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Abstract

Fixing a field F' of characteristic different from 2 and 3, we consider
pairs (A, V) consisting of a degree 3 central simple F-algebra A and a
3-dimensional vector subspace V' of the reduced trace zero elements of A
which is totally isotropic for the trace quadratic form. Each such pair
gives rise to a cubic form mapping an element of V' to its cube; therefore
we call it a cubic pair over F'. Using the Okubo product in the case where
F contains a primitive cube root of unity, and extending scalars otherwise,
we give an explicit description of all isomorphism classes of such pairs over
F. We deduce that a cubic form associated with an algebra in this manner
determines the algebra up to (anti-)isomorphism.

Introduction

Consider a field F' of characteristic different from 2. Let A be a quaternion
algebra over F' and let A° denote the subspace of reduced trace zero elements
of A. Then for all z € A° we have z? € F. We thus obtain a quadratic form on
A® mapping = to 2. Up to the sign, this quadratic form is the norm form of
the quaternion algebra restricted to A°. By Theorem 2.5, p. 57, in [Lam, 2005],
this quadratic form determines the quaternion algebra up to isomorphism.

In this paper we shall generalize this construction for algebras of degree 3.
Consider a field F' of characteristic different from 2 and 3 and let A be a degree
3 central simple algebra over F. Again let A° denote the subspace of reduced
trace zero elements of A. Then the cube of an arbitrary element z € A° need
not be in F in general. In fact, it is in F if and only if the reduced trace of x>
is equal to zero. Let q: A — F be the trace quadratic form on A° (mapping
to the reduced trace of #2). Then the Witt index of ¢ is equal to 4 if F' contains
a primitive cube root of unity and is equal to 3 otherwise (see Lemma 0.1). In
both cases there exist 3-dimensional subspaces of A° which are totally isotropic
for the trace quadratic form. Each such vector subspace V C A° gives rise to



a cubic form. In this paper we shall prove that this cubic form determines the
algebra up to isomorphism or anti-isomorphism.

In the first two sections we shall give an explicit description of the pairs
(A, V) where A and V are as above. In the first section we assume that the field
F' contains a primitive cube root of unity and we use the fact that we may write
V in terms of the Okubo product. In the second section we assume that F' does
not contain a primitive cube root of unity, and we shall minimally extend the
field F' to use the results of the previous case. In the last section we use these
descriptions to prove that a cubic form associated with a pair (A, V') determines
A up to (anti-)isomorphism.

Throughout the paper, we denote by F' a field of characteristic different from
2 and 3, by Fs a separable closure of F'; and by I' the absolute Galois group
Gal(Fs/F). We fix w € Fs a primitive cube root of unity. We say that a pair
(A, V) is a cubic pair over F if A is a degree 3 central simple F-algebra and V is
a 3-dimensional subspace of A? (= the subspace of reduced trace zero elements
of A) which is totally isotropic for the trace quadratic form. For a cubic pair
(A, V) over F we define a cubic form

fav: |

We say that ©: (A,V) — (B,W) is an isomorphism of cubic pairs over F if
©: A — B is an F-algebra isomorphism such that ©(V) = W. Note that if
(A,V) and (B, W) are isomorphic then fa v and fp w are isometric (i.e. there
exists an F-vector space isomorphism ©: V' — W such that fa v = fp,w 0 ©).
For a field extension L over F' we write Ay, (vesp. V1) for A®p L (resp. Vg L).
Further we let Trd 4 denote the reduced trace of A, and for an F-algebra K, we
denote by Trg (resp. N ) the trace (resp. the norm) of K.

Acknowledgement. Most results in this paper were already found in my PhD
thesis (see [Raczek, 2007]). I would like to thank Jean-Pierre Tignol, my thesis
supervisor, for his help during this work.

0. Some results on quadratic forms

Before we start the classification of cubic pairs, we need preliminary results on
quadratic forms.

Let A be a degree 3 central simple algebra over F. First we shall compute
the Witt index of the trace quadratic form of A.

