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Abstract. The generic quadratic form of even dimension n with trivial dis-
criminant over an arbitrary field of characteristic different from 2 containing
a square root of −1 can be written in the Witt ring as a sum of 2-fold Pfister
forms using n − 2 terms and not less. The number of 2-fold Pfister forms
needed to express a quadratic form of dimension 6 with trivial discriminant is
determined in various cases.


Introduction


Throughout this paper, k denotes a field of characteristic different from 2 in
which −1 is a square. We use the same notation for a quadratic form over k and
its Witt equivalence class in the Witt ring W (k). As usual, the quadratic form
∑n


i=1 aiX
i with ai ∈ k× is denoted by 〈a1, . . . , an〉. Since −1 is a square in k, the


form 〈1, . . . , 1〉 is Witt equivalent to 〈1〉 or 0 according as its dimension is odd or
even, hence W (k) is an algebra over the field F2 with two elements. Let I(k) be
the fundamental ideal of W (k), which consists of the Witt equivalence classes of
even-dimensional quadratic forms. For any integer m ≥ 1, the m-th power of I(k) is
denoted by Im(k). We say a quadratic form is in Im(k) if its Witt equivalence class
is in Im(k). It is well-known that for any m ≥ 1 the ideal Im(k) is generated as a
group by the classes of m-fold Pfister forms, i.e., quadratic forms of the following
type:


〈〈a1, . . . , am〉〉 = 〈1, a1〉 ⊗ · · · ⊗ 〈1, am〉,


see [7, Prop. X.1.2]. Brosnan, Reichstein, and Vistoli [3] define the m-Pfister


number Pfm(q) of a quadratic form q ∈ Im(k) as the least number of terms in a
decomposition of its Witt equivalence class into a sum of m-fold Pfister forms. For
m, n ≥ 1, the (m, n)-Pfister number Pfk(m, n) is defined as the supremum of the
m-Pfister numbers Pfm(q) where q runs over the quadratic forms of dimension n in
Im(K), as K varies over field extensions of k. In [3], Pfister numbers are studied
in connection with the essential dimension of algebraic groups.


A related invariant was defined by Parimala and Suresh in [9] (see also Kahn’s
paper [5]): the length λm(q) of a quadratic form q ∈ Im(k) is the least integer
r for which there exist m-fold Pfister forms π1, . . . , πr such that q ≡ π1 + · · · +
πr mod Im+1(k). In [9], the length of quadratic forms was studied with reference
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to the u-invariant of fields and some bounds were given for the length of quadratic
forms in Im(k), 1 ≤ m ≤ 3. Clearly, λm(q) ≤ Pfm(q).


The following bounds were given in [3] for Pfister numbers of forms in I(k) and
I2(k) (see also Proposition 2.1 below):


Proposition ([3, Prop. 14]). Pfk(1, n) ≤ n and Pfk(2, n) ≤ n − 2.


Zinovy Reichstein raised the following question: Is the estimate for the 2-Pfister
number in the proposition sharp, i.e., is Pfk(2, n) = n−2? In this paper we answer
Reichstein’s question in the affirmative by showing that the “generic” quadratic
form q0 of dimension n with trivial discriminant satisfies Pf2(q0) = n − 2, see
Theorem 2.2 and Corollary 2.3. Note that for any quadratic form q of dimension n
in I2(k) we have λ2(q) ≤


n−2
2 (cf. [5, Prop. 1.1]); therefore for the generic form q0


the inequality λ2(q0) ≤ Pf2(q0) is strict.
The proof of Theorem 2.2 is easily derived from a discussion of a combinatorial


analogue of Pfister numbers in §1. In the last section (§3), which is essentially
independent from §§1 and 2, we give some computations of Pfister numbers of
quadratic forms of dimension 6.


We are indebted to Zinovy Reichstein for his comments on a first version of
this paper, which helped us to improve the wording in several points, and also to
Detlev Hoffmann for suggesting an alternative proof of Theorem 2.2. Ideas from
this alternative proof were used to simplify our original arguments.


1. A combinatorial analogue


Let V be an arbitrary vector space over the field F2 with 2 elements. We
consider the group algebra F2[V ] as a combinatorial analogue of the Witt ring of
a field. (Indeed, the Witt ring of any field k of characteristic different from 2
containing a square root of −1 is a homomorphic image of F2[k


×/k×2], see §2.)
Since the addition in V is multiplication in F2[V ], it is convenient to denote by Xv


the image of v ∈ V in F2[V ]; thus


F2[V ] =
{


∑


v∈V


αvXv | αv ∈ F2 and {v ∈ V | αv 6= 0} is finite
}


,


with


X0 = 1 and Xu · Xv = Xu+v for u, v ∈ V .


