
On hyperbolic Clifford algebras with

involution∗

M. G. Mahmoudi

November 6, 2008

Abstract

The aim of this article is to provide a characterization of quadratic
forms of low dimension such that the canonical involutions of the their
Clifford algebras are hyperbolic.

1 Introduction

Clifford algebra is an important invariant associated to a quadratic form.
Many properties of other invariants of quadratic forms like discriminant,
Hasse invariant and Witt invariant can be better understood in the context
of Clifford algebras. To every n-dimensional quadratic form q over a field K,
one can, in a canonical way, associate a 2n-dimensional K-algebra which is
denoted by C(q) or C(V, q) where V is the underlying vector space q. This
K-algebra has an important subalgebra called the “even Clifford algebra”
of q which is denoted by C0(q) or C0(V, q). The algebra C0(q) is a 2n−1-
dimensional K-algebra. If n is even C(q) is a K-central simple algebra and
if n is odd, C0(q) is a K-central simple algebra. In the Brauer group of K,
the class of C(q) if n is even and the class of C0(q) if n is odd coincides with
the Witt invariant of q.

An involution ϕ of a ring R (with unity) is a bijective map ϕ : R → R
which satisfies ϕ(x + y) = ϕ(x) + ϕ(y), ϕ(xy) = ϕ(y)ϕ(x) and ϕ(ϕ(x)) =
x for all x, y ∈ R. Many algebras associated to a quadratic form are
naturally endowed with involutions. A typical example is the endomorphism
algebra End(V ) (where V is the underlying vector space of the quadratic
form q). This algebra has a natural involution which is the adjoint map σq :
End(V ) → End(V ) satisfying bq(x, f(y)) = bq(σq(f)x, y) for every x, y ∈ V
and f ∈ End(V ), here bq is the symmetric bilinear form associated to q,
i.e., bq(x, y) = 1

2(q(x + y) − q(x) − q(y)). The map σq is an involution of
End(V ) which also satisfies σq(af) = aσq(f), i.e., σq is K-linear. Clifford
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algebra C(V, q) also has natural involutions: the identity map id : V → V
and − id : V → V induce involutions over C(q) which are denoted by J id

and J− id respectively. These involutions have the same restrictions to the
even Clifford algebra, this restriction is denoted by J .

Many properties of a quadratic form q can be conveniently expressed in
terms of the algebra with involution (End(V ), σq). Investigating the prop-
erties of an algebra with involution (A,σ) which have counterparts in the
algebraic theory of quadratic forms has been the subject of extensive study
in the literature. One of these properties is hyperbolicity. Hyperbolic al-
gebra with involutions can be intrinsically defined in such a way that the
hyperbolicity of the algebra with involution (End(V ), σq) is equivalent to
the hyperbolicity of q (c.f. [1] or [5, Ch. II]).

A natural question which arises is the following:

Question 1.1. Suppose that (C(q), J id) or (C(q), J− id) or (C0(q), J) are
hyperbolic. What conclusion can one draw about q?

The aim of this article is study this question for quadratic forms of low
dimension. The main results of this article can be summarized as follows:

Theorem 1.2. Let (V, q) be a quadratic space with dim q 6 8. Then the
algebra with involution (C0(V, q), J) is a hyperbolic if and only if q contains
a subform q0 of trivial discriminant with dim q0 ≡ 2 (mod 4).

Theorem 1.3. Let (V, q) be a quadratic space with dim q 6 5. Then the
algebra with involution (C(V, q), J id) is a hyperbolic if and only if q contains
a subform q0 of trivial discriminant with dim q0 ≡ 2 or 3 (mod 4).

Theorem 1.4. Let (V, q) be a quadratic space with dim q 6 5. Then the al-
gebra with involution (C(V, q), J− id) is a hyperbolic if and only if q contains
a subform q0 of trivial discriminant with dim q0 ≡ 1 or 2 (mod 4).
If dim q = 6 then (C(V, q), J− id) is a hyperbolic if and only if q⊥〈−1,d±q〉
is isotropic.

The proofs of these statements are given in §3 where for each dimension
a more detailed statement is provided.

