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1. Introduction


Let G be a reductive group over a field k. The main objective of our work
is to give a description of the isomorphism classes of G-torsors over the punc-
tured affine line A×


k = Spec(k[t±1]) in terms of the Galois cohomology of the
complete field k((t)) with values in G. The relevance of this characterization
is that the latter cohomology set H1(k((t)), G) can be computed using the
methods developed by Bruhat and Tits [BT3].


Many interesting objects defined over a rational function field k(t) can
usually be described, or at least be partially understood, through their
residues. Examples of this type of behaviour are the famous exact sequences
related to Milnor K-theory, Brauer groups and Witt groups. The exact se-
quence for Milnor’s K-groups [Mn, §2] is given by


0 → KM
n (k) → Kn


M (k(t))
∂−→ ⊕p K


M
n−1(k(p)) → 0


where p runs over the closed points of the affine line. Similarly, if k is perfect,
we have Faddeev’s exact sequence [GS, §6.4]


0 → Br(k) → Br(k(t))
∂−→ ⊕p H


1(k(p),Q/Z) → 0


and the exact sequence for Witt groups


0 →W (k) →W (k(t))
∂−→ ⊕p W (k(p)) → 0


in odd characteristic [Mn, §5].
Brauer groups and Witt groups are closely related to projective linear


groups and orthogonal groups respectively. One is thus lead to consider the
possibility that there may exist analogues of the last two of the above exact
sequences for G-torsors over k(t). To study this problem the (traditional)
local-global approach leads us to look in detail at the natural map


(1.1) a =
∏


ap : H1(k(t), G) −→
∏


p∈P1
k


H1(k(t)p, G)


where p runs through the set of closed points of the projective line P1
k, k(t)p


is the completion of k(t) with respect to the discrete valuation vp associated
to p, and ap : H1(k(t), G) → H1(k(t)p, G) is the natural restriction map.
Note that, unlike the case of Brauer groups and Witt groups, the set of
isomorphism classes of G-torsors over k(t) is not a group. It is therefore
unrealistic to expect that a unique short exact sequence with H1(k(t), G)
as middle term could describe all G-torsors over k(t) . The only reasonable
hope is to try to describe the fibers of the map a in more or less acceptable
terms. This leads to infinitely many exact sequences instead of just one, as
we now explain.


We say that an element x of H1(k(t), G) is unramified at p if ap(x) is in


the image of the natural map H1(Ôp, G) → H1(k(t)p, G), where Ôp is the
ring of integers of k(t)p. Otherwise we say that x is ramified at at p. In
the latter case, and if G/k is quasi-split, using Bruhat-Tits theory we can
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associate to x an element xp in H1(k(p),Hp) where k(p) is the residue of
k(t)p, and Hp is a proper subgroup of the k(p)-group Gk(p) which depends
on x. It seems natural to call xp the residue of x at p and call the finite
set S = { p1, . . . , pn} where x is ramified the ramification locus of x. By
Bruhat-Tits theory H1(k(t)p, G) is the disjoint union of “anisotropic parts”
of H1(k(p),Hp), namely of those classes that arise from [ξ] ∈ H1(k(p),Hp)
for which the twisted group ξHp is anisotropic. This indicates that we could
get a satisfactory description of H1(k(t), G) in terms of sets H1(k(p),Hp) if
we knew the fibers of the map


H1(k(t), G)S −→
∏


p∈S


H1(k(t)p, G)


where H1(k(t), G)S = a−1
(∏


p∈S H
1(k(t)p, G) ×∏p/∈S H


1(Ôp, G)
)
.


Note that H1(k(t), G)S is the image of the natural mapping


(1.2) H1(U,G) → H1(k(t), G)


where U = P1
k \{ p1, . . . , pn } (see [H1]). Thus, out of necessity, we are forced


to study the image of this map and its fibers.
Assume that characteristic of k is good (see §5.1 for details). If S = ∅,


then H1(k(t), G)S = H1(k,G) and the fibers of (1.2) are well understood
[G1, §I.2]. If S = {∞} then by a theorem of Raghunathan–Ramanathan
(see below) the natural maps H1(k,G) → H1(A1


k, G) is bijective and (1.2) is
injective. In our paper we consider the next case, namely when S consists of
two points S = { 0,∞}. It turns out that the map (1.2) is again injective,
and we can describe its image in terms of local G-torsors.


***


Our work is unequivocally motivated by that of Raghunathan and Ra-
manathan [RR], where the case of the affine line A1


k = Spec(k[t]) is consid-
ered. Even though the overlap between the two works is at times evident
(extending group schemes to P1


k, the use Weil restrictions to address repre-
sentability questions...), there are also substantial differences, notably the
use of some key results from the theory of multiplicative group schemes
developed in [SGA3], as well as techniques pertaining to fundamental do-
mains in buildings due to Soulé (for the affine line) and to Abramenko (in
the case of the punctured line). These methods allow us to establish–by
different means than those used in [RR]–the existence of maximal tori on
certain reductive group schemes. This is one of the crucial points within the
main proof. Since our methods work equally well both for the affine and
the punctured affine line, we have decided to include a (short) section with
a proof of Raghunathan and Ramanathan’s original result.


One should observe that the nature of G-torsors over A1
k and A×


k are


quite different, mostly owing to the fact that, unlike A1
k
, the scheme A×


k
is not simply connected (in the algebraic sense). In good characteristic for
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example, G-torsors over the affine line are always constant, but this need
not be the case for G-torsors over the punctured line.


***


The main body of the paper is divided into four parts. We begin by
giving the statement of the two main theorems. This is followed by a sec-
tion on “Preliminary results” that provides the conventions, notation and
terminology that are used throughout the paper, as well as some general
results (some of independent interest) that are used in the proofs of the two
main theorems. The proofs of the main theorems themselves are the content
of the last two sections. An Appendix with a technical observation about
absolutely reduced algebraic groups is included at the end.


2. Statement of the two Main Theorems


Let X be a scheme, and G a group scheme over X. For any scheme Y
over X we denote the Y -group scheme G×X Y by GY . Recall that a torsor
over X under G is a scheme E over X equipped with a right action of G
for which there exists a faithfully flat morphism Y → X, locally of finite
presentation, such that E ×X Y ≃ G ×X Y = GY , where GY acts on itself
by right translation. The set of isomorphisms classes of X-torsors under G
is denoted by H1(X,G).


Let G be a linear algebraic over a field k andX a k-scheme. The structural
morphism X → Spec (k) yields a natural map


η : H1(k,G) −→ H1(X,G) := H1(X,GX ).


Let E be a torsor over X under GX . We say that E is constant if its iso-
morphism class belong to the image of the map η, and that E is geometrically
separably trivial if E becomes trivial after the base change X ×k ks → X.


2.1. Theorem. [Raghunathan-Ramanathan] Let G be a linear algebraic k-
group whose connected component of the identity is reductive.1 Every torsor
over the affine line A1


k under G which is geometrically separably trivial is
constant.


2.2. Remark. According to the bijection (3.3) described in Remark 3.2, the
isomorphism classes of geometrically separably trivial A1


k-torsors under G
are classified by H1(Gal(ks/k), G(A1


ks
)). The natural map η : H1(k,G) −→


H1(A1
k, G) corresponds to the natural map


(2.3) H1(Gal(ks/k), G(ks)) −→ H1(Gal(ks/k), G(A1
ks


))


arising from the inclusion G(ks) ⊂ G(A1
ks


). The map (2.3) is injective be-


cause of the existence of rational points on A1
k. Theorem 2.1 is thus equiv-


alent to (2.3) being bijective. In good characteristic, it is known that every
G-torsor over A1


k is geometrically separably trivial, hence constant. In bad


1In [RR] the group G is assumed to be connected and reductive. The generalization
we give here is not difficult to obtain from the reductive case. See §4.3 below.
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characteristic, this is in general not true anymore, even for a semisimple
simply connected group (see [G3, §2.4] for details).


The second part of our work gives a description of torsors over the punc-
tured line A×


k = Spec(k[t±1]). It is not true that in this case geometrically
separably trivial torsors are constant, even when G is semisimple. The cor-
rect parametrization is obtained by looking at the base change corresponding
to the completion of the generic fiber. The inclusion k[t±1] ⊂ k((t)) yields
a natural map H1(A×


k , G) → H1(k((t)), G). Our result shows that, under
a certain assumption on the characteristic of the base field, this map is
bijective.


2.4. Theorem. Let G be a (connected) reductive algebraic group over k.
Assume that the characteristic of k is good for G (see 5.1). Then the natural
map H1(A×


k , G) → H1(k((t)), G) is bijective. In other words, the set of


isomorphism classes of A×
k -torsors under G is parametrized by the usual


Galois cohomology of G over the complete field k((t)).2


3. Preliminary results


This section contains the conventions, notation and terminology that are
used throughout the paper. It also contains results that are common to the
proofs of the main theorems.


3.1. Notation and conventions. Throughout k denotes a field, k an al-
gebraic closure of k, and ks the separable closure of k in k. Given a scheme
X over k and a field extension k′/k we set


Xk′ : = X ×k k
′.


For convenience we denote Xks simply by Xs.
Most of our work is related to group schemes over a given base scheme X.


For convenience we will sometime refer to these simply as X-groups. If X =
Spec(R) we use the terminology X-group and R-group indistinctively. We
recall that given an X-group G and a scheme Y over X the Y -group G×X Y
is denoted by GY . That “Y is a scheme over X” is at times abbreviated by
simply writing Y/X.


By a reductive X-group we will understand a reductive group scheme over
X in the sense of [SGA3]. Accordingly, a reductive k-group is a connected
reductive group defined over k in the sense of Borel [Bor]. If G is a reduc-
tive X-group, then the concept of maximal tori, parabolic subgroup, Levi
subgroup... of G is again the one given by [SGA3].


Let F be a field extension of k. The additive and multiplicative groups
over F will be denoted by Ga,F and Gm,F respectively, or simply by Ga and
Gm when F = k. The separable closure of F, which will always be taken
in some algebraic closure F of F that contains k, will be denoted by Fsep.


2The set H1(k((t)), G) is well understood from the work of Bruhat-Tits [BT3].
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Thus ksep = ks, but in general one should not confuse Fsep with Fs (which
by definition equals F ⊗k ks, and plays no role in our work).


Given a field extension F of k and a torus T over F, there is a natural
action of the Galois group Gal(Fsep/F ) on the (abstract) group
HomFsep−grp(Gm,Fsep , TFsep). We call the resulting Galois module the group
of cocharacters of T, and denote it by X(T )∗.


3.2. Generalities on torsors. Let X be a scheme, and G a group scheme
over X. As it is customary, for any scheme Y over X we denote by pi, i = 1, 2,
the corresponding projection Y ×X Y → Y on the i-th component and by
pij, i, j = 1, 2, 3, the projection Y ×X Y ×X Y → Y ×X Y on the ij-th
component. These projections naturally induce group homomorphisms


G(Y ) → G(Y ×X Y ) and G(Y ×X Y ) → G(Y ×X Y ×X Y )


which we still denote by pi and pij (instead of the more usual p∗i and p∗ij
notation).


Assume now that Y/X is an fppf cover of X, that is Y → X is a scheme
morphism which is faithfully flat and locally of finite presentation ([SGA3],
IV.6.4).3 For such a covering Y → X, we define the corresponding set of
cocycles


Ž1(Y/X,G) :=
{
g ∈ G(Y ×X Y ) | p23(g)p12(g) = p13(g)


}


and non-abelian cohomology


Ȟ1(Y/X,G) := Ž1(Y/X,G)/G(Y ),


where G(Y ) acts on Ž1(Y/X,G) by g ·z = p2(g) z p1(g)
−1 (see [H1], §1.3 and


[M] for details). For convenience we will at times use the notation Ž1(X,G)
to denote the totality of cocycles Ž1(Y/X,G) with Y as above variable
(within a given range, which would always be clear from the context, so as
to avoid set-theoretical problems). We now define


Ȟ1(X,G) := lim−→
Y


Ȟ1(Y/X,G) ,


where the limit is taken over all (equivalence classes of) fppf covers Y → X.


3.1. Remark. One defines in an exact analogous fashion Ȟ1(X,G) whenever
G is a sheaf of groups for the fppf topology on X.


Recall that the set of isomorphisms classes ofX-torsors underG is denoted
by H1(X,G). Thus H1(X,G) is a pointed set; its distinguished class, which
we denote by 1, is the class of the trivial torsor, namely the scheme G acting
on itself by right translation. The subset of H1(X,G) corresponding to
torsors which are trivialized by a given (arbitrary) base change X ′ → X is
denoted by H1(X ′/X,G). If X ′ → X is an fppf cover, H1(X ′/X,G) can
be computed by means of cocycles (just as in Galois cohomology), so that


3An fppf cover is thus a covering morphism (morphism couvrant) for the fppf topology
in the sense of [SGA3], but not conversely.
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H1(X ′/X,G) can be identified with a subset of Ȟ1(X ′/X,G). If G is affine
and locally of finite presentation over X then H1(X ′/X,G) = Ȟ1(X ′/X,G),
and the natural map


H1(X,G) → Ȟ1(X,G)


is bijective. This will be the situation that we will consider in our paper,
and we will indistinctively think of (the isomorphism class) of a torsor as
an element of H1 or the corresponding Ȟ1. Along similar lines we write Z1


instead of Ž1.