We consider the group homomorphisms


ε0 : F2[V ] → F2, ε1 : F2[V ] → V


defined by


ε0


(


∑


v∈V


αvX
v
)


=
∑


v∈V


αv, ε1


(


∑


v∈V


αvXv
)


=
∑


v∈V


αvv.


Thus, ε0 is the augmentation map. We denote its kernel by I[V ]. It is an ideal since
ε0 is a ring homomorphism, and it is generated as a group by elements of the form
1 + Xv for v ∈ V , which we call 1-fold Pfister elements. For m ≥ 1, the products


(1 + Xv1) · · · (1 + Xvm) ∈ F2[V ]


with v1, . . . , vm ∈ V are called m-fold Pfister elements. They span the m-th power
of I[V ], which we denote by Im[V ] to mimic the Witt ring notation. Observe that
0 is an m-fold Pfister element for all m, since the product above is 0 if v1 = 0.
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For ξ =
∑


v∈V αvXv ∈ F2[V ] we define the support of ξ by


D(ξ) = {v ∈ V | αv = 1} ⊆ V.


This notation is inspired by the usual notation for the set of represented values of
a quadratic form. (See the proof of Theorem 2.2 below for an example of a field E
such that W (E) can be identified with a group algebra F2[V ] in such a way that
the support of any ξ ∈ F2[V ] is the set of represented values of the corresponding
anisotropic quadratic form.)


Lemma 1.1. Let ξ ∈ F2[V ] be a nonzero element, and let d = |D(ξ)| be the


cardinality of the support of ξ.


(i) If ξ ∈ I[V ], then d ≥ 2 and there are 1-fold Pfister elements π1, . . . , πp


such that


ξ = π1 + · · · + πp and p ≤ d.


If moreover 0 ∈ D(ξ), the same property holds with p ≤ d − 1.
(ii) If ξ ∈ I[V ] and ε1(ξ) = 0, then d ≥ 4 and there exist 2-fold Pfister


elements π1, . . . , πp such that


ξ = π1 + · · · + πp and p ≤ d − 2.


If moreover 0 ∈ D(ξ), the same property holds with p ≤ d − 3.


Proof. (i) We have d 6= 0 since ξ 6= 0, and d is even since ε0(ξ) ≡ d mod 2
and ξ ∈ I[V ]. Therefore, we have


ξ =
∑


v∈D(ξ)


Xv =
∑


v∈D(ξ)


(1 + Xv),


proving that ξ is a sum of d terms that are 1-fold Pfister elements. If 0 ∈ D(ξ), one
of these terms vanishes since 1 + X0 = 0. Thus, (i) is proved.


(ii) Suppose now ξ ∈ I[V ] and ε1(ξ) = 0. As in case (i), d is even. If d = 2, the
condition ε1(ξ) = 0 yields ξ = 0. Therefore, d ≥ 4. The other assertions are proved
by induction on d. Suppose first 0 ∈ D(ξ). Since d ≥ 4 we may find in D(ξ) two
distinct nonzero vectors u, v. Define


ξ′ = (1 + Xu)(1 + Xv) + ξ.


We have ξ′ ∈ I[V ] and ε1(ξ
′) = 0. Moreover,


D(ξ′) ⊆ (D(ξ) \ {0, u, v}) ∪ {u + v},


hence |D(ξ′)| ≤ d − 2. By induction, there exist 2-fold Pfister elements π1, . . . , πp


such that


ξ′ = π1 + · · · + πp and p ≤ d − 4,


(ξ′ = 0 if d = 4). Then


ξ = π1 + · · · + πp + (1 + Xu)(1 + Xv)


and the number of terms on the right side is at most d − 3. If 0 /∈ D(ξ) we may
still define ξ′ as above, and we have


0 ∈ D(ξ′) ⊆ (D(ξ) \ {u, v}) ∪ {0, u + v},


hence |D(ξ′)| ≤ d. The arguments above show that there exist 2-fold Pfister ele-
ments π1, . . . , πp such that


ξ′ = π1 + · · · + πp and p ≤ d − 3.
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Then


ξ = π1 + · · · + πp + (1 + Xu)(1 + Xv)


and the number of terms on the right side is at most d − 2. �


Corollary 1.2. I2[V ] = {ξ ∈ I[V ] | ε1(ξ) = 0}.