The Book of Involutions [5] and the articles [2], [3], [4] which have been
sources of inspiration for our work, contain some special cases of these theo-
rems, either implicitly or as a result of more general theorems. Our approach
even for these known cases is different.

2 Preliminaries

All fields considered in this article are supposed to be of characteristic dif-
ferent from 2.
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2.1 Quadratic forms

The reader is referred to the books [7, 9, 10] for basic notions of quadratic
forms. We just recall some notations for later use. If (V, q) is a quadratic
space over a field K where V is the underlying vector space of q, a di-
agonalization of q with respect to an orthogonal basis {e1, · · · , en} with
q(e1) = a1, q(e2) = e2, · · · , q(en) = an is denoted by 〈a1, · · · , an〉. The
discriminant (signed determinant) of q which is denoted by d±(q) is defined

by d±(q) = (−1)
n(n−1)

2 a1 · · · an ∈ K×/K×2.

2.2 Hermitian forms and involutions

Let K be a field and let A be a K-central simple algebra and let σ be
an involution of A. Let V be a simple left A-module, by Schur lemma
D = EndA(V ) is division algebra. By Wedderburn-Artin theory V has a
right D-module structure and A = EndD(V ). It is known that σ is adjoint
of some ε-hermitian form h : V × V → D with respect to some involution τ
on D, i.e., h(x, f(y)) = h(σ(f)(x), y) for all x, y ∈ V and f ∈ EndD(V ). We
recall that an ε-hermitian form h : V ×V → D with respect to the involution
τ (where ε = ±1) is bi-additive map which satisfies h(xa, yb) = τ(a)h(x, y)b
and h(x, y) = ετ(h(y, x)) for all x, y ∈ V and a, b ∈ D. If ε = 1 (resp.
ε = −1), an ε-hermitian form (V, h) is also called a hermitian form (resp.
skew hermitian form) with respect to the involution τ .

If (A,σ) is a K-central simple algebra with involution, the set of all
symmetric elements of K with respect to σ, i.e., elements a ∈ K such that
σ(a) = a, form a subfield k. It is known that either K = k or K/k is a
quadratic extension. In the first case, σ is said to be of the first kind, in
the second case, σ is said to be of the second kind. The sets A+ = {x ∈ A :
σ(x) = x} (resp. A− = {x ∈ A : σ(x) = −x}), i.e., the set of symmetric
(resp. skew symmetric) elements of A with respect to the involution σ form
a vector space over k. If dimk A+ > dimk A− the involution σ is said to be
of orthogonal type. If dimk A− > dimk A+, the involution σ is said to be
of symplectic type. If dimk A+ = dimk A−, the involution σ is said to be of
unitary type.

If σ is of orthogonal type, Knus, Parimala and Sridharan [6] showed that
the square class of the reduced norm of an invertible skew-symmetric element
a of A is independent from the choice of a. As a result, the discriminant
of σ which is denoted by disc(σ), is defined in [5] as the square class of
(−1)m Nrd(a) where m = 1

2 deg A.

2.3 Hyperbolic and isotropic involutions

An central simple algebra with involution (A,σ) is said to be hyperbolic
if σ is adjoint of a hyperbolic ε-hermitian form over D where D is the
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division algebra defined in the previous paragraph. It is known (c.f. [1])
that (A,σ) is hyperbolic if and only if A contains an idempotent e such that
σ(e) = 1− e. The last condition is also equivalent to the existence of a skew
symmetric element f ∈ A, i.e., σ(f) = −f , such that f2 = 1 (it suffices to
put f := 2e − 1).

It is necessary to extend this definition of hyperbolicity to algebras with
involution of the form (A0 × Aop

0 , σ), where A0 is a central simple algebra,
and Aop

0 is the opposite algebra and σ is the exchange involution σ(a, bop) =
(b, aop). This convention is specially useful in the context of Clifford algebras.

A central simple algebra with involution (A,σ) is called isotropic if there
exists an nonzero element a ∈ A such that σ(a)a = 0.