3.2. Remark. Assume that G is an algebraic group over k. Following stan-
dard practice, we will denote in what followsH1(X,GX ) simply byH1(X,G).
Because G is of finite type, any X-torsor under G that becomes trivial over
Xs already becomes trivial over Xk′ for some finite Galois extension k′ ⊂ ks
of k (the extension k′ depends of course on the given torsor). As a conse-
quence, the natural map


lim−→
k′/k Galois


H1(Xk′/X,G) → H1(Xs/X,G)


is bijective. Since Xk′ is a Galois extension of X whose Galois group is natu-
rally isomorphic to Gal(k′/k), we haveH1(Xk′/X,G) ≃ H1(Gal(k′/k), G(Xk′ )).
We thus have a bijection


(3.3) H1(Xs/X,G) ≃ H1(Gal(ks/k), G(Xs))),


where the H1 on the right denotes the “usual” Galois cohomology of the
profinite group Gal(ks/k) acting (continuously) on the (discrete) module
G(Xs). The natural map η : H1(k,G) −→ H1(X,G) corresponds to the
composition of maps in the sequence


H1(Gal(ks/k), G(ks)) → H1(Gal(ks/k), G(Xs)) ≃ H1(Xs/X,G) ⊂ H1(X,G),


where the first map arises from the inclusion G(ks) ⊂ G(Xs) obtained from
the ks-scheme structure of Xs.


3.3. Twisting. Throughout this section X will denote a k-scheme, and G
a group scheme over X that we assume is affine and locally of finite presen-
tation over X. Let Aut(G) be the X-group functor of automorphisms of G:
For each Y/X


Aut(G)(Y ) = Aut(GY ).


The functor Aut(G) is always a sheaf of groups for the fppf topology on X,
but it need not in general be representable (i.e. a group scheme).


Let Y → X be an fppf cover. To a cocycle z ∈ Ž1(Y/X,Aut(G)) ⊂
Aut(GY×XY )) one can associate a twisted group scheme zG over X whose
functor of points is given by


(3.4) zG(S) = {x ∈ G(Y ×X S) | zS(pS1 (x)) = pS2 (x)}
for any X-scheme S. The notation in (3.4) is as follows. The morphisms
pSi : Y ×X Y ×X S → Y ×X S are given by pSi = pi × idS . Given x ∈
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G(Y ×X S) = HomX(Y ×X S,G) we denote by pSi (x) the composition x◦pSi .
The pSi (x) are thus elements of the abstract group G(Y ×X Y ×X S). Finally,
since z is an automorphism of the Y ×X Y -group GY×XY , it induces an
automorphism zS of the abstract group G(Y ×X Y ×X S).


We can reinterpret this definition by saying that the sequence


(3.5) zG(S) ⊂ G(Y ×X S)
zS◦pS


1 //


pS
2


// G(Y ×X Y ×X S)


is exact. If z = 1 then the twisted group zG is isomorphic to G, and the
sequence


(3.6) G(S) ⊂ G(Y ×X S)
pS
1 //


pS
2


// G(Y ×X Y ×X S)


is exact. This allows us to identify G(S) with a subgroup G(Y ×X S);
an identification that we will henceforth use, whenever convenient, without
further reference.


Since z ∈ Ž1(Y/X,Aut(G)) the group schemes zGY and GY are isomor-
phic. This isomorphism can be made explicit at the level of functor of points
as we now explain for future reference.


If i, j, k ∈ {1, 2, 3} are different integers and j < k we set


zi = pjk(z) ∈ Aut(GY×XY×XY ).


Given any scheme S over Y our automorphism z induces naturally an au-
tomorphism zS/Y of the (abstract) group G(Y ×X Y ×Y S). Similarly the zi


induce automorphisms z
S/Y
i of the (abstract) group G(Y ×X Y ×X Y ×Y S).


By taking the composite map S → Y → X we may also view S as a scheme
over X. The canonical isomorphism Y ×Y S ≃ S yields canonical identifi-
cations


G(S) ≃ G(Y ×Y S)


G(Y ×X S) ≃ G(Y ×X Y ×Y S),


G(Y ×X Y ×X S) ≃ G(Y ×X Y ×X Y ×Y S).


(3.7)


For i = 1, 2 we denote pi3 × idS : Y ×X Y ×X Y ×Y S → Y ×X Y ×Y S


by p
S/Y
i3 . Consider the diagram







9


(3.8)


zG(S) � � // G(Y ×X S)
≃ // G(Y ×X Y ×Y S)


z
S/Y
3 ◦p


S/Y
13 //


p
S/Y
23


//


zS/Y


��


G(Y ×X Y ×X Y ×Y S)


z
S/Y
1


��
G(S) � � // G(Y ×X S)


≃ // G(Y ×X Y ×Y S)
p


S/Y
13 //


p
S/Y
23


// G(Y ×X Y ×X Y ×Y S)


The top row is the equalizer (3.5) combined with the identifications of (3.7),
and the bottom row arises in the same fashion for the trivial cocycle as
described in (3.6). Since z is a cocycle we have z2 = z1z3. This yields


z
S/Y
2 = z


S/Y
1 z


S/Y
3 which shows that the outermost right square is commu-


tative. That the innermost right square is commutative is easy. This shows
that zS/Y induces a group isomorphism zG(S) → G(S). This isomorphism is
functorial on Y -schemes S and thus defines a Y -group scheme isomorphism
which we still denote by z:


(3.9) z : zGY → GY


Finally, if λ : zG(X) → zG(Y ) denotes the canonical inclusion corresponding
to our fppf-cover Y/X, one can easily checks that the diagram


zG(X) � � //


λ
��


G(Y )
z◦p1 //


p2
//


p1
��


G(Y ×X Y )


p12
��


zG(Y )


��
�


�


�


� � // G(Y ×X Y )
z3◦p13 //


p23
//


z


��


G(Y ×X Y ×X Y )


z1
��


G(Y ) � � // G(Y ×X Y )
p13 //


p23
// G(Y ×X Y ×X Y )


commutes. Here the first row is the equalizer (3.6) for S = X, and the last
two rows constitute (3.8) in the case Y = S.


3.10. Remark. Let Y → X be an fppf cover, and let z ∈ Ž1(Y/X,G) ⊂
G(Y ×X Y ) be a cocycle. The element z defines an (inner) automorphism
int(z) of the group GY ×XY . It is clear that int(z) ∈ Ž1(Y/X,Aut(G)). We
denote the corresponding twisted group int(z)G by zG.


We now turn our attention to maximal tori. For convenience we will
denote the twisted group zG by G′, and let T and T ′ denote the scheme
of maximal tori of G and G′ respectively [SGA3, XI.4]. We recall that T
and T ′ are affine schemes of finite type over X (ibid.). The cocycle z acts
naturally on the scheme TY×Y of maximal tori of GY×Y . We denote (by a
slight abuse of notation) the resulting automorphism of TY×Y also by z. In
this way we may view z as a cocycle in Ž1(Y/X,Aut(T )). By [SGA3]Exp.
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XXIV prop.4.2.1 T ′ coincides with the twist of T by z, i.e., we may assume
that the functor of points of T ′ is given by


(3.11) T ′(S) = {T ′′ ∈ T (Y × S) | z(pS1 (T ′′)) = pS2 (T ′′) }.
Arguing as above we get the commutative diagram


(3.12) T ′(X) � � //


λ
��


T (Y )
z◦p1 //


p2
//


p1
��


T (Y ×X Y )


p12
��


T ′(Y )


��
�


�


�


� � // T (Y ×X Y )
z3◦p13 //


p23
//


z


��


T (Y ×X Y ×X Y )


z1
��


T (Y ) � � // T (Y ×X Y )
p13 //


p23
// T (Y ×X Y ×X Y )


Just as in (3.9), the automorphism z induces a group isomorphism (also
denoted by z)


(3.13) z : T ′
Y → TY


The following result is inevitable.


3.14. Lemma. Let T ′ be a maximal X-torus of G′ (i.e., T ′ ∈ T ′(X)), and
let T ′′ be the corresponding maximal torus of GY given by (3.11). Then
z(T ′


Y ) = T ′′.


Proof. We have λ(T ′) = T ′
Y , so we need to show that z(λ(T ′)) = T ′′. Let


T ′′′ ∈ T (Y ) be the image of λ(T ′) under z given by (3.12). The inclusion
T (Y ) ⊂ T (Y ×X Y ) in the bottom row of (3.12) is given by the projection
p2. Thus z(p1(T


′′)) = p2(T
′′′). By the top row of (3.12) we have z(p1(T


′′)) =
p2(T


′′). It follows that T ′′ = T ′′′ as desired �


3.15. Lemma. Let G be a reductive group scheme over X, and T a max-
imal torus of G (assumed to exist). Let Y/X be an fppf cover of X, z ∈
Ž1(Y/X,G) a cocycle. If the twisted X-group zG admits a maximal torus
T ′ such that T ′


Y and TY are conjugate by an element of G(Y ) (where zGY
is identified with GY as described in (3.9) above), then


[z] ∈ Im [H1(Y/X,NG(T )) −→ H1(X,G)].


Proof. To begin with we recall that NG(T ) is a closed smooth subgroup of
G ([SGA3] Exp XI.5 and XIX.1) As before we denote the twisted group zG
by G′, and let T and T ′ denote the scheme of maximal tori of G and G′


respectively.
According to 3.11 our torus T ′ of G′ corresponds to a torus T ′′ of GY .


By Lemma 3.14 T ′
Y coincides with T ′′ via our identification G′


Y ≃ GY .
Hence T ′′ = g−1Tg for some g ∈ G(Y ). Let z′ = p2(g)zp1(g)


−1. Then
z′ ∈ G(Y ×X Y ) is a cocycle equivalent to z. We have


zp1(T
′′)z−1 = p2(T


′′)
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because T ′ ∈ T ′(X). This implies that


zp1(g
−1TY g)z


−1 = p2(g
−1TY g) or


zp1(g)
−1p1(TY )p1(g)z


−1 = p2(g)
−1p2(TY )p2(g), or


z′p1(TY )(z′)−1 = p2(TY ).


Because T is defined over X this last yields


z′TY×XY (z′)−1 = TY×XY


Thus z′ ∈ NG(T )(Y ×X Y ). �


3.4. Reducibility and isotropy. Let G be a reductive group scheme over
a base scheme X. We recall two fundamental notions about G; one global
(reducibility), and the other local (isotropy).


We say that G is reducible if G admits a proper parabolic subgroup,
and irreducible otherwise. We denote by Par(G) the X-scheme of parabolic
subgroup schemes of G [SGA3, XXVI.3.5]. This scheme is smooth and
projective over X. Since by definition G is a parabolic subgroup of G, to say
that G is reducible is to say that Par(G)(X) 6= {G}.


3.16. Remark. If X is connected, to each parabolic subgroup P of G cor-
responds a “type” t = t(P ) which is a subset of the Dynkin diagram of G.
Given a type t the scheme Part(G) of parabolic subgroups of G of type t is
also smooth and proper over X.


We know that if G contains a non-central split subtorus, then G is re-
ducible (loc. cit., 6.3). As we will presently see, the converse is true locally.


Assume that the base scheme X is semilocal and connected. Following
[SGA3, XXVI.6.13] we say that G is isotropic if (as a reductive X-group) G
admits a non-trivial split subtorus. Otherwise we say that G is anisotropic.
Recall that the radical torus rad(G) is the unique maximal torus of the
center of G [SGA3, XXII.4.3.6].


3.17. Proposition. Assume that X is semilocal connected.


(1) [SGA3, XXVI.6.12] The following are equivalent:


(a) G is reducible.


(b) G admits a non-central split subtorus.


(2) [SGA3, XXVI.6.14] The following are equivalent:


(a) G is isotropic.


(b) G is reducible or rad(G) is isotropic.
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3.5. Patching group schemes. A technical tool used by Raghunathan
and Ramanathan in their proof falls within the content of the following
useful result.


3.18. Lemma. Let X be an algebraic curve over k (i.e. a one-dimensional
separated irreducible algebraic scheme over k), and let K denote its function
field (i.e. the local ring of its generic point). Let x ∈ X be a closed point, and
assume that the local ring D = OX,x is a discrete valuation ring (for example,


if X is smooth). Let D̂ and K̂ denote the corresponding completions.
Assume we are given a triple (G,F, τ) consisting of:
(i) An affine group scheme G over U = X − {x} of finite type.


(ii) An affine and finitely presented group scheme F over D̂.


(iii) A K̂-group scheme isomorphism τ : G×U K̂ ≃ F × bD K̂.
Then there exists a group scheme H, affine and of finite type over X, such


that H ×X U = G and H ×X D̂ = F. Furthermore, if G and F are smooth,
then so is H.