Lemma 0.1 Let g be the trace quadratic form on A°. Then the Witt index of
q 1s equal to 4 if F contains a primitive cube root of unity and is equal to 3
otherwise.



Proof : There exists a splitting field L of A of odd degree over F. Indeed, we
may choose L := F' if A is split and we choose a splitting field of degree 3 over F'
otherwise. Then straightforward computations show that the class of the form
qr: AY — L is equal to the class of 2(1,3) in the Witt ring of L. Hence, by
Springer’s Theorem about odd degree extensions (see Theorem 2.7, p. 194, in
[Lam, 2005]), the Witt index of ¢ is greater than or equal to 3 and it is 4 if and
only if F' contains a primitive cube root of unity. O

Suppose that F' contains a primitive cube root of unity.

Lemma 0.2 Let V be a 3-dimensional totally isotropic subspace of A°. Then
there exist exactly two mazimal totally isotropic subspaces Wy, Wy of A° con-

taining V' ; thus V.= Wi, N Wa.

Proof : A more general fact is proved in III.1.11 of [Chevalley, 1997]: in a
quadratic space with a Witt index equal to n, all (n — 1)-dimensional totally
isotropic subspaces are contained in exactly two maximal totally isotropic sub-
spaces. 0O

1. Classification of cubic pairs over a field with a primitive
cube root of unity

We assume that F' contains a primitive cube root of unity.

1.1. Okubo product

Let A be a degree 3 central simple F-algebra. In [Knus et al., 1998] the Okubo
product over A is defined as follows:

1 1 1
x*xy = pry+ (1 — pyx — §TrdA(zy) = m(yz — way) — gTrdA(:cy)

where p = PT“’ Let ¢ denote the trace quadratic form on A°. Because F' con-
tains a primitive cube root of unity, the Witt index of ¢ is equal to 4. In [2008],
Matzri interprets the results of van der Blij and Springer [1960] on triality, in
the language of the Okubo product: he gives a description of the 4-dimensional
subspaces of A which are totally isotropic for ¢, in terms of the Okubo product.

Theorem 1.1 (Matzri) Let u € A%\ {0} be such that Trda(u?) = 0. Then
ux A% and A°xu are 4-dimensional totally isotropic subspaces of A°. Moreover
any 4-dimensional totally isotropic subspace is of this form.



We may also write the 3-dimensional totally isotropic subspaces of A° in terms
of the Okubo product. By Lemma 0.2, the 3-dimensional totally isotropic sub-
spaces of AY are the intersections of two subspaces of the form u* A® or A% x .
We can be more precise using the following:

Theorem 1.2 (Matzri) Let u,v € A\ {0} be such that Trda(u?) = 0 and
Trda(v?) = 0. Then

1. the dimension of ux A° Nv* A% is even;

2. ifuxv #0, then dim(ux A°N A% xv) = 1;

3. if uxv =0, then dim(ux A° N A% xv) = 3.
Note that the Okubo product depends on the choice of the primitive cube root
of unity. If we set, for a primitive cube root of unity p,

1
v xp Y 1= ppry + (1= pp)yz — S Trda (2y)

where p, 1= 1;—’3, then x %, y = y x,2 . So by Theorem 1.2, the dimension of
A« un A% x v is also even.

Corollary 1.3 Let (A,V) be a cubic pair over F. Then there exist nonzero
u,v € A% with Trda(u?) = 0, Trda(v?) = 0 and uxv = 0 such that V =
ux A°N A% x . 0

The vectors v and v are in fact uniquely determined up to scalars. We shall
prove this as a part of a more general statement:

Lemma 1.4 If (B, W) is another cubic pair over F with W = rx BN B% x s
as in Corollary 1.8, then an F-algebra isomorphism ©: A — B induces an
isomorphism ©: (A, V) — (B, W) of cubic pairs if and only if ©(u)F = rF and
O(v)F = sF.