2.4 Clifford algebras

We use standard isomorphism theorems of Clifford algebras like C(q′⊥q) ≃
C(q′) ⊗ C(d±q′ · q) where q′ is an even-dimensional form and C0(q

′⊥q) ≃
C0(q)⊗C(−d±q·q) where q′ is an odd dimensional form and C0(a·q) ≃ C0(q)
where a is a nonzero scalar: see [7]. See also [8] for an involutorial version.

3 Hyperbolic Clifford algebras

3.1 General sufficient conditions

We have the following result from [5, Proposition 8.5] and [2, Lemma 1.1]:

Proposition 3.1. The involutions J id, J− id and J are hyperbolic if (V, q)
is isotropic.

For the convenience of the reader we give the argument here: first note
that it suffices to show the hyperbolicity of J ; the hyperbolicity of J id and
J− id then follows. As q is isotropic there exist two vectors x, y ∈ V such
that q(x) = q(y) = 0 and bq(x, y) = 1

2 . Now consider the element e = x · y ∈
C0(V, q). We have e2 = e and J(e) = 1 − e, hence J is hyperbolic.

In the next proposition we provide less stringent sufficient conditions
which imply the hyperbolicity of J id, J− id or J :

Proposition 3.2. Let (V, q) be a quadratic space over a field K.

(i) If q contains a subform q0 with trivial discriminant and dim q0 ≡
2 or 3 (mod 4) then J id is hyperbolic.

(ii) If q contains a subform q0 with d±q0 = 1 and dim q0 ≡ 1 or 2 (mod 4)
then J− id is hyperbolic.

(iii) If q contains a subform q0 with d±q0 = 1 and dim q0 ≡ 2 (mod 4) then
J is hyperbolic.
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Proof. Let {f1, f2 · · · , fm} ⊂ V be an orthogonal basis of q0. We consider
the product f = f1 · f2 · · · fm ∈ C(V, q).

If m ≡ 2 or 3 (mod 4), we have J id(f) = −f . We also have f2 = d±q0 =
1, so J id is hyperbolic in this case.

If m ≡ 1 or 2 (mod 4), we have J− id(f) = −f . We also have f2 =

d±q0 = 1, so J− id is hyperbolic.
If m ≡ 2 (mod 4), we have f ∈ C0(V, q). As J(f) = −f and f2 = 1 we

conclude that J is hyperbolic. �

3.2 Special necessary and sufficient conditions

The Clifford algebra of a one dimensional form q over a field K is isomorphic
to K(

√

d±q) if d±q 6= 1 and is isomorphic to K ×K if d±q = 1. In the first
case the involution J− id is the nontrivial K-automorphism of K(

√

d±q) and
in the later case J− id is the exchange involution of K×K. The even Clifford
algebra of q is K and J is identity map of it. These well-known informations
are summarized as the following:

Proposition 3.3. Let (V, q) be a one dimensional quadratic space over a
field K.

(i) The involution J id is identity map hence it is not hyperbolic.

(ii) The involution J− id is hyperbolic if and only if d±q = 1.

(iii) The involution J is the identity map hence it is not hyperbolic.

The characterization of the quadratic form q with dim q = 2 for which
the associated canonical involutions of Clifford algebra are hyperbolic which
is given in Corollary 3.5 can be obtained using the following known result:

Proposition 3.4. Let (Q,σ) be a quaternion algebra with involution over
a field K.

(i) If σ is orthogonal then σ is hyperbolic if and only if discσ = 1.

(ii) If σ is symplectic then σ is hyperbolic if and only if Q splits.

Proof. For (i) see [3, Proposition 2.1]. For (ii) see [4, Lemma 16]. �

Corollary 3.5. Let (V, q) be a two dimensional quadratic space over a field
K.

(i) The involution J id is hyperbolic if and only if q is isotropic.

(ii) The involution J− id is hyperbolic if and only if q represents 1.
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(iii) The involution J is hyperbolic if and only if q is isotropic.