Proof. By [BLR] §6.2 proposition D.4(b) applied to our isomorphism τ :


(G×U K)×K K̂ ≃ F × bD
K̂ there exists a group scheme FD over D together


with isomorphisms


(a) FD ×D D̂ ≃ F and
(b) FD ×D K ≃ G×U K.


which are compatible with τ. Note that since D → D̂ is faithfully flat the
descended group FD is finitely presented.


Fix an affine open neighborhood Spec(S) of x. Since D = Sx and FD is
finitely presented, there exists f ∈ S with f(x) 6= 0 [i.e. x ∈ Spec(Sf )] and
a finitely presented Sf -group Ff such that Ff ×Sf


D ≃ FD.
Choose g ∈ S such that Spec(Sfg) ⊂ Spec(S)∩U. If we set Gfg = G×USfg


and Ffg = Ff ×Sf
Sfg then (b) above yields an isomorphism of K-groups


Gfg ×Sfg
K ≃ Ffg ×Sfg


K.


Because both Gfg and Ffg are of finite type and K is the field of quotients
of Sfg, there exists some h ∈ S such that


G×U Sfgh ≃ Ff ×Sf
Sfgh.


Let V = Spec(Sfgh) ∪ {x} ⊂ Spec(Sf ). Then the U -group G and the V -
group Ff ×Sf


V are isomorphic on the overlap U ∩ V = Spec(Sfgh). We can
thus glue these two groups to obtain a group H over X such that HU ≃ G
and H bD


≃ F.


Let Y = U
⊔


Spec D̂. The natural map Y → X is faithfully flat and
quasicompact. The assertions about H being affine and of finite type, and
smooth if G and F are smooth, now follow from descent ([EGA4] II Prop.
2.7.1 and IV Cor. 17.7.3(ii)). �
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The group H constructed above is said to correspond to the given triple
(G,F, τ). The following two lemmas easily follow from the above argument
and properties of descent in the faithfully flat quasicompact topology.


3.19. Lemma. Assume we are given two triples (G,F, τ) and (G′, F ′, τ ′) as
in the previous Lemma. If φ1 : G′ → G and φ2 : F ′ → F are isomorphisms


over U and D̂ respectively such that the diagram


G′ ×U K̂
τ ′−−−−→ F ′ × bD K̂


φ1×id


y φ2×id


y
G×U K̂


τ−−−−→ F × bD
K̂


commutes, then the group schemes H and H ′ over X corresponding to
(G,F, τ) and (G′, F ′, τ ′) are isomorphic.


3.20. Lemma. Assume that we are given a triple (G,F, τ) as in Lemma
3.18. If G′ < G and F ′ < F are closed subgroup schemes such that


τ(G′×U K̂) = F ′× bD
K̂, then the group scheme H ′ corresponding to the triple


(G′, F ′, τ|
G′×U


bK
) admits a natural closed immersion into the group scheme


H corresponding to (G,F, τ).


3.21. Example. The following example, which gives a procedure for extend-
ing certain group schemes over A1


k to the projective line P1
k, is of fundamental


importance to the proof of the main theorems.
We maintain the general notation of the previous Lemmata, but look at


the particular case when X is the projective line P1
k over k, U = A1


k =
Spec(k[t]) is the affine line over k, and {x} = X \ U is the point at infinity
of X. We have D = OP 1


k ,x
= Spec(k[1t ]( 1


t
)), K = k(t) = k(1


t ) where t is our


coordinate function on U , D̂ = k[[1t ]] and K̂ = k((1
t )).


(a) Let G = Spec(k[t][G]) be a semisimple simply connected group scheme
over U . Consider the generic fiber GK of G and pass to the completion G bK .
Let p be a point of the building B = BG bK


corresponding to G bK . Recall that


G(K̂) acts on B, and that the stabilizer Stab
G( bK)


(p) of p in G(K̂) is the


parahoric subgroup of G(K̂) associated to p. This parahoric subgroup, in


turn, gives rise to a smooth group scheme F over D̂ whose generic fiber is
canonically isomorphic to G bK [BT2, §5.1.8]:


(3.22) τ : G×k[t] K̂ → F × bD K̂.


More precisely, Bruhat-Tits theory (ibid.) shows that F = Spec(D̂[F ])
where


(3.23) D̂[F ] =
{
f ∈ K̂[G] | f(x) ∈ D̂ for all x ∈ StabG( bK)(p)


}
.
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Moreover D̂[F ] ⊗ bD K̂ = K̂[G], and this gives rise to the isomorphism τ of
(3.22). The triple (G,F, τ) corresponds then to the diagram


(3.24) K̂[G]


k[t][G]
, �


::uuuuu


D̂[F ]


2 R


ccHHHH


Of course, by Lemma 3.18, this data gives rise to a group scheme H = H(p)
which is affine and smooth over P1


k.


(b) For future use we note that the above construction of F (and hence of
H) is compatible with any finite Galois field extension k′/k [BT2, §5]. More


precisely, ifK ′ = k′(1
t ) then the extension K̂ ′/K̂ is unramified, so it gives rise


to a canonical embedding BG bK
→֒ BG bK′


of the buildings corresponding to


G bK
and G bK ′ respectively. Let F ′ denote the group scheme over D̂′ = k′[[1t ]]


associated to p viewed now as an element p′ of BG bK′
. Then we have F × bD


D̂′ ≃ F ′ via D̂′[F ′] = D̂[F ] ⊗ bD D̂′. It follows that H(p′) ≃ H(p) ×
P1


k
P1
k′ ≃


H(p) ×k k
′.


(c) Assume additionally that G is of the form G = G0×kA1
k where G0 is a


k-split group and that p is contained in the apartment A ⊂ B corresponding
to a maximal k-split torus T0 ⊂ G0. Then T0(k) acts trivially on p and this
gives rise to the canonical closed embedding


T0, bD = T0 ×k D̂ →֒ F


of D̂-groups. Since T0 ⊂ G0 we also have the canonical closed embedding


T0,k[t] = T0 ×k k[t] →֒ G = G0 ×k k[t].


Both of the above embeddings are compatible with the isomorphism τ of
(3.22), i.e.


τ(T0,k[t] ×k[t] K̂) = T
0, bD


× bD
K̂ ⊂ F × bD


K̂.


If we denote by τ ′ the restriction of τ to T0,k[t] ×k[t] K̂ ≤ G×k[t] K̂, then by
Lemma 3.20, the triple (T0,k[t], T0, bD


, τ ′) corresponds to a group subscheme


T ⊂ H over P1
k. Moreover, from the diagram


(3.25) K̂[T0,k[t]] = K̂[T0]


k[t][T0,k[t]]
( �


55llllll


D̂[T0,F ]
5 U


hhQQQQQQ


k[T0]
( �


66llllllll6 V


iiSSSSSSSS


it follows that T ≃ T0 ×k P1
k. In particular, T is split.


(d) Let g ∈ G(k[t]) ⊂ G(K̂). Then g yields an (inner) automorphism


int(g) ∈ Aut(G bK
). Let g⋆ : K̂[G] → K̂[G] be the comorphism corresponding
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to int(g). Set p′ = g(p) and let F ′ be the group scheme over D̂ corresponding
to p′. Then we clearly have


g⋆ : D̂[F ] → D̂[F ′] = g⋆(D̂[F ]).


Thus g⋆ gives rise to an isomorphism φ : F ′ → F . Set


φ1 = int(g) : G = G′ → G,


and τ ′ = (φ× id bK)−1◦τ◦(int(g)×id bK). By Lemma 3.18, the triple (G,F ′, τ ′)


gives rise to a group schemeH ′ over P1
k, and by Lemma 3.19 we haveH ′ ≃ H.


Tracing through all these constructions and identifications we see that τ ′


corresponds to the diagram


K̂[G]


k[t][G]
, �


::uuuuu


D̂[F ′] = g⋆(D̂[F ])


6 V


hhRRRRRRR


3.6. Weil restriction considerations. Throughout this section X will
denote a projective variety over k, and H a group scheme which is affine
and of finite type over X.


For a given k-scheme S we denote by hS the corresponding functor of
points:


hS : Sch/k −→ Sets


Y −→ Homk(Y, S).


Recall Grothendieck’s definition of the Weil restriction of the X-scheme
H to k. 4 [Gr, exp. 221, Remarque 3.9.c]. This is the functor


∏


X/k


H : Sch/k −→ Sets


defined by


Y −→ HomX(X ×k Y,H)


According to loc. cit. (see also [H2, page 121]), this functor is representable
by an affine k-scheme of finite type, say S/k, which we henceforth assume
is fixed in our discussion. Fix an isomorphism


(3.26) α : hS →
∏


X/k


H


By definition our map α is thus a family of bijections


(3.27) Homk(Y, S)
αY−→ HomX(Y ×k X,H)


which is functorial on k-schemes Y. The identity map idS : S → S defines a
morphism


(3.28) evα : S ×k X −→ H


4Called the functor of global sections in [RR].
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called the evaluation map. By Yoneda considerations the bijections of (3.27)
are then given by


(3.29) αY : f → evα ◦ (f × idX).


The algebraic k-scheme S can be made into a k-group by transport of
structure via α. More precisely, the group structure on S(Y ) is as follows:
Given a, b ∈ S(Y ) then ab = c where c satisfies


αY (c) = αY (a)αY (b)


where the right-hand side is the multiplication on the group H(Y ×k X).
We denote this group by Sα, or simply by S if no confusion is possible. One
checks that evα, when viewed as a map from Sα ×k X to H is in fact a
morphism of group schemes over X.


3.30. Remark. Assume that theX-groupH is obtained by base change from
an affine k-group G0, i.e., that H = G0 ×k X. Then we may take S to be
G0. Indeed, since X/k is projective the canonical map O(Y ) → O(X ×k Y )
is an isomorphism. Thus


Homk(Y,G0) ≃ Homk(k[G0],O(Y )) ≃ Homk(k[G0],O(Y ×k X)) ≃


Homk(Y ×k X,G0) ≃ HomX(Y ×k X,G0 ×k X).


Note that the resulting isomorphism α : hG0 →∏
X/k(G0 ×kX) is such that


evα = idG0×kX .


3.31. Remark. Let k′ be a field extension of k and set X ′ = X ×k k
′


and H ′ = H ×k k
′. Then the Weyl restriction


∏
X′/k′ H


′ is represented by


S′ = S ×k k
′. A natural isomorphism


α′ : hS′ −→
∏


X′/k′


H ′


is obtained from α via the following functorial identifications on schemes Y
over k′:


hS′(Y ) = Homk′(Y, S
′) ≃ Homk(Y, S) = hS(Y )


αY≃ HomX(Y ×k X,H)


≃ Hom k′×kX(Y ×k X, k
′ ×k H)


≃ Homk′×kX(Y ×k′ (k′ ×k X), k′ ×k H)


= HomX′(Y ×k′ X
′,H ′).


It follows from this explicit description that the evaluation map commutes
with base field extension, namely that


evα′ = evα × idk′







17


or, more precisely, that the diagram


(S ×k X) ×k k
′
evα×idk′ //


≃


��


H ×k k
′


id
��


S′ ×k′ X
′


evα′
// H ×k k


′


commutes.


3.32. Remark. If φ : H1 → H2 is a morphism ofX-groups we have a natural
k-group morphism ∏


φ :
∏


X/k


H1 −→
∏


X/k


H2


If φ is a monomorphism (i.e., if φ has trivial kernel) then
∏
φ is also a


monomorphism.
Assume our


∏
X/kHi are representable by algebraic k-schemes Si as ex-


plained above, and that we are given natural isomorphisms αi : hSi ≃∏
X/kHi. These yields a morphism of k-groups hφ : Sα1


1 → Sα2
2 which,


at the level of functor of points, is given by


hφ = α−1
2 ◦ (


∏
φ) ◦ α1 : hS1 −→ hS2


Note that if φ is a monomorphism then so is hφ.
By Yoneda considerations hφ corresponds to the k-algebra homomorphism


hφ(idS1) : S1 → S2. Chasing through the definitions we see that the diagram


S1 ×k X
evα1 //


hφ(idS1
)×idX


��


H1


φ


��
S2 ×k X


evα2 // H2


commutes. Of particular interest is the case when H1 = T ×k X for some
k-group T . As we saw in Remark 3.30, we may take S1 to be T and the
evaluation map evα1 : T ×kX → T ×kX to be the identity. The above then
reads


φ = evα2 ◦ (hφ(idT ) × idX).


3.33. Remark. The algebraic k-scheme S need not be reduced. Following
the Appendix we associate to S a closed k-subscheme Sr which is absolutely
reduced. The k-group structure of Sα carries to Sr, and we denote the
resulting algebraic k-group by Sαr , or simply by Sr when no confusion is
possible. If Y is an absolutely reduced scheme over k then every morphism
Y → S factors through the closed immersion Sr →֒ S (see the Appendix for
details). We call the composition


Sr ×k X →֒ S ×k X
evα−→ H


the (reduced) evaluation map and denote it by the symbol evrα.
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The main result of this section concern the rank of the algebraic k-group
Sr.