Proof. Lemma 1.1(i) shows that I[V ] is spanned by 1-fold Pfister elements,
hence I2[V ] is generated as a group by 2-fold Pfister elements. Since these elements
lie in the kernel of ε1, it follows that


I2[V ] ⊆ {ξ ∈ I[V ] | ε1(ξ) = 0}.


The reverse inclusion readily follows from Lemma 1.1(ii). �


For ξ ∈ Im[V ] we define the m-Pfister number Pfm(ξ) as the minimal number
of terms in a decomposition of ξ as a sum of m-fold Pfister elements. In particular,
Pfm(0) = 0 for all m ≥ 1.


Proposition 1.3. For every ξ ∈ I[V ] we have


Pf1(ξ) =


{


|D(ξ)| if 0 /∈ D(ξ),


|D(ξ)| − 1 if 0 ∈ D(ξ).


Proof. Let p = Pf1(ξ). Suppose v1, . . . , vp ∈ V are nonzero vectors such that


ξ =


p
∑


i=1


(1 + Xvi) = p +


p
∑


i=1


Xvi .


Then D(ξ) ⊆ {0, v1, . . . , vp}, hence


|D(ξ)| ≤


{


p if 0 /∈ D(ξ),


p + 1 if 0 ∈ D(ξ).


The reverse inequality follows from Lemma 1.1. �


We now turn to 2-Pfister numbers. From Lemma 1.1 it follows that for ξ 6= 0
in I2[V ],


(1) Pf2(ξ) ≤ |D(ξ)| − 2, and Pf2(ξ) ≤ |D(ξ)| − 3 if 0 ∈ D(ξ).


In the rest of this section, we explicitly construct elements for which the upper
bound is reached. The following general observation is crucial for the proof: every
linear map ϕ : V → W between F2-vector spaces induces a ring homomorphism
ϕ∗ : F2[V ] → F2[W ] by


(2) ϕ∗


(


∑


v∈V


αvXv
)


=
∑


v∈V


αvXϕ(v).


The homomorphism ϕ∗ maps 1-fold Pfister elements in F2[V ] to (possibly zero)
1-fold Pfister elements in F2[W ], hence also m-fold Pfister elements in F2[V ] to m-
fold Pfister elements in F2[W ], for every m ≥ 1. Consequently, for every ξ ∈ Im[V ]
we have ϕ∗(ξ) ∈ Im[W ] and


Pfm
(


ϕ∗(ξ)
)


≤ Pfm(ξ).
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Now, let V be an F2-vector space of finite dimension n > 1, and let e = (ei)
n
i=1


be a base of V . We define e0 =
∑n


i=1 ei and


ξe = n + 1 +


n
∑


i=0


Xei ∈ F2[V ].


It is readily verified that ε0(ξ) = 0 and ε1(ξ) = 0, so ξe ∈ I2[V ], and the support
of ξe is


D(ξe) =


{


{0, e0, e1, . . . , en} if n is even,


{e0, e1, . . . , en} if n is odd.


Therefore, (1) yields the same inequality when n is odd or even:


(3) Pf2(ξe) ≤ n − 1.


The following proposition shows that Pf2(ξe) reaches the bound in (1).


Proposition 1.4. Pf2(ξe) = n − 1.


Proof. We use induction on n. If n = 2, we have


ξe = (1 + Xe1)(1 + Xe2),


so Pf2(ξe) = 1. If n = 3, then


ξe = Xe1 + Xe2 + Xe3 + Xe1Xe2Xe3 .


This element is not a 2-fold Pfister element since 0 /∈ D(ξe), hence Pf2(ξe) > 1. On
the other hand, Pf2(ξe) ≤ 2 by (3), hence Pf2(ξe) = 2.


For the rest of the proof, suppose n > 3. Let p = Pf2(ξe) and let π1, . . . , πp


be 2-fold Pfister elements such that


(4) ξe = π1 + · · · + πp.


We have D(ξe) ⊆
⋃p


i=1 D(πi), hence en ∈ D(πi) for some i = 1, . . . , p. Renumber-
ing, we may assume en ∈ D(πp), hence


(5) πp = 1 + Xen + Xv + Xen+v for some v ∈ V .


Let W ⊆ V be the F2-span of e1, . . . , en−1, and let f0 =
∑n−1


i=1 ei ∈ W . Clearly,


f = (ei)
n−1
i=1 is a base of W , and the element ξf ∈ F2[W ] built on the same model


as ξe is


ξf = n + Xf0 +


n−1
∑


i=1


Xei .