Proof. The involution J id is orthogonal. By Proposition 3.4 we deduce
that it is hyperbolic if and only if disc(J id) = 1. Let q ≃ 〈a, b〉 a diagonaliza-
tion of q and let e1, e2 be two orthogonal vector of V with respect to q, such
that q(e1) = a, q(e2) = b. We consider the element f = e1 · e2 ∈ C(V, q).
We have f2 = −ab and J id(f) = −f . As f is an skew symmetric element of
C(V, q) with respect to J id, the square class of its reduced norm coincides
with the discriminant of J id. The reduced norm of f is −ab thus d±q = 1.
We conclude that q is isotropic. This proves (i).

As the involution J− id is symplectic, by previous proposition, it is hy-
perbolic if and only if C(V, q) splits. Now keeping the notations of the
previous paragraph, C(V, q) is isomorphic as K-algebra with the quaternion
algebra (a, b)K generated by i = e1, j = e2 subject to the relations: i2 = a,
j2 = b and ij = −ji. It is known that this algebra splits if and only if
the four dimensional form 〈1,−a,−b, ab〉 is hyperbolic. This implies that
q ≃ 〈a, b〉 ≃ 〈1, ab〉. Thus q represents 1 and the proof of (ii) is done.

To prove (iii) note that when dimV = 2, the hyperbolicity of J id and J
are equivalent. �

Proposition 3.6. Let (V, q) be a three dimensional quadratic space over a
field K.

(i) J id is hyperbolic if and only if q is isotropic or d±q = 1.

(ii) J− id is hyperbolic if and only if q represents 1.

(iii) J is hyperbolic if and only if q is isotropic.

Proof. Let q ≃ 〈a, b, c〉 a diagonalization of q and let {e1, e2, e3} be an
orthogonal basis of V with respect to q, such that q(e1) = a, q(e2) = b and
q(e3) = c.

(i) As J id is hyperbolic, there exists an skew symmetric element z ∈
C(V, q) with respect to J id such that z2 = 1. We can write z = λ12e1e2 +
λ13e1e3 + λ23e2e3 + λ123e1e2e3 where λ12, λ13, λ23, λ123 ∈ K. From the re-
lation z2 = 1 we obtain: λ12λ123 = λ13λ123 = λ23λ123 = 0 and −abλ2

12 −
acλ2

13 − bcλ2
23 − abcλ2

123 = 1. If λ123 = 0, the form q′ = 〈−ab,−ac,−bc〉
represents 1. As d±q′ = 1, we deduce that q′ is isotropic so q is isotropic as
well. If λ123 6= 0, we obtain λ12 = λ13 = λ23 = 0. We obtain −abc ∈ K×2

so d±q = 1.
(ii) As J−d is hyperbolic, there exists an skew symmetric element z ∈

C(V, q) with respect to J− id such that z2 = 1. We can write z = λ1e1 +
λ2e2 +λ3e3 +λ12e1e2 +λ13e1e3 +λ23e2e3 where λ1, λ2, λ3, λ12, λ13, λ23 ∈ K.
From the relation z2 = 1 we obtain z2 = λ2

1a + λ2
2b + λ2

3c− λ2
12ab − λ2

13ac−
λ2

23bc+2(λ1λ23 −λ2λ13 +λ3λ12)e1e2e3 = 1. We then have λ2
1a+λ2

2b+λ2
3c−
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λ2
12ab − λ2

13ac − λ2
23bc = 1 and λ1λ23 − λ2λ13 + λ3λ12 = 0. We have two

cases: −abc ∈ K×2 and −abc 6∈ K×2. In the first case let d ∈ K an element
such that d2 = −abc. We obtain

1 = λ2
1a + λ2

2b + λ2
3c − λ2

12ab − λ2
13ac − λ2

23bc
= λ2

1a + λ2
2b + λ2

3c − λ2
12ab − λ2

13ac − λ2
23bc+

2d(λ1λ23 − λ2λ13 + λ3λ12)
= a(λ1 + a−1dλ23)

2 + b(λ2 − b−1dλ13)
2 + c(λ3 + c−1dλ12)

2

So in this case, q represents 1. Now suppose that −abc 6∈ K×2. We have an
isomorphism of algebras with involution

(C(〈a, b, c〉), J− id) ≃ (C(〈a, b〉), J− id) ⊗ (C(〈−abc〉), J id).