3.34. Proposition. Let H and S be as above. Assume that X ×k ks is
connected. Let M0 be a k-subgroup of multiplicative type of S.


(1) The morphism of X-group schemes M0 ×k X → H induced by evα
is a closed immersion.


(2) For all x ∈ X, we have rank(Sr) ≤ rank(Hx).


Proof. (1) Since the evaluation map commutes with base change (Remark
3.31) we may assume that k = ks. Let µ denote the kernel of the X-group
morphism evα : M0 ×k X → H induced by our evaluation map. According
to theorem IX.6.8 of [SGA3] µ is a group scheme of multiplicative type and
of finite type over X. Furthermore, to establish (1) it suffices to show that
µ is trivial.


Since k is separably closed M0 is a diagonalisable k-group of finite type
(prop. X.1.4 of [SGA3]). By Proposition IX.2.11.i of [SGA3], it follows that
µ is diagonalisable as well (it is here that we use the assumption that Xs


is connected). Hence µ = µ0 ×k X where µ0 is a diagonalisable k-group of
finite type. But by rigidity of diagonalisable groups ([SGA3], VIII.1.6), we
have


Homk−gr(µ0,M0)
∼−→ HomX−gr(µ0 ×k X,M0 ×k X).


So we are given actually a morphism ι0 : µ0 →M0 which is a closed immer-
sion.


Recall that
∏
X/k(µ0 ×k X) is represented by µ0 with the identity map


for evaluation map (see Remark 3.30). Similarly for M0 ×k X and S ×k X.
By Remark 3.32) if we take the Weil restriction for the X-group morphism
evα : S ×k X → H, then the corresponding k-group morphism S → S is the
identity map. If we apply these considerations to the composite X-group
morphism


(3.35) f : µ0 ×k X
ι=ι0×id−→ M0 ×k X → S ×k X


evα−→ H


we obtain


(3.36) f0 : µ0
ι0−→M0 →֒ S


id−→ S,


which is a closed immersion. Since µ = µ0 ×k X the morphism f of (3.35)
is trivial. This forces the closed immersion f0 of (3.36) to be trivial. Thus
µ0 = 1, and consequently µ = 1 as desired.


(2) Let T be a maximal k-torus of Sr. By (1), the X-group morphism
T×kX → H is a closed immersion. It follows that the morphism T×kk(x) →
Hx is a closed immersion for all points x ∈ X. Thus rank(Sr) = rank(T ) ≤
rank(Hx). �
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4. Torsors over the affine line


Let E be a geometrically separably trivial A1
k-torsor under the action of


a k-linear algebraic group G whose connected component of the identity is
reductive. We must show that E is constant.


We begin our proof by reducing to the case when G is reductive.


4.1. Lemma. Let G be a reductive k-group and T a maximal torus of G.
Suppose X is a geometrically irreducible k-scheme for which the canonical
map k×s → OXs(Xs)


× is an isomorphism. Then every geometrically separa-
bly trivial X-torsor under NG(T ) is constant.


Proof. Let N = NG(T ). The bijection (3.3) of Remark 3.2 shows that to a
geometrically separably trivial X-torsor E under N corresponds the class of
a (continuous) cocycle u ∈ Z1(Gal(ks/k), N(Xs)).


Since Ts is split the underlying scheme structure of Ns is given by Ns =⊔
w∈W Gl


m where Gm denotes the multiplicative group over k, l = rk (G)
and W is the (abstract) Weyl group of (Gs, Ts). Since X is geometrically
irreducible we obtain


N(Xs) = Ns(Xs) = Hom(Xs, Ns) =


⊔


w∈W


Gl
m(Xs) =


⊔


w∈W


Gl
m(ks) = N(ks).


Thus u ∈ Z1(Γ, N(ks)) and E is constant. �


By considering the case when X = A1
k and G = T we obtain a stronger


version of Theorem 2.1 for tori.


4.2. Corollary. Let T be a k-torus. Every A1
k-torsor under T is constant.


Proof. Since T splits over ks and A1
k has trivial Picard group, every A1


k-torsor
under T is geometrically separably trivial. �


4.3. Proposition. Assume that every geometrically separably trivial A1
k-


torsor under a reductive k-group is constant. If G is an algebraic k-group
whose connected component G◦ is reductive then every geometrically sepa-
rably trivial A1


k-torsor under G is also constant.


Proof. Let E be a G-torsor over A1
k which is trivial over A1


s. Consider the
fiber E0 of E at the origin 0 ∈ A1


k, and its class [E0] ∈ H1(k,G). We view
E0 as a constant torsor over A1


k under G, and consider the twisted group


E0G which, for convenience, we will denote by G0. We have a canonical
bijection (the twisting map. See [DG])


η : H1(A1
k, G0) → H1(A1


k, G)


which maps the trivial class of H1(A1
k, G0) to [E0]. Furthermore η maps


constant (resp. geometrically separably trivial) torsors into constant (resp.
geometrically separably trivial) torsors. By replacing G by G0 we may thus
assume without loss of generality that E0 is trivial.
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Let C = G/G◦. This is a twisted constant group ([DG] II §5). Consider
the commutative diagram


H0(A1
k, C) −−−−→ H1(A1


k, G
◦)


φ1−−−−→ H1(A1
k, G)


φ2−−−−→ H1(A1
k, C)


y ψ1


y ψ2


y ψ3


y
H0(A1


s, C) −−−−→ H1(A1
s, G


◦)
γ−−−−→ H1(A1


s, G) −−−−→ H1(A1
s, C)


Since by assumption ψ2([E]) = 1, we have ψ3(φ2([E])) = 1. By Remark 3.2
we have φ2([E]) ∈ H1(Gal (ks/k), C(A1


s)) ⊂ H1(A1
s, C). But since Cs is a


constant group C(A1
s) = C(ks). Thus


H1(Gal (ks/k), C(A1
s)) = H1(Gal(ks/k), C(ks)).


In other words, φ2([E]) is a constant class, hence trivial because of our
assumption on the fiber E0 of E.


Let E◦ be an A1
k-torsor under G◦ such that [E◦] ∈ H1(A1


k, G
◦) satisfies


φ1([E
◦]) = [E]. It remains to show that ψ1([E


◦]) = 1. As before, it suffices
to prove that γ has trivial kernel or, equivalently, that G(A1


s) → C(A1
s) is


surjective. But this is clear. Indeed, we have already observed above that
C(A1


s) = C(ks). �


We now turn to the proof of Theorem 2.1. By Proposition 4.3 we may
assume that G is reductive. Let EG be the corresponding twisted A1


k-group.
Let k′ ⊂ ks be a finite Galois extension such that Gk′ is split and E


A1
k′


is


trivial. By the Lemmata of §3 applied to Y = A1
k′ and Lemma 4.1 it will


suffice to show that the extension k′ above can be chosen so that


(a) There exists a maximal torus T ′ of EG and a maximal torus T of G
such that T ′


Y is conjugate to TY = T ×k Y under G(Y ).


Let G̃ → G be the simply connected cover of the derived group of G.


We can then construct the twisted group EG̃ by considering the adjoint


action of G on G̃, and this coincides with the simply connected cover of
the derived group of the twisted group EG [SGA3]. There exists a natural


correspondence between the maximal tori of EG̃ and those of EG (ibid.) This
shows that in order to establish that (a) above we may (and henceforth do)
assume that G is simply connected.


By choosing a point p in the building B of EG bK
we obtain a group H(p)


over P1
k extending EG. Let S be an algebraic k-scheme representing the Weil


restriction of H(p) to k, and Sr its corresponding separably reduced version.
We have the evaluation maps


evrα : Sr ×k P1
k →֒ S ×k P1


k
evα−→ H(p).


Since evα : S ×k P1
k → H(p) is a morphism over P1


k we see that the
restriction of evα to S ×k A1


k maps into EG. This gives the commutative
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diagram


Sr × P1
k


evr
α−−−−→ H(p)


∪ ∪


Sr × A1
k


evr
α−−−−→ EG


By Proposition 3.34.1 we obtain


(b) If Tr is a maximal torus of Sr (which exists since Sr is an algebraic
group over k) then T ′ = evrα(Tr × A1


k) is a torus of EG.


Since the evaluation map commutes with arbitrary base field change (Re-
mark 3.31) and the construction of Sr commutes with any separable field
extension k′/k base change (Appendix, Proposition 6.12) we may replace k
by k′ when trying to show that the torus T ′ of (b) satisfies the conditions
of (a). Indeed, if α′ : hS′ → ∏


X′/k′(H(p) ×k k
′) is as in Remark 3.31, then


the closed immersion


(Tr ×k A1
k) ×k k


′ ≃ (Tr ×k k
′) ×k′ A1


k′
evr


α′−→ EG×k k
′


makes T ′ ×k k
′ ≃ T ′ ×A1


k
A1
k′ into a torus of EG×k k


′ ≃ EG×A1
k


A1
k′ . If this


last torus is maximal, then so is our original T ′ (since the maximality at the
level of the geometric fibers is preserved under our base change).


We may therefore assume that EG = G ×k A1
k = G


A1
k
. Let T be a


maximal split torus of G. By Soulé’s theorem [So] there exists g ∈ G(k[t])
such that q = g(p) is a point in the apartment of B bK corresponding to T bK .
As explained in Example 3.21 (d) we have an isomorphism g̃ : H(p) → H(q)
of P1


k-schemes. The pullback of g̃ along A1
k ⊂ P1


k is an inner automorphism
of GA1


k
. Thus, by replacing T ′ by g̃(T ′) and by taking Remark 3.21(b) into


consideration we may assume without loss of generality that p = q,
By Example 3.21 (c) the torus T yields a closed immersion


T ×k P1
k −→ H(q)


which by Remark 3.32 is nothing but the restriction of the reduced evaluation
map, namely


(4.4) evrα : T ×k P1
k → Sr ×k P1


k → S ×k P1
k
evα→ H(q).


By pulling back along A1
k we see that the reduced evaluation map induces a


closed immersion


(4.5) evrα : T ×k A1
k −→ G


A1
k


By Remark 3.30 we know that the functor of global sections of T ×k P1
k


is represented by T. Thus from the closed immersion (4.4) we obtain a
canonical embedding T → S (see Remark 3.32) which factors through Sr
since T is reduced. The resulting map T → Sr is an injective morphism of
algebraic groups, hence a closed embedding. This allows us to identify T
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with a torus of Sr. By Proposition 3.34 this torus is necessarily maximal.
We record this important fact for future reference.


(c) If Tr is a maximal torus of Sr then T ′ = evrα(Tr×A1
k) is a maximal torus


of EG. In particular the A1
k-group EG admits a maximal torus.


We will see that T ′ actually satisfies the conditions of (a). This will finish
the proof of Theorem 2.1


Let k′ ⊂ ks be a finite extension of k such that Tr ×k k
′ and T ×k k


′ are
conjugate under an element s ∈ Sr(k


′) ⊂ S(k′). We again replace k by k′.
Think of s as an A1


k-point of S ×k A1
k (which we denote by s̃). Then the


inner automorphism int(s̃) of S ×k A1
k is given by int(s) × id. Consider the


element
evα(s̃) ∈ G


A1
k
(A1


k) = G(A1
k).


We have the commutative diagram


Sr ×k A1
k


ev−−−−→ GA1
k


int(s̃)


y
yint(evr


α(s̃))


Sr ×k A1
k


evr
α−−−−→ G


A1
k


Since int(s)(Tr) = T this last diagram shows that T ′ = evrα(Tr ×k A1
k) is


conjugate to evr(T ×k A1
k) under the element int(evα(s̃)) ∈ G(A1


k). Since
evα(T ×k A1


k) is a maximal torus of G
A1


k
the proof of (a), hence also of


Theorem 2.1, is complete. �


By reasoning as in Steps (a), (b) and (c) of the above proof we obtain the
following important fact.


4.6. Theorem. Let G be a reductive group scheme over A1
k. Assume that G


is “geometrically separably split”, i.e. that G ×
A1


k
A1
ks


is split. Then G has


a maximal torus. �


5. Torsors over the punctured affine line


In what follows we will denote by X = Speck[t±1] the punctured affine
line and by K = k(t) the rational function field of X. We will denote by


K̃ the maximal unramified extension of K̂ = k((t)). Recall that K̃ is the
subfield of ks((t)) consisting of those elements f =


∑
n≥N cnt


n for which the


set {cn : n ≥ N} belong to a finite separable extension of k. The natural


map Gal (ks/k) → Gal (K̃/K̂) is an isomorphism of profinite groups. We
henceforth identify these two groups.


Let Ô = k[[t]] and Õ = ks[[t]] ∩ K̃. The residue map ρ : Õ → ks (which
is also the specialization map at t = 0) induces a group homomorphism


G(ρ) : G(Õ) → G(ks) whose kernel we denote by G(Õ)(1) : These are “the


elements of G(Õ) that are congruent to 1 modulo (t)”. We denote Gm(Õ)(1)


simply by Õ(1). Thus O(1) = {∑n≥0 cnt
n ∈ Õ : c0 = 1}.
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Our goal is to prove Theorem 2.4 by comparing the étale cohomology of
X with the Galois cohomology of k((t)). As in the case of the affine line,
the existence of maximal tori will play a crucial role.