Consider the linear map ϕ : V → W defined by


ϕ(ei) =


{


ei for i = 1, . . . , n − 1,


0 for i = n.


The ring homomorphism ϕ∗ : F2[V ] → F2[W ] induced by ϕ as in (2) above satisfies
ϕ∗(X


en) = 1. Since ϕ(e0) = f0, it follows that ϕ∗(ξe) = ξf , hence (4) yields


ξf = ϕ∗(π1) + · · · + ϕ∗(πp).


In view of (5), we have ϕ∗(πp) = 0, hence the preceding equation shows that
Pf2(ξf ) ≤ p − 1. Since dimW = n − 1, the induction hypothesis yields Pf2(ξf ) =
n − 2, hence n − 1 ≤ p. The reverse inequality holds by (3), hence the proposition
is proved. �
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2. Pfister numbers of generic forms


Let k be an arbitrary field of characteristic different from 2 containing a square
root of −1, and let Vk = k×/k×2 be the group of square classes in k, which we view
as an F2-vector space. The map


Ψ: Vk → W (k)


defined by Ψ(a k×2) = 〈a〉 for a ∈ k× is multiplicative, hence it induces a surjective
F2-algebra homomorphism


Ψ∗ : F2[Vk] → W (k).


The map Ψ∗ carries 1-fold Pfister elements in F2[Vk] to 1-fold Pfister forms in W (k),
hence also m-fold Pfister elements to m-fold Pfister forms for all m ≥ 1. Therefore,
Ψ∗(I


m[Vk]) = Im(k) and we have


(6) Pfm
(


Ψ∗(ξ)
)


≤ Pfm(ξ) for all ξ ∈ Im[Vk].


We may then use Lemma 1.1 to give a short proof of Proposition 14 of [3], including
a minor refinement:


Proposition 2.1. Let q be a quadratic form of dimension n over a field k
containing a square root of −1.


(i) If q ∈ I(k), then Pf1(q) ≤ n. If moreover q represents 1, then Pf1(q) ≤
n − 1.


(ii) If q ∈ I2(k), then Pf2(q) ≤ n − 2. If moreover q represents 1, then


Pf2(q) ≤ n − 3.


Proof. Let q = 〈a1, . . . , an〉. Consider then


ξ = (a1 k×2) + · · · + (an k×2) ∈ F2[Vk].


We have Ψ∗(ξ) = q and D(ξ) = {a1 k×2, . . . , an k×2}, so |D(ξ)| ≤ n. If q ∈ I(k),
then n is even hence ξ ∈ I[Vk]. Lemma 1.1(i) then yields Pf1(ξ) ≤ n, and by (6) it
follows that Pf1(q) ≤ n. If q represents 1, then we may assume a1 = 1, hence D(ξ)
contains the zero element of Vk. Lemma 1.1(i) then yields Pf1(ξ) ≤ n − 1, and by
(6) it follows that Pf1(q) ≤ n − 1.


If q ∈ I2(k), then a1 . . . an ∈ k×2 hence ε1(ξ) = 0. By Corollary 1.2 we
have ξ ∈ I2[Vk], and Lemma 1.1(ii) yields Pf2(ξ) ≤ n − 2. Therefore, by (6) we
get Pf2(q) ≤ n − 2. Again, if q represents 1 we may assume 0 ∈ D(ξ), and the
preceding inequalities can be strengthened to


Pf2(q) ≤ Pf2(ξ) ≤ n − 3.


�


For the rest of this section, fix an arbitrary integer n ≥ 2. Consider n indepen-
dent indeterminates x1, . . . , xn over k and let


x0 = x1 · · ·xn.


Over the field K = k(x1, . . . , xn), we consider the following quadratic forms:


q = 〈x1, . . . , xn〉, q0 = 〈x0, x1, . . . , xn〉,


q′ = 〈1, x1, . . . , xn〉, q′0 = 〈1, x0, x1, . . . , xn〉.


If n is even, then q ∈ I(K) and q′0 ∈ I2(K). If n is odd, then q′ ∈ I(K) and
q0 ∈ I2(K).
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Theorem 2.2. If n is even, then


Pf1(q) = n and Pf2(q
′


0) = n − 1.


If n is odd, then


Pf1(q
′) = n and Pf2(q0) = n − 1.