Note that C(〈−abc〉) ≃ K(
√
−abc) is a quadratic extension of K and J id

restricts the identity map of this extension. Using Proposition 3.4 (ii) we de-
duce that the quaternion algebra C(〈a, b〉) ≃ (a, b)K splits over K(

√
−abc).

This shows that the forms 〈1,−a,−b, ab〉 which is the norm form of q is hy-
perbolic over K(

√
−abc). It follows that 〈a, b〉 represents 1 over K(

√
−abc).

This readily implies that 〈a, b, c〉 represents 1 over K which concludes the
proof.

(iii) In this case λ123 is necessarily 0 so as in the first part of the we
deduce that q is isotropic. �

Notation 3.7. Let (A, J) be a finite dimensional algebra with involution
over a field K. The set of symmetric elements of A with respect to J with
trace zero is denoted by sym0(A, J) or simply by sym0(J).

Proposition 3.8. Let (V, q) be a five dimensional quadratic space over a
field K. Then J is hyperbolic if and only if q is isotropic. (See [5, Prop.
15.21])

Proof. Let q ≃ 〈a, b, c, d, e〉 be a diagonalization of q and let {e1,e2,e3,e4,e5}
be an orthogonal basis of V with respect to q such that q(e1) = a, q(e2) = b,
q(e3) = c, q(e4) = d and q(e5) = e.

For every x ∈ sym0(J) we have x2 ∈ K. Consider the map s : sym0(J) →
K defined by s(x) = x2. We have an isomorphism (V, q) ≃ (sym0(J), s) de-
fined by x 7→ e1e2e3e4e5x. So it is enough to show that (sym0(J), s) is
isotropic. The involution J is symplectic. As J is hyperbolic, there is a de-
composition (C0(V, q), J) ≃ (M2(K), ρ)⊗(Q, τ), where ρ is the canonical in-
volution of M2(K) and τ is an orthogonal involution of a quaternion algebra
Q over K (see [1, Theorem 2.2]). Let y ∈ Q a skew symmetric element with

y2 = α ∈ K×. We consider two symmetric elements s1 =

(

0 1
−1 0

)

⊗ y
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and s2 =

(

1 0
0 −1

)

⊗ y in sym0(J). We have s2
1 = −α and s2

2 = α. We

conclude that (sym0(J), s) is isotropic. �

Proposition 3.9. Let (V, q) be a four dimensional quadratic space over a
field K.

(i) J is hyperbolic if and only if q is isotropic. (See [5, Prop. 15.14])

(ii) J− id is hyperbolic if and only if q represents 1.

(iii) J id is hyperbolic if and only if q represents −d±q.

Proof. Let q ≃ 〈a, b, c, d〉 a diagonalization of q and let {e1, e2, e3, e4} be
an orthogonal basis of V with respect to q such that q(e1) = a, q(e2) = b,
q(e3) = c and q(e4) = d.

(i) First we suppose that d±q = 1. As scaling q does not, up to isomor-
phism, affect (C0(q), J), we may assume that a = 1 and d = bc so we have
q ≃ 〈1, b, c, bc〉 and (e1e2)

2 = −b and (e1e3)
2 = −c. Let Q be the quaternion

algebra generated by i = e1e2, j = e1e3 over K. We have Q ≃ (−b,−c)K .
We can write C0(V, q) = Q ⊕ Q · (e1e2e3e4). We have the isomorphism
C0(V, q) ≃ Q×Q with (x+y · (e1e2e3e4)) 7→ (x+y, x−y) for x, y ∈ Q. The
involution J of C0(V, q) corresponds to the involution J∗ : Q × Q → Q × Q
with J∗(x, y) = (γ(x), γ(y)) where γ = J |Q. Note that γ is the canonical
involution of Q. As J is hyperbolic, there exists (x, y) ∈ Q × Q such that
(x, y)2 = 1 and J∗(x, y) = −(x, y). This implies that γ is hyperbolic and by
Proposition 3.4, Q is not a division algebra and 〈1, b, c, bc〉 is isotropic.