5.1. Cohomological exponent: Good and bad primes. Theorem 2.4
for the punctured line has an assumption on the “good characteristic” on the
base field. In this section we give the relevant definitions and basic results
concerning this point.


5.1. Lemma. Let G be a reductive k-group. There exists a positive integer
n with the property that for every field extension F/k and for every maximal
torus T of the reductive F -group GF


(1) nH1(F, T ) = 1.


Moreover, if X(T )∗ denotes the Gal(Fsep/F )-module of cocharacters of T
(see 3.1), then


(2) nH1(F,X(T )∗) = 1.


Proof. (1) Let T be a maximal torus of GF . Consider a minimal splitting ex-
tension L/F of T . Since H1(L, T ) = 1 we have H1(F, T ) = H1(L/F, T (L)).
In particular, if m = [L : F ] then mH1(F, T ) = 1. We now show that
there is a positive integer n which does not depend on T and F such that
m divides n. This would complete the proof of (a).


Recall that G is the almost direct product G = C ·G′ of its central torus
C and derived group G′. This yields T = CF · T ′ where T ′ is the maximal
torus G′


F given by T ′ = G′
F ∩ T .


Let l/k be the minimal field extension of k splitting C. The decomposition
T = CF ·T ′ implies that L is the composition L = L1 ·L2 (taken inside some
fixed separable closure Fs of F containing ks) of two fields L1 and L2 where
L1 = l · F and L2 is the minimal splitting extension of the F -torus T ′. It is
well known that Gal (L2/F ) admits an embedding into the automorphism
group Aut (Σ) of the root system Σ = Σ(G′


F , T
′) of G′


F with respect to T ′.
It is easy to see that the positive integer n = [l : k]·|Aut (Σ)| is then divisible
by m = [L : F ]. Observe that n depends neither on T nor F.


(2) Let T be a maximal F -torus of GF . As will be explained in Lemma


5.16(3) X(T )∗ is a Galois stable direct summand of T (F̃ (t)). From this it fol-


lows that H1(F,X(T )∗) is a direct summand of H1(Gal(Fsep/F ), T (F̃ (t)) ⊂
H1(F̂ (t), T ), hence that nH1(F,X(T )∗) = 0. 5


�


Let G be a reductive k-group. The smallest positive integer satisfying the
conditions of Lemma 5.1 is called the cohomological toral exponent of G. It
will be denoted by cte(G).


We will use cte(G) to define the concept of good and bad primes for G.
We first define the relevant concepts in the semisimple case. Let G be a


5Since T splits over Fsep the inclusion H1(Gal(Fsep/F ), T ( gF (t)) ⊂ H1( dF (t), T ) is in
fact an equality.
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semisimple k-group. There exists a unique Chevalley form of G, that is a
Chevalley group H = HG such that H ⊗Z ks ≃ G⊗k ks. Recall [SGA3] Exp.
XXIV.3 that we have a split exact sequence of Z-groups


(5.2) 1 → Had → Aut(H) → Out(H) → 1,


where Had is the adjoint group of H and Out(G) is the “group of outer
automorphisms” ofH. The group Out(H) is a finite constant Z-group whose
underlying abstract group is a subgroup of the group of symmetries of the
Dynkin diagram of H. The sequence (5.2) comes equipped with a natural
section Out(H) → Aut(H) that arises from the fixed choice of “épinglage”
used in defining H. After applying the base change Z → k and passing to
cohomology (5.2) yields the exact sequence of pointed sets


(5.3) H1(k,Had) → H1(k,Aut(H)) → H1(k,Out(H)) → 1.


Let z ∈ Z1(k,Aut(H)) be such that G ≃ zH. Let [z′] be the image
of [z] under the morphism H1(k,Aut(H)) → H1(k,Out(H)). There is a
canonical section H1(k,Out(H)) → H1(k,Aut(H)) which is obtained from
the given section in (5.2). Let [z′′] be the image of [z′] with respect to this
last mapping. Clearly, the twisted group Gqs = z′′Hk is quasi-split. We call
Gqs the (Chevalley) quasi-split form of G. It has the following characteristic
properties:


(a) Gqs is a k-form of G, i.e. Gqs and G are isomorphic over ks;
(b) for a field extension F/k the group GF is an inner form of HF if and


only if Gqs ×k F is split. In particular, the star-action of Gal(ks/k) on the
Dynkin diagrams of Gqs and G is the same.


5.4. Lemma. If P is a parabolic subgroup of G, then Gqs contains a parabolic
subgroup of type t(P ).


Proof. Let t denote the type of P . Since P is k-defined the quotient variety
G/P is k-defined as well. In particular t is stable with respect to the star
action of Gal(ks/k) on the Dynkin diagram. Let Q be a parabolic subgroup
of the ks reductive group Gqss = Gqs×k ks of type t. Since t is Galois stable,
the variety Gqss/Q is k-defined, hence isomorphic to the variety Part(Gqs)
of parabolic subgroups in Gqs of type t (c.f. [MPW, prop. 1.3]).


Analogously, if B is a Borel subgroup of Gqs (which exists, since Gqs


is quasisplit) the variety Gqs/B is isomorphic to the variety Bor(Gqs) of
Borel subgroups in Gqs. Without loss of generality we may assume that Q
contains B. The canonical morphism Gqs/B → Gqs/Q is k-defined. Since
(Gqs/B)(k) 6= ∅ we have Part(Gqs)(k) = (Gqs/Q)(k) 6= ∅ and the Lemma
follows.


�


Next we define the concept of quasisplit form in the reductive case. Let G
be a reductive k-group, and let C denote its radical torus [SGA3, XXII.4.3.6].
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Recall that C is the unique maximal torus of the center of G. It is not difficult
to see that up to isomorphism there exists a unique reductive k-group Gqs,
called the (Chevalley) quasisplit form ofG, with the following two properties:


(1) The central torus of G and Gqs are isomorphic.
(2) Der(Gqs) = Der(G)qs. That is, the quasisplit form of the (semisimple)


derived group of G coincides with the derived group of Gqs.


We can now state the definition of good and bad primes: Let G be a
reductive k-group and Gqs its quasisplit form. The prime divisors of the
cohomological toral exponent cte(Gqs) of Gqs are called bad primes for G.
Prime numbers which are not bad are called good. We say that the charac-
teristic p of the base field k is good for G if either p = 0 or p is a good prime
for G.


5.5. Remark. From Steinberg’s work we know that every maximal k-torus
of G admits a k-embedding into Gqs. From the definition it follows that
cte(G) divides cte(Gqs). In particular the characteristic of k does not divide
cte(G).


5.6. Remark. The cohomological toral exponent “depends on the base
field”. If G is a trialitarian k-group, then 3 divides cte(G) but not cte(Gks)
(this last since Gks is a classical group of type D4).


We now state and prove two stability properties of the set of good primes
which will be used while proving the main result on torsors over the punc-
tured line.


5.7. Lemma. Let G be a reductive k-group. Let P ⊂ G be a parabolic
subgroup. If H is a Levi subgroup of P then the good primes for G are also
good primes for H. In particular, if the characteristic of k is good for G,
then it is also good for H.


Proof. Let Gqs be the quasi-split form of G, and let P0 be a parabolic sub-
group of Gqs of the same type as P (see Lemma 5.4). Clearly any Levi
subgroup H0 of P0 is isomorphic to the quasisplit form Hqs of H. Since for
any field extension F/k any maximal torus of H0,F is also a maximal torus
of Gqs,F we see that cte(H0) divides cte(Gqs). The result now follows. �


5.8. Lemma. Let η ∈ Z1(k,G) be a cocycle and ηG the corresponding twisted
group. The set of good primes for G and ηG coincide.


Proof. Indeed, the quasisplit forms of G and ηG are isomorphic, so the result
follows by definition. �


5.2. Existence of maximal tori. The following result yields the existence
of maximal tori that will be used in the proof of Theorem 2.4.


5.9. Proposition. Let G be a reductive group scheme over X. Assume
that G is geometrically separably split; that is there exists an isomorphism
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f : G0 ×ZXk′
∼−→ G×X Xk′ where G0/Z is a Chevalley reductive group and


k′/k is a finite Galois extension.
Denote by T0 the standard maximal split torus of the Z-group G0. Then


G admits a maximal X-torus M such that M ×X Xs is G(Xs)-conjugated
to f(T0 ×Z Xs).


Proof. By [SGA3, XII.4.7.c] there is a one-to-one correspondence between
the maximal tori of G, those of its adjoint group Gad and those of the simply
connected covering of Gad. We may thus assume without loss of generality
that our X-group G is semisimple and simply connected. Following Tits
[Ti3], we consider the twin building B = B+×B− of GK over the completions
of K at 0 and ∞.


Consider a point p = (p+, p−) ∈ B, as well as the two associated parahoric
group schemes F+/k[[t]] and F−/k[[


1
t ]] corresponding to p+ and p− respec-


tively. The patching process of §5 (applied twice) produces a smooth group
scheme H(p) over P1


k extending G/X. Let S be the k-group representing the
Weil restriction of H(p) to k, and Sr the corresponding absolutely reduced
group.


Let Tr ⊂ Sr be a maximal torus. By Proposition 3.34.1 ev(Tr ×k Pk) is a
torus of H(p). Pulling back to X we obtain that M = ev(Tr ×kX)is a torus
of G. We will show that M has the desired properties. The same reasoning
given for the affine shows that we may replace k by k′.


There is a canonical embedding B → B′ where B′ is the twin building
associated to G ×k((t)) k


′((t)) and G ×k((t)) k
′((1


t )). This allows us to view
our chosen point p as an element of the twin building B′. The construction
of H(p) is compatible with this identification [see Example 3.21(b)].


We now use the splitting G0 ×k Xk′
∼−→ G ×X Xk′ . By Abramenko’s


result [A, Proposition 5], there exists g ∈ G(Xk′) such that q = g(p) lives
in the canonical twin apartment corresponding to the torus T0. Clearly the
group schemes H(q) and H(p) ×P1 P1


k′ are isomorphic, so we may assume
that p = q. The torus T0 gives rise to a canonical subtorus T0×Z P1


k′ ⊂ H(p),
as one can see by applying the reasoning of Example 3.21(c) twice.


The proof can now be finished along the exact same reasoning given in
the proof of the affine line. �


5.3. Reformulation of Theorem 2.4. Henceforth G will denote a reduc-
tive k-group where the characteristic of k is good for G.


By Remark 2.1 the isomorphism classes of geometrically separably split
torsors over A×


k under G are parametrized by H1
(
Gal(ks/k), G(ks[t


±1])
)
.


Along similar lines we see that the classes of H1(K̂,G) corresponding to


torsors that are trivialized by the base change K̂ → K̃ are parametrized by


H1(Gal(K̃/K̂), G(K̃)
)
. Theorem 2.4 can thus be stated as follows:


5.10. Proposition. Under the natural identification of Γ := Gal (ks/k) with


Gal (K̃/K̂) we have.
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(1) Every X-torsor under G is geometrically separably trivial. In partic-
ular the canonical map H1(Γ, G(ks[t


±1])) → H1(X,G) is bijective.


(2) The canonical map H1(Γ, G(K̃)) → H1(K̂,G) is bijective: Every K̂-


torsor under G is split by the base change K̂ → K̃.
(3) The thesis of Theorem 2.4 is equivalent to the following assertion:


The canonical map


H1(Γ, G(ks[t
±1])) → H1(Γ, G(K̃))


is bijective.


We begin with a useful general fact.


5.11. Lemma. Let G be a split reductive group over a field F . Let z ∈
Z1(F,G) be a cocycle. There exists a maximal torus T ⊂ G such that [z] is
in the image of the natural map H1(F, T ) → H1(F,G).


Proof. The result essentially follows from arguments in Steinberg’s paper
[St], which show that the Lemma holds for quasi-split simple group (see the
prelude to Theorem 3.1 of [Chr] for details). In particular, the Lemma holds
if our G is semisimple and of adjoint type. The reduction to this case is done
along standard lines as follows.


Let C be the centre of G and let G′ = G/C. Let z′ ∈ Z1(F,G′) be
the image of z under the canonical map Z1(F,G) → Z1(F,G′). Since G′


is an adjoint group there exists a maximal torus T ′ ⊂ G′ such that [z′] ∈
Im[H1(F, T ′) → H1(F,G′)]. Let T ⊂ G be the inverse image of T ′ under
G → G′. Since the image of [z′] under the map H1(F,G′) → H2(F,C)
vanishes, the class [z′] lifts to a class [u] ∈ H1(F, T ) as one can see by
considering the exact sequence 1 → C → T → T ′ → 1. We now pass to
the twisted group uG. Under the twisting bijection H1(F,G) → H1(F, uG)
the class [z] goes into some class, say [w], whose image under H1(F, uG) →
H1(F, uG


′) is zero. Hence we may assume that [w] ∈ H1(F, uC). Note that


uC = C is the centre of uG and is contained in uT = T . It follows that
[z] = [u + w] where the sum [u + w] = [u] + [w] is taken inside the group
H1(F, T ). �


We now turn to the proof of Proposition 5.10. We begin by showing that


(5.12) H1(ks(t), G) = 1.