Proof. Let kalg be an algebraic closure of k. Embed k in the field of iter-
ated Laurent series E = kalg((x1)) · · · ((xn)). Applying Springer’s theorem in [7,
Cor. VI.1.7] recursively, we obtain a ring isomorphism


Θ: W (E)
∼
→ F2[(Z/2Z)n],


which maps W (kalg) onto F2 and maps the quadratic form 〈xi〉 to Xei , where ei is
the i-th element in the standard base of (Z/2Z)n as an F2-vector space, for i = 1,
. . . , n. Note that the (x1, . . . , xn)-adic valuation on E yields an isomorphism


VE = E×/E×2 ≃ (Z/2Z)n


which maps xi E×2 to ei for i = 1, . . . , n. Using this isomorphism as an identifica-
tion, we may view Θ as the inverse map of Ψ∗ : F2[VE ] → W (E), which is thus an
isomorphism in this case.


Letting e0 =
∑n


i=1 ei, we have


Θ(qE) =


n
∑


i=1


Xei , Θ(q0E) =


n
∑


i=0


Xei ,


Θ(q′E) = 1 +


n
∑


i=1


Xei , Θ(q′0E) = 1 +


n
∑


i=0


Xei ,


hence in the notation of §1 with V = (Z/2Z)n, we have


ξe =


{


Θ(q0E) if n is odd,


Θ(q′0E) if n is even.


The isomorphism Θ maps m-fold Pfister forms in W (E) to m-fold Pfister elements
in F2[V ], hence it preserves m-Pfister numbers. Therefore, Proposition 1.4 yields


Pf2(q0E) = n − 1 if n is odd and Pf2(q
′


0E) = n − 1 if n is even.


Similarly, Proposition 1.3 yields


Pf1(qE) = n if n is even and Pf1(q
′


E) = n if n is odd.


Since scalar extension preserves m-Pfister forms, it follows that


Pf1(q) ≥ n and Pf2(q
′


0) ≥ n − 1 if n is even,


Pf1(q
′) ≥ n and Pf2(q0) ≥ n − 1 if n is odd.


The reverse inequalities follow from Proposition 2.1. �


Corollary 2.3. Pfk(1, m) = m for any even integer m ≥ 2 and Pfk(2, m) =
m − 2 for any even integer m ≥ 4.


Proof. For m even, m ≥ 2, the form q above (with n = m) has dimension
m and satisfies q ∈ I(F ) and Pf1(q) = m, so Pfk(1, m) ≥ m. Similarly, for m
even, m ≥ 4, the form q0 above (with n = m − 1) has dimension m and satisfies
q0 ∈ I2(F ) and Pf2(q0) = m − 2, so Pfk(2, m) ≥ m − 2. The reverse inequalities
follow from [3, Prop. 14] (see the Introduction or Proposition 2.1). �
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Remark 2.4. A form with the same 2-Pfister number as q′0 can be obtained
by scaling q0: we have


〈x1〉q0 = 〈1, x1x2, . . . , x1xn, x0x1〉


and x1x2, . . . , x1xn may be regarded as independent indeterminates. If n is odd
we have


x0x1 ≡ (x1x2) · · · (x1xn) mod K×2,


hence 〈x1〉q0 is isometric to a quadratic form like q′0 in the indeterminates x1x2, . . . ,
x1xn. Embedding K in E as in the proof of Theorem 2.2, we obtain Pf2(〈x1〉q0) =
n − 2. Details are left to the reader.


3. Low-dimensional forms


Let k be an arbitrary field of characteristic different from 2 containing a square
root of −1. In this section, we obtain some information on the 2-Pfister number of
quadratic forms of dimension 4 or 6 over k.


The case of anisotropic quadratic forms q ∈ I2(k) of dimension 4 is clear: if q
represents 1, then q is a 2-fold Pfister form, so Pf2(q) = 1. On the other hand, if q
does not represent 1, then Pf2(q) > 1 and Proposition 2.1 yields Pf2(q) = 2.


We next consider anisotropic forms of dimension 6 in I2(k). Of course, Pf2(q) >
1 for any such form q. If q represents 1, it follows from Proposition 2.1 that
Pf2(q) = 2 or 3. The Stiefel-Whitney invariant w4(q) ∈ H4(k, µ2) discriminates
between the two cases, as the next proposition shows. (See [8, §3] or [4, §17] for a
discussion of Stiefel-Whitney invariants of quadratic forms.)


Proposition 3.1. Let q be an anisotropic quadratic form of dimension 6. As-


sume q ∈ I2(k) and q represents 1. If w4(q) = 0, then Pf2(q) = 2. If w4(q) 6= 0,
then Pf2(q) = 3.


Proof. In view of Proposition 2.1, it suffices to show that Pf2(q) = 2 if and
only if w4(q) = 0. Assume first Pf2(q) = 2 so that


q = 〈x1, x2, x1x2, y1, y2, y1y2〉 for some x1, . . . , y4 ∈ k×.