Now suppose that δ = d±q 6= 1. In this case C0(V, q) is a quaternion
algebra over K(

√
δ) and J is an involution of the first kind and of symplectic

type. In particular J is hyperbolic if and only if C0(V, q) splits. As q ≃
〈a, b, c, d〉 we have the isomorphism C0(V, q) ≃ (−ab,−ac)K(δ). The algebra

C0(V, q) splits if and only if 〈1, ab, ac, bc〉 is isotropic over K(
√

δ). This
readily implies that q is isotropic.

An alternative proof may also be given using Proposition 3.6. We have
the isomorphism of algebras with involution

(C0(q), J) ≃ (C(−d · 〈a, b, c〉), J− id).

If J is hyperbolic, using Proposition 3.6 we deduce that the three dimen-
sional form −d·〈a, b, c〉 represents 1 over K. It follows that 〈a, b, c〉 represents
−d over K, hence q ≃ 〈a, b, c, d〉 is isotropic.

(ii) We have an isomorphism of algebras with involution (C(q), J− id) ≃
(C0(q⊥〈−1〉), J). From Proposition 3.8 we deduce that q⊥〈−1〉 is isotropic,
therefore q represents 1.

There is however a more elementary proof in the case where d±q = 1.
As J− id is hyperbolic, there exits a skew symmetric element z ∈ C(V, q)
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with respect to J− id such that z2 = 1. The element z can be written as
z = λ1e1 + λ2e2 + λ3e3 + λ4e4 + λ12e1e2 + λ13e1e3 + λ14e1e4 + λ23e2e3 +
λ24e2e4 + λ34e3e4. We obtain z2 = A + B + C + D where

A = λ2
1a + λ2

2b + λ2
3c + λ2

4d,
B = −λ2

12ab − λ2
13ac − λ2

14ad − λ2
23bc − λ2

24bd − λ2
34cd,

C = (2λ1λ23 − 2λ2λ13 + 2λ3λ12)e1e2e3+
(2λ1λ24 − 2λ2λ14 + 2λ4λ12)e1e3e4+
(2λ2λ34 − 2λ3λ24 + 2λ4λ23)e2e3e4,

D = (2λ12λ34 − 2λ13λ24 + 2λ14λ23)e1e2e3e4.

As z2 = 1 ∈ K so C = D = 0 and we obtain 1 = A + B. As

d±q = 1, there exists an element δ ∈ K such that δ2 = abcd. We then
obtain B = −ab(λ2

12 + δ
ab

λ34)
2 − ac(λ13 − δ

ac
λ24)

2 − ad(λ14 + δ
ad

λ23)
2. Now

from the relation A + B = 1 we deduce that the seven dimensional form
〈a, b, c, d,−ab,−ac,−ad〉 represents 1. The eight dimensional form q′ =
〈1,−a,−b,−c,−d, ab, ac, ad〉 is so isotropic. We have

q′ ≃ 〈1,−a,−b,−c,−abc, ab, ac, bc〉,

so q′ is a Pfister form, therefore q′ is hyperbolic. We deduce that the form
〈1,−a,−b,−c,−d〉 which is a Pfister neighbor of q′ is isotropic. We conclude
that q represents 1.

(iii) We have an isomorphism of algebras with involution

(C(〈a, b, c, d〉), J id) ≃ C(〈−cda,−cd,−abc,−abd〉), J− id).

From (ii) we deduce that the four dimensional form 〈−cda,−cd,−abc,−abd〉
represents 1. It follows that q = 〈a, b, c, d〉 represents −abcd = −d±q.

An alternative proof for the case where d±q = 1 can be given as the
following. As J id is hyperbolic, there exits a skew symmetric element z ∈
C(V, q) with respect to J id such that z2 = 1. We can write

z = (λ12e1e2 + λ13e1e3 + λ14e1e4 + λ23e2e3 + λ24e2e4 + λ34e3e4)+
(λ234e2e3e4 + λ134e1e3e4 + λ124e1e2e4 + λ123e1e2e3)