For convenience we denote ks(t) by F. The main fundamental property of
F we are going to use is that it is a field of q-cohomological dimension 1 for
all primes q different than the characteristic p of k [Se1, §II.4.2].


Let z ∈ Z1(F,G) be a cocycle. Since GF is split, the previous Lemma
reduces the problem to showing that H1(F, T ) = 1 for any maximal torus
T of GF .


Let L/F be a minimal Galois extension splitting T . Since T is split over
L we have H1(L, T ) = 1, hence H1(L/F, T (L)) = H1(F, T ). Because of the
definition of good characteristic the abelian group H1(L/K,T (L)) is the
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direct sum of its q-Sylow subgroups H1(L/F, T (L))q where q runs through
the set of primes other than p that divide n = [L : F ].


Let Γ be the Galois group of L/F . For each prime q dividing the order of
Γ we fix a q-Sylow subgroup Γq ⊂ Γ. We have the tower of fields F ⊂ Lq ⊂ L
where Lq is the subfield in L corresponding to Γq. The standard restriction-
corestriction argument shows that the equality H1(L/F, T (L))q = 1 fol-
lows immediately from that of H1(L/Lq, T (L)) = 1, or equivalently, from
H1(Lq, T ) = 1. To establish this last equality we consider an exact sequence
of Lq-tori


1 → T1 → P → T → 1


where P is a permutation torus ([CTS2] lemme 3), and its corresponding
Galois cohomology sequence. From this it follows that it will suffice to show
that the q-torsion part of H2(Lq, T1) is trivial. Let A ⊂ T1 be the qm-torsion
part of T1 where m is suitably large. Every element in H2(Lq, T1) of order a
power of q comes from H2(Lq, A). Since Lq is of q-cohomological dimension
1 we have H2(Lq, A) = 1. This finishes the proof of (5.12).


We now turn to the proof of (1). Let E be a G-torsor over Xs and let EG
be the corresponding twisted Xs-group scheme. The idea of the proof is to
show that E admits a reduction of structure group to a Borel subgroup B
of G. In other words, we want to prove that the isomorphism class of E is
in the image of


(5.13) H1(Xs, B) → H1(Xs, G).


Recall that the class of E is in the image of the map (5.13) if and only if
the Xs-group scheme EG has a Borel subgroup.


By (5.12) the generic fiber of EG is split. In particular this generic fiber
has a Borel subgroup over ks(t). Since Xs = Spec(ks[t


±1]) has dimension 1,
it follows from a standard argument (see Remark 5.31 below) that EG itself
has a Borel subgroup as required. It remains to show that H1(Xs, B) = 1,
but this is clear by devissage since H1(Xs,Ga) = 1 and the Picard group of
Xs is trivial.


(2) In analogy to (5.12) we have


(5.14) H1(k̃s(t), G) = 1.


This follows by reasoning as in (1) by taking into consideration that k̃s(t) is of
q-cohomological dimension 1 for all primes q other than p (see [Se2] theorem
4.4). The same devissage reasoning used in (1) completes the proof.


(3) This is a direct consequence of (1) and (2). �


5.4. Reduction of structure group to NG(T ). Let T be a maximal torus
of our reductive k-group G. By combining Lemma 3.15 and Proposition 5.9
we obtain.


5.15. Lemma. The map


H1
(
Γ, NG(T )(ks[t


±1])
)
−→ H1


(
Γ, G(ks[t


±1])
)
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is surjective. �


We now look in detail at H1
(
Γ, NG(T )(ks[t


±1]). Let X(T )∗ be the group
of cocharacters of T. Recall that X(T )∗ comes equipped with a natural
Gal(ks/k)-module structure (see 3.1). Since the underlying scheme of Gm is
X = Spec(k[t±1]), a cocharacter of T is naturally an element of T (ks[t


±1]).
This allows us to henceforth identify X(T )∗ with a Galois submodule of
T (ks[t


±1]).


5.16. Lemma. Let N = NG(T ). There exists natural Galois modules iso-
morphisms:


(1) T (ks) ×X(T )∗
∼−→ T (ks[t


±1]);


(2) T (Õ) = T (ks) × T (Õ)(1);


(3) T (ks) × T (Õ)(1) ×X(T )∗
∼−→ T (K̃);


(4) X(T )∗ ⋊N(ks)
∼−→ N(ks[t


±1]);


(5) X(T )∗ × T (Õ)(1) ⋊N(ks)
∼−→ N(K̃).


Proof. (1) Ts corresponds to the ring ks[x
±1
1 , . . . , x±1


l ] with a given action of


Γ. An element a ∈ T (ks[t
±1]) corresponds to a ks-algebra homomorphism


a∗ : ks[x
±1
1 , . . . , x±1


l ] −→ ks[t
±1]


which is entirely defined by the values a∗(xi). We have a∗(xi) = λit
ni . It


is clear that there exists χ ∈ X(T )∗ such that χ : xi → tni . This shows
that T (ks[t


±1]) is generated by T (ks) and X(T )∗. That the natural map
T (ks) ×X(T )∗ → T (ks[t


±1]) is injective and compatible with the action of
Γ is clear.


(2) and (3) Every element of K̃× can uniquely be written in the form λftn


with λ ∈ k×s , f ∈ Gm(Õ)(1) = Õ(1) and n ∈ Z. Moreover, if the element is


in Õ then n = 0. One now reasons mutatis mutandis as in (1).
(4) We know that


Ns =
∐


w̄∈W


wTs


where the w ∈ N(ks) are representatives of the elements of the Weyl group
W . Since Spec(ks[t


±1]) is connected it is then clear that


N(ks[t
±1]) =


∐
wT (ks[t


±1]).


If y ∈ wT (ks[t
±1]) ⊂ N(ks[t


±1]) then


w−1y ∈ T (ks[t
±1]) = T (ks) ×X(T )∗.


Since N(ks) =
∐
wT (ks) the result follows (after checking compatibility


with the action of Γ).
(5) The reasoning is similar to (3) and (4) above. �


5.17. Lemma. Let Γ denote the Galois group Gal (ks/k). For all i ≥ 1, we
have
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(1) H i(Γ, T (Õ)(1)) = 0;


(2) H i(Γ, T (ks))
∼−→ H i(Γ, T (Õ));


(3) H i(Γ, T (ks[t
±1]))


∼−→ H i(Γ, T (K̃)).


Proof. (1)We have a natural isomorphism


(5.18) Õ(1) ⊗Z X(T )∗ ≃ T (Õ)(1)


This allows us to generalize the classical proof for T = Gm (e.g. [GS,


§6.3]) in an obvious way to yield H i(Γ, T (Õ)(1)) = 0.


(2) Follows from (1) and Lemma 5.16.2
(3) Follows from (2) and Lemma 5.16.1,3 �


5.5. Proof of surjectivity. The following result, together with Proposition
5.10.3 and Lemma 5.15, establishes the surjectivity part of Theorem 2.4.


5.19. Proposition. In the commutative diagram


H1(Γ, NG(T )(ks[t
±1]))


βNG(T )−−−−−→ H1(Γ, NG(T )(K̃))


ρXs


y ρ eK


y


H1(Γ, G(ks[t
±1]))


βG−−−−→ H1(Γ, G(K̃))


obtained by the base change and change of structure group, the maps ρXs ,
ρ eK


and βNG(T ) are surjective (and as a consequence so is βG).


Proof. That ρXs is surjective follows from Lemma 5.15. The same reasoning


shows that ρ eK is surjective since we know that for all z ∈ Z1(Γ, G(K̃)) the


twisted K̂-group zG bK contains a maximal K̂-torus which is split by K̃ [BT2,


cor. 5.1.12], and any two such tori are conjugate by an element of G(K̃).
It remains to show that βNG(T ) is surjective. For convenience we will


denote NG(T ) simply by N. Let z ∈ Z1(Γ, N(K̃)). Then z = (zγ)γ∈Γ for


some zγ ∈ N(K̃) which according to Lemma 5.16 can be written in the form


zγ = z′γzγ
′′


zγ
′′′


with
zγ


′ ∈ N(ks), zγ
′′ ∈ X(T )∗, zγ


′′′ ∈ T (Õ)(1).


Moreover,


z′ = (zγ
′


)γ∈Γ ∈ Z1(Γ, N(ks)).


One can consider the twisted k-group z′T, and it is well known that the


family z
′′′


= (z
′′′


γ )γ∈Γ is in fact an element of Z1(Γ, z′T (Õ)(1)). By Lemma


5.17 H1(Γ, z′T (Õ)(1)) = 1. Choose x ∈ T (Õ)(1) such that


x−1z
′′′


γ z
′
γ
γx(z′γ)


−1 = 1.


An immediate calculation shows that


x−1zγ
γx ∈ X(T )∗ ⋊N(ks).
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By Lemma 5.16(4) it now follows that [z] is in the image of our map


βN : H1(Γ, N(ks[t
±1])) −→ H1(Γ, N(K̃))


as desired. �


5.6. Proof of Injectivity. The proof that the natural map


H1
(
Γ, G(ks[t


±1])
)
→ H1


(
Γ, G(K̃)


)
.


is injective is the most delicate part of the argument. For convenience we
will divide the reasoning into several steps. By Lemma 5.15 the injectivity
result we want to prove can be reformulated as follows:


5.20. Proposition. Let z1 = (aσ)σ∈Γ and z2 = (bσ)σ∈Γ be two cocycles in


Z1(Γ, N(ks[t
±1])) whose image in H1


(
Γ, G(K̃)


)
coincide. Then z1 and z2


have the same image in H1
(
Γ, G(ks[t


±1])
)
.


The rest of this section is devoted to the proof of this result.


5.6.1. Linear and translation parts of a cocycle. We begin with a straight-
forward application of Lemma 5.16 that will be used in the main proof.


5.21. Lemma. There is a unique decomposition aσ = a′σ(t)a
′′


σ and bσ =


b′σ(t)b
′′


σ where a′σ(t), b
′
σ(t) ∈ X(T )∗ and a


′′


σ, b
′′


σ ∈ N(ks). �


We will call the families z′1 = (a′σ(t)) and z′2 = (b′σ(t)) [resp. z
′′


1 = (a
′′


σ) and


z
′′


2 = (b
′′


σ)] the translation [resp. linear] parts of the cocycles z1 and z2. Since


X(T )∗ is a normal subgroup of N(ks[t
±1]), one can easily check that the z


′′


1


is a cocycle in Z1(Γ, N(ks)). If we identify (z′′1
T )(ks[t


±1]) = T (ks[t
±1]) then


one checks that the translation parts z′1is a cocycle with coefficients in the
twisted tori z′′1


T. Similar considerations apply to z2.


5.22. Remark. The linear part is constant, in the sense that it takes val-
ues in N(ks). The use of the parameter t within the notation a′σ(t) of the
translation part of aσ is used to emphasize that aσ is being thought as a
morphism from Spec(ks[t


±1]) to T. This point will become relevant later on
when we show that z1 and z2 are rationally equivalent.


5.6.2. Equality of generic fibers. The first step of the proof of injectivity is
to show that the classes [z1] and [z2] coincide generically, i.e. that the images
of [z1] and [z2] coincide in H1


(
Γ, G(ks(t))


)
. The proof is mainly based on


the following theorem of Bruhat-Tits.


5.23. Theorem. (Bruhat-Tits, [BT3, 3.15]) Let H be a reductive algebraic
group defined over a field l. Then the canonical map H1(l,H) → H1(l((t)),H)
is injective. �


A much easier statement of similar flavour is the following.
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5.24. Lemma. Let H be a reductive algebraic group over a field l. Then the
following are equivalent:


(1) H is irreducible (resp. anisotropic) over l;
(2) H is irreducible (resp. anisotropic) over l(t);
(3) H is irreducible (resp. anisotropic) over l((t)).


Proof. We have only to prove that i) =⇒ iii) in both cases.
Assume first thatH is irreducible over l. IfHl((t)) is reducible then it has a


parabolic subgroup of type t different than H (see Remark 3.16), and there-
fore Part(H)


(
l((t))


)
= Part(Hl((t)))


(
l((t))


)
6= ∅. Since Part(H) is proper, we


have Part(H)
(
l[[t]]


)
6= ∅ by the valuative criterion of properness. But then


Part(H)(l) 6= ∅, which is a contradiction. Thus Hl((t)) is irreducible.
Now we assume that H is anisotropic, namely that H is irreducible and its


radical torus C is anisotropic (Proposition 3.17.2). This same Proposition,
together with the first step, reduces the proof to showing that Cl((t)) is
anisotropic. The torus C is the twist of Gr


m by a continuous morphism
φ : Gal(ls/l) → GLr(Z). To say that C is anisotropic is equivalent to
(Zr)φ = 0. Since the map Gal(l((t))s/l((t))) → Gal(ls/l) is split, it follows


that (Zr)φl((t)) = 0 where φl((t)) : Gal(l((t))s/l((t))) → Gal(ls/l) → GLr(Z)
is the composite map. Thus the torus C ×l l((t)) is anisotropic. �


By our hypothesis on the good characteristic of the base field k there
exists a positive integer n not divisible by char(k) with the property that
nH1(F,X(T )∗) = 0 for all field extension F/k. The trick to establish equal-
ity of the generic fibers of z1 and z2 is to add an independent variable x over
k, and work over the fields l = k(x) and ls = ks(x).