For x ∈ k×, denote by (x) ∈ H1(k, µ2) the cohomology class associated to the
square class of x. An explicit computation yields


w4(q) = (x1) ∪ (x2) ∪ (y1) ∪ (y2).


Since q represents 1, the form 〈1〉 ⊥ q is isotropic. The 4-fold Pfister form
〈〈x1, x2, y1, y2〉〉 which contains 〈1〉 ⊥ q as a subform is hyperbolic. Therefore,
(x1) ∪ (x2) ∪ (y1) ∪ (y2) = 0 by [1, Satz 1.6].


For the converse, let


q = 〈1, a, b, c, d, abcd〉 for some a, b, c, d ∈ k×.


Then


w4(q) = (a) ∪ (b) ∪ (c) ∪ (d).


Since w4(q) = 0 by hypothesis, Theorem 1 of [2] shows that the 4-fold Pfister form
〈〈a, b, c, d〉〉 is hyperbolic. It follows that the 9-dimensional subform q ⊥ 〈ab, ac, ad〉
is isotropic, hence q represents a nonzero element of the form a(bx2 + cy2 +dz2) for
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some x, y, z ∈ k. Let b′ = bx2 + cy2 + dz2 ∈ k×. Since the form 〈b, c, d〉 represents
b′, we may find c′, d′ ∈ k× such that


〈b, c, d〉 = 〈b′, c′, d′〉.


Comparing discriminants, we have bcd ≡ b′c′d′ mod k×2, hence


q = 〈1, a, b′, c′, d′, ab′c′d′〉.


The form 〈1, a, b′〉 is anisotropic since q is anisotropic, hence the 2-fold Pfister form
〈〈a, b′〉〉 is anisotropic. On the other hand, the form q ⊥ 〈ab′〉 is isotropic since q
represents ab′, hence 〈〈a, b′〉〉 represents a nonzero element of the form c′r2 + d′s2 +
ab′c′d′t2, for some r, s, t ∈ k. Let c′′ = c′r2 +d′s2 +ab′c′d′t2 ∈ k×, and let d′′ ∈ k×


be such that
〈c′, d′, ab′c′d′〉 = 〈c′′, d′′, ab′c′′d′′〉.


Thus
q = 〈1, a, b′, c′′, d′′, ab′c′′d′′〉.


Since 〈〈a, b′〉〉 represents c′′, the 3-fold Pfister form 〈〈a, b′, c′′〉〉 is hyperbolic, and
therefore its 5-dimensional subform 〈1, a, b′, c′′, ab′c′′〉 is isotropic. Thus, 〈1, a, b′, c′′〉
represents ab′c′′, and we may find u, v ∈ k× such that


〈1, a, b′, c′′〉 = 〈ab′c′′, u, v, uv〉.


Thus
q = 〈〈u, v〉〉 + 〈〈d′′, ab′c′′〉〉,


and Pf2(q) = 2. �


For arbitrary 6-dimensional anisotropic quadratic forms in I2(k), the 2-Pfister
number is 2, 3 or 4. Note that scaling has an important effect on the Pfister number
although it does not change the Stiefel-Whitney class. Indeed, by Theorem 2.2 and
Remark 2.4, if x1, . . . , x5 are independent indeterminates and


q = 〈x1, x2, x3, x4, x5, x1x2x3x4x5〉,


then
Pf2(q) = 4 and Pf2(〈x1〉q) = 3.


On the other hand,


〈x1x2x3〉q = 〈〈x1x2, x1x3〉〉 + 〈〈x4x5, x1x2x3x4〉〉,


hence


Pf2(〈x1x2x3〉q) = 2.


More generally, the same computation shows that for an arbitrary anisotropic form
q ∈ I2(k) of dimension 6, if d ∈ k× is the discriminant of some 3-dimensional
subform of q, then Pf2(〈d〉q) = 2. In the rest of this section, we give necessary and
sufficient conditions on q for Pf2(q) ≤ 3 as well as for Pf2(q) = 2.


As seen before, every quadratic form of dimension 6 in I2(k) is a scalar multiple
of a form q with Pf2(q) = 2. Fix a decomposition


q = 〈〈a, b〉〉 + 〈〈c, d〉〉 = 〈a, b, ab, c, d, cd〉.