We obtain z2 = A + B + C + D where

A = −λ2
12ab − λ2

13ac − λ2
14ad − λ2

23bc − λ2
24bd − λ2

34cd,
B = −λ2

234bcd − λ2
134acd − λ2

124abd − λ2
123abc,

C = −2(λ23λ123bc + λ24λ124bd + λ34λ134cd)e1

+2(λ13λ123ac + λ14λ124ad + λ34λ234cd)e2

+2(−λ12λ123ab + λ14λ134ad + λ24λ234bd)e3

−2(λ12λ124ab + λ13λ134ac + λ23λ234bc)e4,
D = 2(λ12λ34 − λ13λ24 + λ14λ23)e1e2e3e4.
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As z2 = 1 ∈ K so C = D = 0. We obtain z2 = A + B = 1. Consider
an element δ ∈ K such that δ2 = abcd. Note that −abcdA = cd(λ12ab +
λ34δ)

2 + bd(λ13ac−λ24δ)
2 + bc(λ14ad+ λ23δ)

2 and −abcdB = (λ124bcd)2a+
(λ134acd)2b + (λ124abd)2c + (λ123abc)2d. From the relation −abcd(A + B) =
−abcd we deduce that the seven dimensional form 〈cd, bd, bc, a, b, c, d〉 repre-
sents −abcd. So the eight dimensional form q′ = 〈cd, bd, bc, a, b, c, d, abcd〉 is
isotropic. We have 〈cd, bd, bc, a, b, c, d, abcd〉 ≃ 〈cd, bd, bc, bcd, b, c, d, 1〉 so q′

is a Pfister form, consequently q′ becomes hyperbolic. As q′′ = 〈a, b, c, d, 1〉 is
a Pfister neighbor of q′ so q′′ is hyperbolic and we conclude that q represents
−1. �

Proposition 3.10. Let (V, q) be a five dimensional quadratic space over a
field K. Then J id is hyperbolic if and only if q contains a three dimensional
subform of trivial discriminant.

Proof. Let q ≃ 〈a, b, c, d, e〉 be a diagonalization of q and let {e1, e2, e3, e4, e5}
be an orthogonal basis of V with respect to q such that q(e1) = a, q(e2) = b,
q(e3) = c, q(e4) = d and q(e5) = e.

We have an isomorphism of algebras with involution

(C(q), J id) ≃ (C(q′), J id) ⊗ (K(
√

δ), id)

where q′ = 〈a, b, c, d〉 and δ = d±q = abcde. From Proposition 3.9 (iii) we de-
duce that q represents −d±q′ = −abcd over K(

√
δ). It follows that the form

〈a, b, c, d, abcd〉 is isotropic over K(
√

δ). Note that 〈a, b, c, d, abcd〉 ≃
K(

√
δ)

〈a, b, c, d, e〉. Therefore q is isotropic over K(
√

δ). This implies that q a
contains two dimensional form ϕ similar to 〈1,−δ〉. The Witt complement
of ϕ in q is the desired form. �

Proposition 3.11. Let (V, q) be a six dimensional quadratic space over a
field K. Then J is hyperbolic if and only if d±q = 1 or q is isotropic. (See
[5, Prop. 15.39])

Proof. Let q ≃ 〈a, b, c, d, e, f〉 be a diagonalization of q and let {e1, e2,
e3, e4, e5, e6} be an orthogonal basis of V with respect to q such that q(e1) =
a, q(e2) = b, q(e3) = c, q(e4) = d, q(e5) = e and q(e6) = f .

If d±q = 1 we have done. Suppose that δ = d±q 6= 1. In this case
C0(V, q) is a biquaternion algebra over K(

√
δ). We will show that if J is

hyperbolic then q is isotropic. As for every α ∈ K× we have an isomorphism
of algebras with involution (C0(V, α · q), J) ≃ (C0(V, q), J), by scaling we
may assume that f = 1 and so q ≃ q0⊥〈1〉 where q0 = 〈a, b, c, d, e〉. We have

d±q = −abcde. Let V0 be the underlying vector space of q0. We have

(C0(V, q), J) ≃ (C0(V0, q0) ⊗ K(
√

d±q), J ⊗ τ)
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where τ is the nontrivial automorphism of K(
√