Let L = l(t), L̂ = l((t)) and denote by L̃ the unramified extension of L̂
having residue field ks(x)/k(x) = ls/l.


Consider the ls-algebra endomorphism of ls[t
±1] given by t → xtn. It


gives rise to a commutative diagram of fields extensions


ls(t)
φ−−−−→ ls(t)y


y


L̃
eφ−−−−→ L̃


that commutes with the action of the Galois group Γ. Passing to cohomology
we thus obtain the commutative diagram


H1(Γ, G(ls[t
±1]))


φ∗−−−−→ H1(Γ, G(ls[t
±1]))


y
y


H1(Γ, G(L̃))
eφ∗−−−−→ H1(Γ, G(L̃))


(5.25)


Let z3 = φ∗(z1) and z4 = φ∗(z2). These are cocycles in Z1(Γ, N(Xls)).
Recall that z1 = (aσ), z2 = (bσ) and that aσ and bσ can be decomposed into
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their translation and linear parts:


aσ = a′σ(t)a
′′


σ , bσ = b′σ(t)b
′′


σ


such that the linear parts are constant, and the translation parts live in
X(T )∗ ⊂ T (ks[t


±1]) (see Remark 5.22). It follows that


(5.26) φ∗(aσ) = a′σ(xt
n)a


′′


σ , φ
∗(bσ) = b′σ(xt


n)b
′′


σ.


From the way the embedding X(T )∗ →֒ T (ks[t
±1]) is defined it easily follows


that


(5.27) a′σ(xt
n) = a′σ(x)a


′
σ(t


n) = a′σ(x)(a
′
σ(t))


n, and


(5.28) b′σ(xt
n) = b′σ(x)b


′
σ(t


n) = b′σ(x)(b
′
σ(t))


n.


5.29. Lemma. The cocycle z3 = φ∗(z1) is equivalent to (a′σ(x)a
′′


σ). Similarly


z4 = φ∗(z2) is equivalent to (b′σ(x)b
′′


σ).


Proof. Since aσ = a′σ(t)a
′′


σ it is clear that u = (a′σ(x)a
′′


σ)σ∈Γ is a cocy-
cle in Z1


(
Γ, N(Xls)


)
. The statement of the Lemma is equivalent to the


fact that the image of z3 under the canonical bijection H1(Γ, N(Xls)) →
H1(Γ, uN(Xls)) is trivial. By (5.26)–(5.28) this image is (a′σ(t))


n, and it
takes values in the cocharacter group X(uT )∗ of the twisted torus uT . By
our assumption on n all elements of H1(Γ,X(uT )∗) have exponent n. The
result follows. �


The lemma shows that z3 and z4 are equivalent to the cocycles (a′σ(x)a
′′


σ)


and (b′σ(x)b
′′


σ) respectively. Since the last two cocycles are constant, that is
they belong to the image Im[Z1(Γ, G(ks(x))) → Z1(Γ, G(ks(x)[(t)


±1]))], and


since the images of the classes of z3 and z4 in H1(Γ, G(L̃)) ⊂ H1(L̂,G) are
equal [because of the commutativity of (5.25)], we can conclude with the aid


of Theorem 5.23 that the classes of (a′σ(x)a
′′


σ) and (b′σ(x)b
′′


σ) are in fact equal
in H1(Γ, G(ks(x))) ⊂ H1(l, G) = H1(k(x), G). This of course completes the
proof that z1 and z2 are generically equivalent, that is [z1]K = [z2]K in
H1(K,G), as one can see “by replacing x by t”.


For later use let us formulate the following by-product of the above trick
of introducing the new variable x.


5.30. Corollary. Assume that the twisted K-group z1GK is irreducible. Then


the twisted K̂-group z1G bK
is also irreducible.


Proof. We reason by contradiction. For convenience let us denote z1GK by
H. Consider the commutative diagram


K = k(t) −−−−→ k(x)(t)
φ−−−−→ k(x)(t)


y
y


y


K̂ = k((t)) −−−−→ k(x)((t))
φ−−−−→ k(x)((t))
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of field extensions. The two maps denoted by φ are the k(x)-morphisms
given by t → xtn, and the rest of the maps are natural inclusions. Assume
H bK is reducible. By base change along the two bottom arrows we obtain
a reducible k(x)((t))-group which for convenience we denote by A. On the
other hand since H is irreducible, by Lemma 5.24 Hk(t,x) = H ×k(t) k(t)(x)
is an irreducible k(t)(x) = k(x, t) = k(x)(t)-group. We now apply to Hk(t,x)


the base change given by φ. The resulting k(x)(t)-group, call it B, is the
twist of Gk(x,t) by the cocycle z3, which by Lemma 5.29 is a cocycle with
values in G(ks(x)). Since z1 becomes z3 if we change the variable t to x, the
twisted group z3Gk(x) is irreducible. This implies that B is irreducible. But
then A, which is obtained form B by the base change k(x)(t) → k(x)((t)),
is according to Lemma 5.24 also irreducible–a contradiction. �


5.31. Remark. Let z ∈ Z1(X,G). If the X-group zGX is irreducible then
the K-group zGK is irreducible. For since the scheme Pt(P ) of parabolic
subgroups of zGX of type t(P ) is proper over X and dimX = 1, we have
Pt(P )(K) 6= ∅ if and only if Pt(P )(X) 6= ∅. By taking Corollary 5.30 into


account we see that if zGX is irreducible then the twisted K̂-group zG bK
is


also irreducible.


5.6.3. Reduction to the irreducible case. The third step of the proof is the
reduction to the case when our twisted groups ziGX are irreducible. We
begin with a simple result.


5.32. Lemma. Let G be a reductive k-group and let η ∈ Z1(k,G) be an
arbitrary cocycle. If the injectivity assertion of Theorem 2.4 holds for the
twisted k-group ηG then it holds for G.


Proof. Twisting by η induces a commutative diagram


H1(X,G) −−−−→ H1(X, ηG)


f


y g


y
H1(K̂,G) −−−−→ H1(K̂, ηG)


whose horizontal arrows are the twisting bijections. It follows that f is
injective if and only if g is injective. �


Assume now that our given cocycle z1 ∈ Z1(Γ, G(ks[t
±1])) is such that the


twisted X-group z1GX is reducible. Let P1 be a proper parabolic subgroup
of z1GX . Choose a k-point x ∈ X(k) and let η = z1(x) ∈ Z1(Γ, G(ks)) be
the fiber of z1 at x. We set G′ = ηG. Since G′ is the fiber of z1GX at x we
conclude that G′ contains a parabolic subgroup P ′ of the same type as P1.


It follows easily from the definition that if z′1 = z1η
−1 is the cocycle


corresponding to z1 under the twisting bijection H1(X,G) → H1(X,G′)
then the twisted X-groups z1GX and z′1


G′
X are isomorphic; in particular


z′1
G′
X has a parabolic subgroup of the same type as P ′. By taking the last
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Lemma into consideration, and using the fact that the cohomological toral
exponent of G and G′ coincide (Lemma 5.8), we conclude that to establish
Proposition 5.20 we may assume without loss of generality that the k-group
G and the X-group G1 = z1GX have parabolic subgroups P and P1 of the
same type. Under this assumption we then have.


5.33. Lemma. [z1] ∈ Im [H1(X,P ) → H1(X,G)].


Proof. Recall the general fact that the isomorphism class of cocycle z ∈
Z1(X,G) is contained in the image of H1(X,P ) if and only if the twisted
quotient scheme z(GX/PX) has an X-point. On the other hand by reasoning
as in [SGA3, XXIV Prop 4.2.1] we see that z(GX/PX ) is isomorphic to the
scheme of parabolic subgroups of type t(P ) of the twisted group scheme


zGX (see Remark 3.16). The result follows. �


The last Lemma shows that we may assume that z1 takes values in P.
Let H be a Levi subgroup of P . Since X is affine, the map H1(X,H) →
H1(X,P ) is bijective [SGA3, XXVI.2.3] so we may additionally assume that
[z1] ∈ H1(X,H).


We next remark that since z1 and z2 are rationally equivalent the twisted
group scheme z2GK also has a parabolic subgroup of type t(P ). By Remark
5.31 theX-group z2GX itself contains a parabolic subgroup of type t(P ). The
foregoing reasoning shows that we may also assume that [z2] ∈ Z1(X,H).


To complete the reduction to the irreducible case it will suffice to prove


that the images of [z1] and [z2] under H1(X,H) → H1(K̂,H) are equal (for
then if injectivity fails for G, it also fails for H, and we can assume from the
outset that G was chosen of smallest possible dimension so that injectivity
fails). For this in turn it suffices to show that the composition (of natural
maps)


H1(K̂,H) → H1(K̂, P ) → H1(K̂,G)


is injective. This follows from the following two results.


5.34. Lemma. The mapping H1(K̂,H) → H1(K̂, P ) is bijective.


Proof. This is a special case of [SGA3, XXVI.2.3]. �


5.35. Lemma. The mapping H1(K̂, P ) → H1(K̂,G) is injective.


Proof. Let µ1, µ2 ∈ Z1(K̂, P ) be such that f([µ1]) = f([µ2]). After twisting
with µ2 we may assume that µ2 = 1 and f([µ1]) = 1. Consider the exact
sequence


G(K̂)
g−→ (G/P )(K̂) −→ H1(K̂, P )


f−→ H1(K̂,G).


By Borel-Tits theorem [BT, th. 4.13], the map g is surjective. Hence Ker f =
1 and therefore [µ1] = 1 as desired. One may also quote [SGA3, XXVI.5.10]


�







36 V. CHERNOUSOV, P. GILLE, AND A. PIANZOLA


5.6.4. Reduction to anisotropic k-loop torsors. Before we can finish the proof
of injectivity we need one more result related to a type of torsors, called “k-
loop torsors” in [GP3], that arise in connections with infinite dimensional Lie
theory (see [GP1], [GP2] and [Pi] for details). According to the reformulation
given in Proposition 5.20 we may assume that our cocycles z1 and z2 are
of the form z1 = (aσ)σ∈Γ′ and z2 = (bσ)σ∈Γ′ where Γ′ = Gal(k′/k) is the
Galois group of a finite extension k ⊂ k′ ⊂ ks, and both the aσ and the bσ
belong to N(k′[t±1]). After further extending k′ if necessary, we may further
assume that k′ contains a primitive n-root of unity (recall that n is prime to
the characteristic of k) and splits our fixed maximal torus T ⊂ G. Consider
a chain of finite field extensions


k(t) ⊂ k′(t) ⊂ L = k′(t′)


where t′ = t1/n. The extensions L/k′(t) and L/k(t) are Galois. Let Λ =
Gal (L/k(t)) and ∆ = Gal (L/k′(t)). Clearly we have Λ = ∆ ⋊ Γ′ where
Γ′ = Gal(k′/k). The natural mappings Λ → Γ′, G(k′) → G(k′(t′)) and
G(k′[t±1]) → G(k′[(t′)±1]) induce a diagram


H1(Λ, G(k′))


g


y


H1(Γ′, G(k′[t±1]))
f−−−−→ H1(Λ, G(k′[(t′)±1])


5.36. Lemma. f([z1]) and f([z2]) are in the image of g.


Proof. Recall that z1 = (aσ) where σ ∈ Γ′ and aσ ∈ N(k′[t±1]) ⊂ G(k′[t±1]).


Recall also that aσ = a′σ(t)a
′′


σ where z′1 = (a′σ(t)) and z
′′


1 = (a
′′


σ) are the
translation and linear parts of z1.


Assume first that the linear part of z1 is trivial. Since Λ = ∆ ⋊ Γ′, every
λ ∈ Λ can be written uniquely in the form λ = δσ with δ ∈ ∆ and σ ∈ Γ′.
With this notation, and according to Remark 5.22, f([z1]) is given by a
family (a′λ(t


′)) where


a′λ(t
′) = aσ(t) = aσ((t


′)n) = aσ(t
′)n.


Let u(t) ∈ X(T )∗ ⊂ T (k′[t±1]) be such that


aσ(t)
n = u(t)1−σ .(5.37)


We claim that the cocycle (u(t′)−1a′λ(t
′)u(t′)λ) takes values in G(k′). In-


deed, let λ = δσ. Given that δ(t′) = ζnt
′ where ζn is a root of unity of


degree n we have


(u(t′))δ = vu(t′)


where v ∈ T (k′) has entries consisting of roots of unity of degree n [where


we identify Tk′ with Gm
rk(G)]. Furthermore, since σ acts trivially on t′


u(t′)λ = (u(t′)δ)σ = (vu(t′))σ = vσu(t′)σ
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and equation (5.37) implies


aσ(t
′)n = u(t′)1−σ.