Proof : Assume that ©: A — B is an F-algebra isomorphism. If ©(V) = W,
then W = O(u) x BN BY xO(v) = rx BY N B x s. By Lemma 0.2, we have
{O(u)x B, B« ©(v)} = {r « B®, B x s}.

If 7 x B = B x©(v), then W = O(u) x B N r x B® and by Theorem 1.2, the
dimension of W is even. Hence ©(u)x B® = rx B® and B® «©(v) = B xs. By
Theorem 2.10 in [Matzri, 2008], we then have ©(u)F = rF and ©(v)F = sF.
The converse is obvious. a



1.2. Classification

We shall describe a cubic pair (A, V) over F up to isomorphism. By Corol-
lary 1.3, there exist nonzero u,v € A° such that Trda(u?) = 0, Trd4(v?) = 0,
uxv =0and V = uxA°N A% xv. Since Trda(v) = Trda(v?) = 0 we have
v3 € F, and similarly v® € F. Note that uxv = 0 implies that

—w

vu = Trd 4 (uv) + wuw.

Set ¢ := uv — $Trd4(uv). Then

1l—w

1 1
tu = uou — gTrdA(uv)u = Trd 4 (uv)u + wu’v — gTrdA(uv)u = wut

and similarly vt = wtv. We deduce that t3 € F. Indeed,
9 1
t* = t(w-— §Trd,4(uv))
1
= wutv — §TrdA(uv)t
w? 1
= wu®v® + ?TrdA(uv)uv + §Trd,4(uv)2
and thus
3 2 1
r° =t (uv — gTrdA(uv))
1
= wut?v — gTrdA(uv)If2
1
= ud® — 2—7Trd,4(uv)3 € F. (1)

This implies in particular that Trd(t?) = 0, so Trd4 (u?v?) = $Trd 4 (uv)?.
We shall prove that t2,t2u,t?v € V. First we observe that

ux A’ ={z € A’ | 2 xu = 0}.

Indeed, by Proposition (34.19) in [Knus et al., 1998] we have (u * z) x u =
+Trda(u?)z = 0 for all z € A°. Hence

ux A’ C {x € A° | 2% u =0} = ker(R,)

where R,: A — A%: 2 — 2z xu. But dimker(R,) + dimim(R,) = 8, thus
dim ker(R,,) = dim(u x A°) = 4. Similarly,

A’ xv={r e A’ |v*x =0}



One can see that t2 € V since ut? = wt?u and t?v = wot?. Also u(ut?) = w(ut?)u
and (vt?)v = wo(vt?) imply (ut?) xu = 0 and v * (vt?) = 0. Now

1 1
vk (ut?) = . (ut?v — wout?) — §Tl’d,4(’ut2v)
—w

1—w

= (th’U —w

1
=0 Trd A (uv)t? — w2uvt2) — §TrdA(ut21))

1
= ut?v — %TrdA(uv)ﬁ2 - gTrdA(thU)

2

w w?
= ETrdA(uv)3 - ?TrdA(uv)TrdA(u%Q)

= 0.

Since (vt?)*u = w?v* (ut?) = 0, we obtain that ut?, vt> € V. So t?,t?u,t>v € V
because vt = wtv and tu = wut.

To work out the classification of cubic pairs we shall distinguish different
situations:
First case: We assume that u,v,t € A*. Observe that t = ﬁ(uv —ou) # 0,
hence u and v are linearly independent. Since Trda(u) = Trda(v) = 0, the
vectors 1,u,v are also linearly independent. Therefore t2, t?u, t?v span V. Set
E:=t2, n:=t%vand \ := %TrdA(uv). Because t = uv — %TrdA(uv), we have
u=tv"t + 1 Trda(uv)v~". One can check that

w
= i (6 267).

Finally A is the symbol algebra (a,b),, r generated by ¢ and 7 such that £ = a,
n3 =b, &n = wné, and V is the vector subspace spanned by &, n and &n? + \&2n?
where 1+ A\a # 0 since u® # 0. In this basis of V, the cubic form fa 1 takes
the generalized Hesse normal form:

fav (€ +yn+ 2(€n? + )\«52772)) = ax® + by® + ab?(1 + X3a)2® — 3wlablzyz.

