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Abstract


Let F be a field and M be a maximal subgroup of the multiplicative


group F
∗ = F \ {0}. It is proved that if M is divisible, then F is Euclidean.


Furthermore, it is shown that F
∗ contains a divisible maximal subgroup if


and only if F
∗ is isomorphic to the multiplicative group of a real closed field.


1 Introduction


Given the field of real numbers R, denote by R∗ and R+ the multiplicative group


of real numbers and the multiplicative group of positive real numbers, respectively.


We recall that a nontrivial multiplicative abelian group G is divisible if and only


if G has no maximal subgroup if and only if G = Gp for each prime p. It is easily


seen that R+ is a divisible maximal subgroup of R∗ and R is Euclidean. The object


of this note is to show that this property on the multiplicative group of a field F


gives rise to F being Euclidean. Furthermore, if R is a real closed field, then it


is easily seen that (cf. Theorem A below) R∗ contains a unique maximal subgroup


which is divisible. Here, we also characterize the multiplicative group of a real closed


field in terms of its divisible maximal subgroup. To be more precise, it is proved


that F ∗ contains a divisible maximal subgroup if and only if F ∗ is isomorphic to


the multiplicative group of a real closed field. We begin our investigation with the


following easy


Lemma 1. Let G be a multiplicative abelian group and M be a maximal subgroup


of G. If M is divisible, then M is the unique maximal subgroup of G.
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Proof. Assume that M1 6= M is another maximal subgroup of G. Then, we have


G = MM1 and hence G/M1
∼= M/M ∩ M1, i.e., M ∩ M1 is a maximal subgroup of


M . Since M is divisible we conclude that M ∩M1 = 1. Therefore, G/M1
∼= M ∼= Cq


for some prime number q, where Cq is the cyclic group of q elements. This last


relation also leads to a contradiction since a finite group cannot be divisible, and so


M = M1 as required. �


We shall also need the following theorem to prove our main result:


Theorem A [1, p. 107]. If F is a real closed field, then F ∗ ∼= Z2×Q|F |. Conversely,


for any infinite cardinal λ, the group Z2×Qλ is isomorphic to the multiplicative group


of a suitable real closed field.


Theorem 1. Let M be a maximal subgroup of F ∗. Then, we have


(1) If M is divisible, then the Brauer group of F is non-trivial and F is Euclidean.


(2) F ∗ contains a divisible maximal subgroup if and only if F ∗ is isomorphic to the


multiplicative group of a real closed field.


Proof. (1) Assume that M is a maximal subgroup of F ∗ with F ∗/M ∼= Cp for


some prime p. We first claim that there exists a cyclic field extension K/F of degree


p such that N(K∗) = F ∗p = M , where N is the norm of K to F . To see this,


we know, by Lemma 1, that M is the unique maximal subgroup of F ∗ such that


F ∗/M ∼= Cp. Since M is divisible and maximal in F ∗, by 4.1.4 of [3], we have


F ∗ ∼= M × Cp. This means that F contains a primitive p-th root of unity. Now,


it is easily seen that there is an element a ∈ F such that the equation xp − a = 0


has no solutions in F . Since F has a primitive p-th root of unity we obtain a cyclic


extension K = F (b) of degree p over F with bp − a = 0. Now, if the norm N


of K to F is surjective, i.e., N(K∗) = F ∗, then K∗/K1 ∼= F ∗, where K1 is the


group of norm 1 elements. Hence K∗/K1 contains a maximal subgroup MK , say,


containing K1 of index p which is divisible. By Lemma 1, MK is unique. Now,


MK is also a maximal subgroup of K∗ and since it is divisible, by 4.1.4 of [3], we


obtain K∗ ∼= MK × Cp. This means that there exists an element 1 6= c ∈ Cp ⊂ K


with cp = 1. Since F contains a primitive p-th root of unity we conclude that
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c ∈ F . Therefore, N(c) = cp = 1, i.e., c ∈ K1 ⊂ MK . But this contradicts the


fact that MK ∩ Cp 6= 1. Therefore, N(K∗) 6= F ∗. Since F ∗/N(K∗) is torsion of


bounded exponent p and M is unique, by Prũfer-Baer Theorem (cf. [3, p. 105]),


we conclude that N(K∗) = F ∗p = M , as claimed. Now, assume that the Galois


group of K/F is generated by the automorphism σ of order p = [K : F ]. Fix an


element λ ∈ F ∗ \ M and a symbol y. We set D = K1 ⊕ Ky ⊕ · · · ⊕ Kyp−1, and


multiply elements of D by using distributive law, and the rules yp = λ, yk = σ(k)y


for all k ∈ K. In this way, we obtain the cyclic algebra (K/F, σ, λ). Now, since


M = N(K∗) we conclude that λ /∈ N(K∗). Thus, by Corollary 14.8 of [2], D is a


division algebra and hence Br(F ) 6= 0. Finally, since K = F (b) with bp = a ∈ F


we obtain N(b) = (−1)p+1a. Because N(K∗) = F ∗p = M there is λ ∈ F such


that N(b) = λp. Thus, (−1)p+1bp = λp. If p is odd, then in the presence of the


primitive p-th root of unity in F one concludes that b ∈ F which is a contradiction


and so p = 2. Thus, we have F ∗ ∼= M × C2, which shows that −1 /∈ M . The


equation x2 + 1 = 0 over F has no root in F since a2 = −1 with a ∈ F implies


that −1 ∈ M which is false. Now, consider the extension L = F (i) with i2 = −1.


The above proof shows that NL/F (L∗) = M . We claim that M defines a positive


cone for F . It is clear that M ∩ −M = ∅, MM ⊆ M , and M ∪ −M ∪ {0} = F .


To show that M + M ⊆ M , take α, β ∈ M . Since M = F ∗2, there exist λ, µ ∈ F ∗


such that α = λ2, β = µ2. Now, consider the element x = λ + µi ∈ L. We have


NL/F (x) = λ2 + µ2 = α + β ∈ M since N(L∗) = M . Therefore, F is formally real


and since M = F ∗2 we conclude that F is Euclidean.


(2) One way is clear from Theorem A. If M is the divisible maximal subgroup of


F ∗, then from the proof of (1) we have F ∗ ∼= M ×C2. Since M is divisible from the


theory of divisible abelian groups we know that M is a direct product of quasi-cyclic


and full rational groups (cf. [1, p. 96] ). We claim that M contains no primitive p-th


root of unity. Since −1 is not in M it suffices to consider p > 2. If ω is a primitive p-


th root of unity, then for p 6= 2 we have 12+ω2+· · ·+ω2(p−1) = (ω2p−1)/(ω2−1) = 0,


which is not possible in a formally real field. Thus, we cannot have any copy of a


quasi-cyclic group in our decomposition of M and hence M ∼= Qλ for some cardinal


λ. Since Q is of torsion-free rank 1, λ is the torsion-free rank of F ∗. Now, because


CharF = 0 we have Q∗ ⊂ F ∗, and hence λ is infinite by Lemma 4.1.16 of [1] which


asserts that Q∗ ∼= Z2 × Zℵ0 . Therefore, we have M ∼= Qλ for some infinite cardinal
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λ. Now, by Theorem A, we obtain the result. �


We observe that in the conclusion of the theorem F need not necessarily be real


closed. In fact, if F is obtained from the rationals Q by iteratively adjoining roots


of positive real algebraic numbers, the positive cone of the resulting field F is such


a maximal subgroup. But F is not real closed.
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