
even diagram) and that d − 1 is odd (otherwise Λ′′ = (1, . . . , 1) would be an even
diagram). Conversely, assume e even and the existence of an even (d−1, e)-diagram
Λ′′ such that Λ′′


d−1 is odd. Then ek is odd (since e = Λ′′
d−1 + ek is even), hence all


ei are odd since Λ′′ is an even diagram. In particular, e1 is odd, hence e1 > 0 and
therefore d1 is even. This implies that d−1 = dk = (dk−dk−1)+ . . .+(d2−d1)+d1


is even, i.e. d is odd, as was to be shown. �


6.8. Notation. For d, e > 1, we denote by GX(d, e) the split Grassmannian


GX(d, e) = GrX(d,Od+e
X ) .


6.9. Example. Figure 10 shows how the different generators map to each other by
ι∗, κ and ∂ in the long exact sequence (35) for G(3, 3).


G(3, 2)


κι∗ ∂


G(3, 2) G(3, 3) G(2, 3)


Figure 10. Total long exact sequence on generators (no arrow
means mapped to zero)


6.10. Example. Figures 11, 12 and 13 give the even Young diagrams in (d×e)-frame
and the corresponding shifts in Z/4 and twists in Z/2 ∆d for the Grassmannians
G(4, 4), G(4, 5) and G(5, 5).


* * *
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Figure 11. Diagrams of generators for G(4, 4): first row in shift
0 and twist 0, second row in shift 0 and twist 1.


Figure 12. Diagrams of generators for G(4, 5): first row in shift
0 and twist 0, second row in shift 0 and twist 1.


Figure 13. Diagrams of generators for G(5, 5): first row in shift
0 and twist 0, second row in shift 1 and twist 1.


We conclude with a few comments.


6.11. Remark. We could have considered a larger set of elements φd,e(Λ) using
Remark 3.1 instead of assuming Λ even. This larger set is also stable by applying
ι∗, κ and ∂. Some of these extra elements are then easily seen to be zero from the
exact sequence, but not all of them.


6.12. Remark. Part of the ring structure on the total Witt group can be computed
at each induction step using the projection formula. Unfortunately, this is not
enough for the whole computation. Despite the results for the Grothendieck and
the Chow rings using basis of Schubert cells, it is unclear to the authors what kind
of Littlewood-Richardson type rule one should expect.


Note however that all generators φd,e(Λ) are nilpotent except for Λ = ∅. This
can be checked using homotopy invariance and a discussion on the supports or
simply the fact that these Witt classes are generically trivial.


6.13. Remark. Although we don’t need it here, it is possible to show that, for
V = Od+e


X , the isomorphism G(d, e) = Gr(d,V) ≃ Gr(e,V∨) = G(e, d) sends φd,e(Λ)
to φe,d(Λ∨) where Λ∨ is the dual partition.
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Appendix A. Total Witt group


For i ∈ Z and for a line bundle L over X , the Witt group Wi(X, L) is the
triangular Witt group of the bounded derived category of vector bundles over X
with respect to the duality derived from HomOX


(−, L) and shifted i times. See [3,
4]. These groups are periodic in two elementary ways. First they are 4-periodic in
shift, i.e. there is an isomorphism


Wi(X, L) ≃ Wi+4(X, L)


by [3, Proposition 2.14]. This isomorphism is completely canonical and easily goes
through all other constructions, so we do not discuss it any further.


We then have a product


Wi(X, L) × Wj(X, M) → Wi+j(X, L ⊗ M)


by [11] that yields, for any line bundle M , a periodicity isomorphism


(40) Wi(X, L) ≃ Wi(X, L ⊗ M⊗2)


given by multiplication with the Witt class [M
∼
→ M∨ ⊗ M⊗2] ∈ W0(X, M⊗2),


where M∨ denotes the dual of M .
From these two periodicity isomorphisms, it is clear that all the information


about the Witt groups of a scheme can be concentrated in a total Witt group,
summing Witt groups indexed by elements in Pic /2 and integers in Z/4. However,
this total group is not canonical since it involves the choice of a line bundle L for
every class in Pic /2. Furthermore, if we want to turn this total Witt group into
a ring, using the above product, we need to choose isomorphisms between L ⊗ M
and the line bundle representing L + M in Pic /2, including the choice of “square
roots” (for the periodicity modulo 2), and so on. All this data should further satisfy
some compatibilities, of the highest sex appeal. Unfolding these technicalities would
simultaneously increase the size of the article and reduce its readability, beyond the
taste of any potential reader. Therefore we make the following choice :


A.1. Convention. We treat all periodicity isomorphisms as identities :


Wi(X, L) = Wi+4(X, L) and Wi(X, L) = Wi(X, L ⊗ M⊗2) .


We see two ways of providing a formal ground for this convention, at least in
our discussion of the total Witt group of the Grassmann varieties over X .


The first possibility is to assume the above choices for the base scheme X and
then use the explicit isomorphism Pic(GrX(d,V)) ∼= Pic(X)⊕Z ·∆d to extend the
choices made for X to Gr(d,V), by using the tensor powers of ∆d in a natural way.


The second possibility can be applied beyond Grassmann varieties. It starts with
the observation that two different choices of the above conglomerate of line bundles
and compatibility isomorphisms would only differ “by multiplication by a global
unit”. The fact that some collection of Witt classes forms a basis of the graded
Witt ring is stable by multiplication of these basis elements by units. As long as
the proof of such a fact never uses addition in Wtot but only the 5-Lemma, then it
is insensible to the ambiguity of the choices. Indeed, it is easily checked that the
5-Lemma holds if its 4 squares only commute “up to units”.


Deciding which method is more pleasant is left to the insomniac reader.
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