The form fa v is nonsingular.

Conversely, suppose that B is the symbol algebra (a,b),, r generated by &,n
such that €3 = a, n® = b, é&n = wné, and W the vector subspace spanned by &,
n, €n? 4+ X202, for some a,b € F* and X\ € F such that 1 + A3a # 0. Then one
can check that (B, W) is a cubic pair over F such that fp y is nonsingular.

Second case: We suppose that u,v € A* and ¢t = 0. Then uv = %TrdA(uv) €
F*. Thus we may assume that u = v?. We need the following:

Lemma 1.5 Let £ € A° be such that €3 € F*. Then there exists n € A such
that n3 € F* and &n = wné.



Proof: Assume that €3 ¢ F*3, then F(€) is a subfield of A. Let o: F (&) — F(€)
be the F-automorphism defined by o(¢) = w?¢. By the Skolem-Noether Theo-
rem, there exists n € A* such that nzn~! = o(x) for all z € F(§). In particular
&n = wné. Because n = wéIné and n? = W2 1N%E, we have Trda(n) = 0,
Trda(n?) = 0; so n® € F*.

Now we suppose that ¢3 € F*3. Then we may assume that &3 = 1 and
A = M3(F). The minimal polynomial of ¢ divides 2 — 1, so ¢ is diagonalizable
and its eigen values are cube roots of unity. Hence we may assume that

M0 0
= 0 X 0
0 0 X

with \; € {1,w,w?}. Since tr(§) = 0 we have {\1, A2, \3} = {1,w,w?}. Conju-
gating by

1 00
0 0 1
0 1 0
if necessary, we may assume that \; = 1, Ay = w, A3 = w?. Then

0
0
1

3

I
S = O
o O =

is such that 73 € F* and &n = wné. O

Let w € A be such that w?® € F* and vw = wwv. Then the subspace of the

elements x in A such that vz = w?

contained in V; therefore

zv is spanned by w?, vw?, v?w?, and it is

V={z¢cA|vr=uw?v}

Set ¢ := w? and 7 := vw?, then A is the symbol algebra (a,b), r generated by
¢ and 7 such that €3 = a, 7% = b and &n = wné, and V is the vector subspace
spanned by &, n and €272, In this basis of V, the form f4  takes the generalized
Hesse normal form:

fav (@€ +yn+ 26207 = ax® + by® + a*b*2® — 3wabryz.

The form f4,v is singular; more precisely, it is triangular, i.e., there exist linearly
independent forms 1, 2, 3 € (V ®@p F5)* such that fa v = ¢19p2¢3 as a cubic
form over V ®p Fj.

Conversely, suppose that B is the symbol algebra (a,b),, r generated by &,n
such that €3 = a, 3 = b, &y = wné, and W is the vector subspace spanned by



&, m, €202, for some a,b € F*. Then (B, W) is a cubic pair over F and fp w is
triangular.

Third case: We suppose that either u ¢ A%, or v € A*,ort ¢ A* and t # 0.
Then the algebra A is split, so we may assume that A = M3(F). This case
is less interesting and thus we shall not give an explicit description of the pair
(A,V), but we shall only prove that the cubic form f4 y is singular and not
triangular (it is possible to describe V' by matrix computations distinguishing
several cases; details can be found in [Raczek, 2007]).

To show that fa,1 is not triangular, we first prove a more general Lemma
on triangular forms.

Lemma 1.6 Suppose that (B, W) is any cubic pair over F such that fpw is
triangular. Then W = s2x BN B%«x s for some s € B such that s is invertible.