Thus we have


u(t′)−1a′λ(t
′)u(t′)λ = u(t′)−1aσ(t


′)nu(t′)λ =


u(t′)−1(u(t′)u(t′)−σ)(vσu(t′)σ) = vσ


This shows that the cocycle (u(t′)−1a′λ(t
′)u(t′)λ) takes values in G(k)′ as


claimed. Since the class of this cocycle equals f([z1])] the proof of the
Lemma in the case when the linear part of z1 is trivial is complete.


In general since the linear part is constant, we can consider the twisted
k-group


z
′′


1
G which for convenience we denote by G′. We then have the


diagram


H1(Λ, G′(k′))


g′
y


H1(Γ′, G′(k′[t±1]))
f ′−−−−→ H1(Λ, G′(k′[(t′)±1])


One checks that the three relevant twisting bijections are compatible with
the maps f and f ′, and g and g′. This reduces the general problem to the
case when the linear part is trivial. �


Before concluding the proof of injectivity we need one more final reduc-
tion.


5.38. Lemma. Let C = rad(G) the radical torus of G and consider its max-


imal split subtorus Cd. If the natural map H1(X,G/Cd) → H1(K̂,G/Cd) is


injective, then the natural map H1(X,G) → H1(K̂,G) is also injective.


Proof. Since Cd is central the fibers of the natural map
H1(X,G) → H1(X,G/Cd) arise as quotients of H1(X,Cd) = 1, so our map
is injective. �


5.6.5. Proof of injectivity. We finally come to the proof of Proposition 5.20.
By Lemma 5.38 we may assume that the connected centre of our reductive
group G is an anisotropic k-torus, and that, furthermore, the twisted X-


groups z1GX and z2GX are irreducible. By Remark 5.31 the K̂-groups z1G bK
and z2G bK


are irreducible. Since the radical tori of the ziG bK
are isomorphic


to rad(G)×k K̂, it follows from Proposition 3.17.2 that the K̂-groups z1G bK
and z2G bK are anisotropic.


By Lemma 5.36 we may also assume that z1 = (aλ)λ∈Λ and z2 = (bλ)λ∈Λ


are cocycles in Z1(Λ, G(k′)) where Λ is the Galois group of the extension
L = k′(t′) of k(t) described in 5.6.4. We will finish the proof by showing
that there exists g ∈ G(k′) such that aλ = g−1bλ g


λ for all λ ∈ Λ.
To this end we consider the two extended Bruhat-Tits buildings [BT2,


§4.2.16] B bK
and BbL


of G over K̂ and L̂ = k′((t′)) respectively, as well as
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the apartment AbL
corresponding to TbL


. Recall that AbL
= X(T )∗ ⊗Z R


and denote by o its origin. The group G(L̂) acts on BbL
. We also have a


canonical action of Λ = Gal (L/K) ≃ Gal (L̂/K̂) on BbL and a canonical


identification B bK
= BΛ


bL
. We also observe that the action of G(L̂) on BbL


is


Λ-equivariant. By construction, the point o is fixed by Λ. Furthermore the
k′[[t′]]-parahoric group scheme attached to o is nothing but the Chevalley
group scheme G ×k k


′[[t′]] [BT2, 3.2.13]. Hence the the stabilizer of o in


G(L̂) is G(k′[[t′]]).
The two cocycles z1 and z2 give rise to two twisted actions of Λ on BbL


,
namely λ1(x) = aλ(λ(x)) and λ2(x) = bλ(λ(x)) for all x ∈ BbL


. The invariant
subsets in BbL


with respect to these two twisted actions of Λ are buildings


of the twisted K̂-groups z1G bK and z2G bK . Since these twisted K̂-groups are
anisotropic, by the Bruhat-Tits-Rousseau’s theorem ([Ro] and [Pr]) the fixed
point sets under consideration consist of unique points. Since z1 and z2 take
values in G(k′) ⊂ G(k′[[t′]]) and G(k′[[t′]]) is the stabilizer of o, these fixed
points are necessary the origin o.


Since z1 and z2 are cocycles in Z1(Λ, G(k′)) ⊂ Z1(Gal(L/k(t)), G(L))


which are rationally equivalent, there exists ĝ ∈ G(L) ⊂ G(L̂) such that


aλ = ĝ−1 bλ ĝ
λ.(5.39)


It is easy to see that ĝ−1o is invariant with respect to the second twisted
action of Λ. Hence ĝ−1o = o, which shows that ĝ ∈ G(k′[[t′]]). We now
“evaluate (5.39) at t′ = 0”, namely we apply the base change given by
the residue map k′[[t′]] → k′. Since this evaluation map commutes with
the action of the Galois group Λ, for g = ĝ(0) ∈ G(k′) we finally obtain
aλ = g−1 bλ g


λ as desired. �


6. Appendix: The absolutely reduced subscheme attached to a


scheme


Throughout the appendix k denotes a field, k an algebraic closure of k
and ks the separable closure of k is k. The nilradical of a (commutative
unital) ring A will be denoted by n(A). We fix a basis (αi)i∈I of k̄ viewed
as a k-space. The category of commutative associative and unital algebras
over k will be denoted by k-alg.


Let A be an object of k-alg. For convenience we set A ⊗k k̄ = A. For a
subspace V of A we let V = V ⊗k k̄ ⊂ A. We will make repeated use of the
following elementary fact.


6.1. Lemma. (Basic Lemma) Let V be a subspace of A. Assume
x =


∑
xi ⊗ αi belongs to V ⊂ A. Then xi ∈ V for all i.


Proof. Extend a k-basis of V to a basis of A. �
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Following [RR] we consider the following ideal of A:


n(A) =
⋂


I�A


I⊃n(A)


I,


namely the intersection of all ideals I of A for which I = I ⊗k k̄ contain the
nilradical of A. Note that I = IA.


Recall that given x ∈ A we can uniquely write x =
∑
xi ⊗ αi where


xi ∈ A.


6.2. Lemma. n(A) = 〈xi | x ∈ n(A) 〉.


Proof. For convenience let us denote the ideal 〈xi | x ∈ n(A) 〉 by J . It is
clear from the definition that n(A) ⊂ J ⊗k k̄. Thus, it will suffices to show
that J ⊂ I whenever I is an ideal of A for which I ⊗k k̄ ⊃ n(A). But this is
an immediate consequence of the basic Lemma. �


6.3. Remark. It follows from the Lemma (but also from elementary linear
algebra considerations) that J does not depend of the choice of basis (αi)i∈I .


6.4. Corollary. For A to be absolutely reduced it is necessary and sufficient
that n(A) = 0.


6.5. Remark. It is incorrectly asserted in [RR] that the ring A/n(A) is
absolutely reduced, namely that A/n(A) ⊗k k̄ is reduced. The following
counterexample is due to A. Merkurjev.


6.6. Example. Let k be a separably closed field of characteristic 2 such that
k̄ 6= k. Consider the polynomial f(x, y) = x4 + ay2 ∈ k[x, y] where a ∈ k is
not a square. It is easy to see that f is irreducible over k and hence A =
k[x, y]/(f(x, y)) is a domain. However in k̄[x, y] we have f(x, y) = (x2+by)2,
where b =


√
a, whence n(A) = (x̄2 + bȳ). From Lemma 6.2 it follows that


n(A) = 〈x̄2, ȳ〉. This implies that the ring


A/n(A) ≃ k[x, y]/〈x, y〉 ≃ k[x]/(x2)


is not reduced.


6.7. Proposition. Let ψ : A→ B be a morphism in k-alg. If B is absolutely
reduced then ψ factors through A/n(A).


Proof. Since n(B) = 0 we have n(A) ⊂ ker (ψ ⊗ 1) = ker (ψ) ⊗ k̄. By taking
Lemma 6.2 into consideration, this yields n(A) ⊂ kerψ as desired. �


6.8. Lemma. Assume A is a Hopf algebra. Then n(A) is a Hopf ideal of A.
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Proof. Fix a k-basis {as}s∈S of A where S = S1
⊔
S2 and {as}s∈S1 is a basis


of n(A). We have the commutative diagram


A
∆−−−−→ A⊗k Ay


y
A −−−−→


∆
A⊗k̄ A


and the canonical isomorphism


ψ : A⊗k̄ A→ (A⊗k A) ⊗k k̄.


Let x ∈ n(A) and write x =
∑
xi⊗αi. By Lemma 6.2 it will suffice to show


that


∆(xi) ∈ n(A) ⊗A+A⊗ n(A),


namely that if we write


∆(xi) =
∑


s,t∈S


c
(i)
st as ⊗ at


then c
(i)
st = 0 whenever both s and t belong to S2.


Recall that by Lemma 6.2 we have n(A) ⊂ n(A) ⊗k k̄. Since n(A) is a
Hopf ideal of A


∆(x) ∈ n(A) ⊗k̄ A+A⊗k̄ n(A).


Thus


(6.9) ψ(∆(x)) ∈ (n(A) ⊗k A) ⊗k k̄ + (A⊗k n(A)) ⊗k k̄.


On the other hand


ψ(∆(x)) = ψ


(
∆


(∑


i


xi ⊗ αi


))


=
∑


i


ψ(∆(xi ⊗ αi))


=
∑


i


(∑


s,t


c
(i)
s,t as ⊗ at


)
⊗ αi


=
∑


i,s,t


as ⊗ at ⊗ c
(i)
st αi.


By (6.9) we have c
(i)
s,t = 0 whenever both s and t belong to S2. �


Define a sequence j0(A) ⊂ j1(A) ⊂ ... of ideals of A inductively as follows:


j0(A) = n(A)
ji+1(A) = {x ∈ A : x+ ji(A) ∈ n(A/ji(A))}.
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6.10. Proposition. Let j(A) =
⋃
i≥0 ji(A).


(i) If A is a Hopf algebra then j(A) is a Hopf ideal of A.
(ii) If A is noetherian then A/j(A) is absolutely reduced.
(iii) If ψ : A → B is a morphism in k-alg and B is absolutely reduced,


then ψ factors through A/j(A).


Proof. The first assertion follows by induction on i with the aid of Lemma
6.8. By Corollary 6.4 we see that if ji(A) = ji+1(A) then A/ji(A) is ab-
solutely reduced. This establishes (ii). Finally if ψ is as in (iii), then by
Proposition 6.7 ψ factors through A/n(A), and one concludes by the induc-
tive definition of j(A). �


We assume for the remainder of this section that the k-algebra A is of
finite type, and denote A/j(A) by Ar. If k′/k is a field extension we have a
natural inclusion n(A⊗kk


′) ⊂ n(A)⊗kk
′. This yields j(A⊗kk


′) ⊂ j(A)⊗kk
′,


hence a canonical surjective k′-algebra homomorphism


χk′ : (A⊗k k
′)r −→ Ar ⊗k k


′


It will be convenient to reformulate the result under consideration in terms
of k-schemes. Set X = Spec(A) and Xr = Spec(Ar). Then χk′ corresponds
to the closed immersion


(6.11) Spec(χk′) : Spec(Ar ⊗k k
′) −→ Spec((A⊗k k


′)r).


6.12. Proposition. If k′ ⊂ ks then χk′ is an isomorphism.


Proof. We first prove the useful


6.13. Lemma. Let X(ks) denote the closure of X(ks) ⊂ X(k̄) with respect


to the Zariski topology of X(k̄). Then Xr(k̄) = X(ks).


Proof. Since Xr is absolutely reduced the inclusion Xr(ks) ⊂ Xr(k̄) is an
equality [Bor, AG 13.3]. Thus


Xr(k̄) = Xr(ks) ⊂ X(ks).


For the reverse inclusion it will suffice to show that X(ks) ⊂ Xr(k̄) since
Xr(k̄) is a closed subset of X(k̄). Now X(ks) = Hom (Spec(ks),X). Since
Spec(ks) is absolutely irreducible any morphism φ : Spec(ks) → X factors
through Xr. Thus the inclusion Xr(ks) ⊂ X(ks) is in fact an equality. �


We now finish the proof of the Proposition. Assume that k′ ⊂ ks. Then
to show that χk′ is an isomorphism we may pass to k̄. This corresponds to
the closed immersion


(6.14) Spec(Ar ⊗k k̄) →֒ Spec
(
(A⊗k k


′)r ⊗k′ k̄
)
.


By the last Lemma both of these affine varieties have the same k̄-points,
so their underlying topological subspaces agree ([DG] I §3 prop. 6.8). This
means that Ar ⊗k k̄ is defined by an ideal inside the nilradical of (A ⊗k


k′)r ⊗k′ k̄. Since this last k̄-algebra is reduced (Proposition 6.10) the result
follows. �
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A more functorial approach to the type of problem we have considered in
this Appendix can be found in B. Conrad’s recent preprint [Crd].
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ematik und ihrer Grenzgebiete 21 (1990), Springer-Verlag.


[Bor] A. Borel, Linear Algebraic Groups (Second enlarged edition), Graduate text in
Mathematics 126 (1991), Springer.
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