To this decomposition is associated the biquaternion algebra D = (a, b)k ⊗ (c, d)k,
which is Brauer-equivalent to the Clifford algebra of q, and the orthogonal involution
σ on D that is the tensor product of the conjugation involutions on (a, b)k and
(c, d)k. The algebra D is division since q is anisotropic, see [6, (16.5)].
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Theorem 3.2. For λ ∈ k×, we have Pf2(〈λ〉q) = 2 if and only if λ2 is the


reduced norm of some σ-symmetric element in D, i.e.,


λ2 = NrdD(u) for some u ∈ Sym(D, σ).


Proof. Let (a, b)0k (resp. (c, d)0k) be the k-vector space of pure quaternions in
(a, b)k (resp. in (c, d)k). The vector space of σ-skew-symmetric elements in D is


Skew(D, σ) =
(


(a, b)0k ⊗ 1
)


⊕
(


1 ⊗ (c, d)0k
)


.


Let pσ be the linear operator on Skew(D, σ) defined by


pσ(x ⊗ 1 + 1 ⊗ y) = x ⊗ 1 − 1 ⊗ y for x ∈ (a, b)0k and y ∈ (c, d)0k.


The formula qσ(s) = s pσ(s) defines a quadratic form on Skew(D, σ), and we have


qσ ≃ 〈a, b, ab, c, d, cd〉 = q.


Suppose now Pf2(〈λ〉q) = 2. We fix a decomposition


〈λ〉q = 〈〈a′, b′〉〉 + 〈〈c′, d′〉〉 = 〈a′, b′, a′b′, c′, d′, c′d′〉.


The Clifford algebras of q and 〈λ〉q are isomorphic, hence we may identify


D = (a′, b′)k ⊗ (c′, d′)k.


Let σ′ be the orthogonal involution on D that is the tensor product of the conjuga-
tion involutions on (a′, b′)k and (c′, d′)k. By [6, (2.7)], there is a unit u ∈ Sym(D, σ)
such that σ′ = Int(u) ◦ σ, i.e., σ′(x) = uσ(x)u−1 for all x ∈ D. On Skew(D, σ′) we
may define a linear operator pσ′ and a quadratic form qσ′ in the same way as pσ


and qσ were defined on Skew(D, σ), and we have


qσ′ ≃ 〈λ〉q.


It is easily seen that Skew(D, σ′) = u Skew(D, σ) = Skew(D, σ)u−1. The linear
operator p′ on Skew(D, σ′) defined by


p′(s′) = upσ(s′u) for s′ ∈ Skew(D, σ′)


satisfies


(7) s′p′(s′) = s′upσ(s′u) = qσ(s′u) ∈ k.


Therefore, by [6, (16.22)], the map p′ is a multiple of pσ′ : there exists λ1 ∈ k× such
that p′ = λ1pσ′ . It follows that


(8) s′p′(s′) = λ1qσ′(s′) for s′ ∈ Skew(D, σ′),


and (7) shows that the map s′ 7→ s′u is an isometry 〈λ1〉qσ′ ≃ qσ. Hence 〈λ1λ〉q ≃ q
and λλ−1


1 is the multiplier of a similitude of q. By [6, (15.34)], we may find λ2 ∈ k×


and v ∈ D× such that


(9) λλ−1
1 = λ2


2 NrdD(v).


On the other hand, for s′ ∈ Skew(D, σ′) we have qσ(s′u)2 = NrdD(s′u) and
qσ′(s′)2 = NrdD(s′) by [6, (16.25)], hence (7) and (8) yield


λ2
1 = NrdD(u).


Using this equation, we derive from (9):


λ2 = λ2
1λ


4
2 NrdD(v)2 = NrdD


(


λ2vuσ(v)
)


.


Since λ2vuσ(v) ∈ Sym(D, σ), the element λ satisfies the condition in the theorem.
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Conversely, assume λ2 = NrdD(u) for some u ∈ Sym(D, σ). Define an orthog-
onal involution σ′ on D by σ′ = Int(u) ◦ σ. By [6, (7.3)], the discriminant of σ′ is
NrdD(u) = λ2, hence by [6, (15.12)] we may find quaternion subalgebras (a′, b′)k,
(c′, d′)k ⊆ D such that


D = (a′, b′)k ⊗ (c′, d′)k,


and σ′ is the tensor product of the conjugations on (a′, b′)k and (c′, d′)k. We may
then define pσ′ and qσ′ as above, and we have


(10) qσ′ ≃ 〈a′, b′, a′b′, c′, d′, c′d′〉.


On the other hand, define a linear operator p0 and a quadratic form q0 on Skew(D, σ′)
by


p0(s
′) = λ−1upσ(s′u), q0(s


′) = λ−1qσ(s′u) for s′ ∈ Skew(D, σ′).