Proof : We may assume that F = Fy and B = M3(F). Let ej,ea,e5 € W be
such that
fB,W(961€1 + To€2 + T3€3) = T1T2T3

for all 1,29,23 € F. Observe that 23 = itr(z3) for all € W, hence
fBw(x1e1 + z2ez + x3€3) is equal to

3
Z eg’zf’ + Ztr(e?ej)x?zj + tr(ejezes + eaeres)r1xaxs
i=1 i#j
for all z1, 29,23 € F. We deduce that tr(efe;) = 0 for all 4,j. Set es = (;5)
and e3 = (y5)-
Suppose that €2 # 0. Since e} = 0, we may assume that
0 1 0
e = 0 0 1
0 0 0
Because tr(ez) = 0, tr(ejez) = 0 and tr(e?es) = 0, we have

33 = —T11 — T22, T32 = —T21, 31 =0.

From tr(eje3) = 0 we deduce that x21 (2211 +222) = 0. If 221 = 0 then tr(e3) =0
and e3 = 0 imply o177 = @22 = 0. Then ejes + eze; = (w12 + 723)e? and it

contradicts the fact that tr(eZes) = 0 and tr(ejeses+eseres) = 1. If 2o = —2213
then
T21 —T11 Ti2 + T3
eijes + ege1 = 0 0 -1
0 0 —T21



By symmetry we know that

Y11 Y12 Y13
es= | w21 —2y11 Y23 |,
0 —Y21 Y11
thus tr(ejeses + eaerez) = 1 is impossible.

Therefore €2 = 0 (by symmetry we also have e3 = 0, e3 = 0) and we may assume
that

0 0 1
el = 0 0 O
0 0 O
Since tr(ez) = 0 and tr(ejez) = 0, we have 233 = —x11 — 22 and 37 = 0. Then

€2 = 0 implies w1232 = 0. Observe that

0 w32 —m22
e1eg + ege] = 0 0 21
0 O 0

Because tr(ejeses + ese1es) = 1 we have either 91 = 0 = y32 and x32,y21 # 0
or To1,y23 # 0 and x30 = 0 = y21. Thus we may assume that xo; = 0 and
T32 = 1. From e% = 0 we deduce that

0 a —ap
e2=[0 8 —-p?
01 -8
for some «, 8 € F. We may assume that o = § = 0 since the invertible matrix
1 0 —«
m=| 0 1 -0
0 0 1
is such that me;m ™! = e; and
0 0 O
mesm 1 = 0 0 0
01 0
Similarly we see that
a —a® 0
€3 = 1 — 0
0 0 0
for some v € F'. Again we may assume that o = 0 conjugating by
1 —a O
0 1 0
0 0 1



if necessary.
Then one can check that W = s2 x BN BY x s with

1 0 O
s = 0 w?2 0
0 0 w

O

In our case, the subspace V is equal to u x A% N A? x v where either u ¢ A, or

vg A* ort g AX and t # 0. Observe that if u,v € AX, then uF = v2F if and

only if ¢ = 0. Thus, by the previous Lemma, the form f4  is not triangular.
To prove that f4,v is singular we shall distinguish different cases.

1. Suppose that v & A*.
If tr(uv) # 0 then, by the relation (1), ¢ is invertible; hence V is spanned by
t2, t?u and t?v. Since tr(m(t2v)2) = 0 for all x € V, the point t>vF, of the
projective plane Py (F;) is a singular zero of f4 v.
If v2 # 0 and tr(uv) = 0, then v?> € V and v?F} is a singular zero of fa v .
If v2 = 0, then we may assume that

00 1 wiar o oy
v = 0O 0 O , SO U= 0 woy gy
0 0 0 0 0 o

for some o; € F. If oy = 0 then vF; is a singular zero of fa . If oy # 0 then
V' is spanned by

a0 —as3 0 (w—1a1 ay 0 0 Qo
0 wo 0 , 0 0 0 , 0 0 (w—wHo
0 0 w?ay 0 0 0 0 0 0

and the cubic curve associated with f4 v is a triple line.

2. Suppose that u € A, then, by symmetry, we deduce that fa y is also
singular.

3. Suppose that u,v € A, t ¢ A* and t # 0.

If t2 # 0 then t?F} is a singular zero of fa v .