d±q)/K. Consider the
element ξ = e1e2e3e4e5 ∈ C0(V0, q0). We have ξ2 = abcde. Consider
the map ϕ : V0 → sym0(C0(V0, q0), J) defined by ϕ(v) = ξv. Let s :
sym0(C0(V0, q0), J) → K defined s(x) = x2. The map ϕ induces an isomor-
phism of quadratic spaces (V0, q0) ≃ (sym0(C0(V0, q0), J), s). It is enough
to show that q0 represents −1. As (C0(V, q), J) is hyperbolic, there exists
z ∈ C0(V0, q0, ) such that J(z) = z and z2 = d±q. Note that these relations
imply that z ∈ sym0(C0(V0, q0), J). Let w ∈ V0 such that ϕ(w) = z. We
obtain then ξw = z and so ξ2w2 = z2 and this implies that q0(w) = w2 =
−1. �

Proposition 3.12. Let (V, q) be a five dimensional quadratic space over a
field K. Then J− id is hyperbolic if and only if q represents 1 or d±q = 1.

Proof. Let q ≃ 〈a, b, c, d, e〉 be a diagonalization of q and let {e1, e2, e3, e4, e5}
be an orthogonal basis of V with respect to q such that q(e1) = a, q(e2) = b,
q(e3) = c, q(e4) = d and q(e5) = e.

We have an isomorphism of algebras with involution (C(q), J− id) ≃
(C0(q⊥〈−1〉), J). Using Proposition 3.11 we deduce that q⊥〈−1〉 is either
isotropic or has trivial discriminant. This implies that either q represents 1
or d±q = 1. �

Proposition 3.13. Let (V, q) be an eight dimensional quadratic space over
a field K. Then J is hyperbolic if and only if q is isotropic or it contains a
subform isometric to an Albert form.

Proof. First suppose that d±q = 1. We have an isomorphism (C0(q), J) ≃
(A,σ) × (A,σ) where A is a central simple algebra of degree 8 with an
involution σ of trivial discriminant. By Triality Lemma (c.f. [5, 42.3] )
we have (C0(A,σ), σ) ≃ (EndV, adq) × (A,σ). By [2, 2.3], we deduce that
q ≃ H⊥α where α is an Albert form over K and H is a hyperbolic plane
over K.

Now suppose that δ = d±q 6= 1. If q is isotropic we have done. We may
then assume that q is anisotropic. According to the previous paragraph,
q|

K(
√

δ) is isotropic. We therefore obtain q ≃ 〈λ,−λδ〉⊥α, where λ ∈ K×

and α is an Albert form over K. �

Proposition 3.14. Let (V, q) be a seven dimensional quadratic space over
a field K. Then J is hyperbolic if and only if q contains an Albert form (or
equivalently J is hyperbolic if and only if q represents its discriminant).

Proof. Let δ = d±q. Consider the form q1 = q⊥〈−δ〉. This form is
an 8-dimensional form with trivial discriminant. The algebra (C0(q1), J) is
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hyperbolic. According to 3.13, q1 is either isotropic or contains an Albert
form. If q1 is isotropic we deduce that q ≃ 〈δ〉⊥α where α is an Albert form.
If q1 contains an Albert form then q1 is isotropic as d±q1 = 1 and we are
back to the first case. �

Proposition 3.15. Let (V, q) be a six dimensional quadratic space over a
field K. Then J− id is hyperbolic if and only if q⊥〈−1,d±q〉 is isotropic.

Proof. Let q ≃ 〈a, b, c, d, e, f〉 be a diagonalization of q and let {e1, e2,
e3, e4, e5, e6} be an orthogonal basis of V with respect to q such that q(e1) =
a, q(e2) = b, q(e3) = c, q(e4) = d, q(e5) = e and q(e6) = f .

We have an isomorphism of algebras with involution (C(q), J− id) ≃
(C0(q⊥〈−1〉), J). As (C(q), J− id) is hyperbolic, so is (C0(q⊥〈−1〉), J). From
Proposition 3.14 we deduce that ϕ = q⊥〈−1〉 contains an Albert form or
equivalently ϕ represents its discriminant. We have d±ϕ = −d±q. It follows
that q⊥〈−1,d±q〉 is isotropic. �
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