By definition, we have


(11) q0 ≃ 〈λ〉qσ ≃ 〈λ〉q.


Moreover, s′p0(s
′) = q0(s


′) ∈ k for s′ ∈ Skew(D, σ′), hence p0 is a multiple of pσ′


by [6, (16.22)]: we have p0 = µpσ′ for some µ ∈ k×, hence also q0 = µqσ′ . For
s′ ∈ Skew(D, σ′) we have by [6, (16.25)]


p2
0(s


′) = λ−2upσ(upσ(s′u)u) = λ−2 NrdD(u)p2
σ(s′u)u−1.


Since p2
σ = Id and NrdD(u) = λ2, it follows that p2


0 = Id. Now, we also have
p2


σ′ = Id, hence µ = ±1. Therefore, q0 ≃ 〈±1〉qσ′ ≃ qσ′ . By (10) and (11) we have


〈λ〉q ≃ 〈a′, b′, a′b′, c′, d′, c′d′〉,


hence Pf2(〈λ〉q) = 2. �


Note that the group S(q) ⊂ k× of spinor norms of q can be described in terms
of D: we have by [6, (15.34)]


S(q) = {λ ∈ k× | λ2 ∈ NrdD(D×)}.


Therefore, the following is a direct consequence of Theorem 3.2:


Corollary 3.3. Let q ∈ I2(k) be an anisotropic quadratic form of dimen-


sion 6, and let λ ∈ k×. If Pf2(q) = Pf2(〈λ〉q) = 2, then λ is a spinor norm of


q.


We now turn to a characterization of quadratic forms of dimension 6 with
2-Pfister number at most 3.


Theorem 3.4. Let q ∈ I2(k) be an anisotropic quadratic form of dimension 6.
We have Pf2(q) ≤ 3 if and only if there exist a 4-dimensional quadratic form q1


over k and scalars µ, µ′, ν ∈ k× satisfying the following conditions:


(i) q ≃ q1 ⊥ 〈µ′〉〈〈ν〉〉;
(ii) Pf2(q1 ⊥ 〈µ〉〈〈ν〉〉) ≤ 2;
(iii) 〈〈µ, µ′, ν〉〉 = 0.


Proof. Suppose Pf2(q) ≤ 3, and let


q = 〈〈x1, y1〉〉 + 〈〈x2, y2〉〉 + 〈〈x3, y3〉〉 = 〈x1, y1, x1y1, x2, y2, x2y2〉 + 〈1, x3, y3, x3y3〉.


Since the dimension of q is 6, there exists a 2-dimensional form 〈µ〉〈〈ν〉〉 that is a
subform of 〈x1, y1, x1y1, x2, y2, x2y2〉 and of 〈1, x3, y3, x3y3〉. Thus, we can write


(12) 〈x1, y1, x1y1, x2, y2, x2y2〉 = q1 ⊥ 〈µ〉〈〈ν〉〉
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and


(13) 〈1, x3, y3, x3y3〉 = 〈µ1, µ2〉 ⊥ 〈µ〉〈〈ν〉〉


for some 4-dimensional quadratic form q1 and some scalars µ1, µ2. Equation (12)
readily yields (ii). Comparing discriminants on each side of (13), we see that


〈µ1, µ2〉 = 〈µ′〉〈〈ν〉〉 for some µ′ ∈ k×.


Therefore, adding (12) and (13) yields (i). Finally, (13) shows that 〈µ, µ′〉〈〈ν〉〉
represents 1, hence 〈1, µ, µ′, µν, µ′ν〉 is isotropic. Since this form is contained in the
3-fold Pfister form 〈〈µ, µ′, ν〉〉, we have (iii).


Conversely, suppose (i), (ii), and (iii) hold for some 4-dimensional quadratic
form q1 and some scalars µ, µ′, ν ∈ k×. Since


〈〈µ, µ′, ν〉〉 = 〈µ, µν, µ′, µ′ν〉 ⊥ 〈1, ν, µµ′, µµ′ν〉,


condition (iii) yields
〈µ〉〈〈ν〉〉 ⊥ 〈µ′〉〈〈ν〉〉 = 〈〈ν, µµ′〉〉.


Therefore, we derive from (i) that


q =
(


q1 ⊥ 〈µ〉〈〈ν〉〉
)


+ 〈〈ν, µµ′〉〉.


Since Pf2(q1 ⊥ µ〈〈ν〉〉) ≤ 2 by (ii), it follows that Pf2(q) ≤ 3. �
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