If 2 = 0, we shall prove that there exists a nonzero s € A such that s = 0,
vs = w?sv, s(tv™!) = (tv~')s = 0. Since u = tv~! + $tr(uv)v~!, we then have
s € V and so sFj is a singular zero of f4y. Let w € A be such that w® € F*
and vw = wwv. Since v(tv™1) = w(tv™!)v and tv~! # 0, there exist o; € F not
all zero such that tv™1 = apw + ajvw + azv?w. But (tv™1)? = w202 =0, so
ap # 0, az = a?ag! and af = v3a3. Hence v* € F*3 and we may assume that

10



v® = 1. Replacing w by ag Lw if necessary, we may assume that ag = 1. Then

ap =1, wor w?

-1

. Conjugating by w or w~! if necessary, we may assume that

tv™! = w + vw + v2w. Then we may choose s = w? + vw? + v2w?.

We summarize the above classification in the following Theorem.

Theorem 1.7 Suppose that F contains a primitive cube root of unity. Let
(A, V) be a cubic pair over F.

1. If fa,v is nonsingular, then

(Av V) = ((a’a b)w,F; spanF<§7 77757’2 + A5-2772>)

for some a,b € F*, X\ € F such that 1+X3a # 0, where £,n are generators
of the symbol algebra such that €3 = a, 0> = b, &n = wné. Conversely, let
a,b € FX, X\ € F be such that 1+ X3a # 0. Let B be the symbol algebra
(a,b),. r generated by &,n such that €& = a, n® = b, &n = wné, and W
the subspace spanned by &, 0, n* + Xé?n?. Then (B, W) is a cubic pair
over F' and fp.w is nonsingular. In the basis (£, n,&n* + \2n?), the form
fB,w takes the generalized Hesse normal form:

(€ + yn + 2(€n* + A20%))° = az® + by + ab>(1 + X%a)23 — 3wabAzyz.
2. If fa,v is triangular, then

(Aa V) = ((a’a b)w,F; spanF<§7 77752772>)

for some a,b € F*, where £,m are generators of the symbol algebra such
that €3 = a, n° = b and &n = wné. Conversely, let a,b € F*, let B be
the symbol algebra (a,b), r generated by &,m such that £ = a, 13 = b,
&n = wné, and W the subspace spanned by &, n, £2n%. Then (B,W) is
a cubic pair over F and fgw is triangular. In the basis (&,1,£2n?), the
form fpw takes the generalized Hesse normal form:

(x€ +yn + 26°0%)% = az® + by’ + a®b*2° — 3w abayz.

3. If fav is singular and not triangular, then A is split.

2. Classification of cubic pairs over a field without
primitive cube root of unity

Suppose that F’ does not contain a primitive cube root of unity. We shall give the
classification of cubic pairs over F' in the case where the associated cubic form is
nonsingular or triangular. For the remaining cases we know by Theorem 1.7 that

11



the algebra is split and it is just a matter of matrix computations to describe
all the possible subspaces up to conjugacy (see [Raczek, 2007] for details). We
shall extend the scalars to F(w) to use the previous classification. To simplify
notations, let T denote the reduced trace of Ap(,). Throughout this section, we

denote by o the F-automorphism of F(w) such that o(w) = w?.

2.1. Nonsingular form

Let (A,V) be a cubic pair over F such that fa v is nonsingular. By Subsec-
tion 1.2, there exist nonzero u,v € A%(w) such that T(u?) = 0, T(v?) = 0,
uxv =0 and

Vp(w) = (U*A%(M)) N (A%(w) *1})

where u,v,t := uv — 3T (uv) € A;(w). Then V() is spanned by 2, t*v and
t2u.

We extend o to an F-automorphism of Ap(,y: for x € Ap(,) and A € F(w),
define o(z ® \) = x ® o(A). Then A (resp. V') consists of the elements of Ap,
(resp. Vp(,)) which are fixed under o. Note that o(x xy) = o(y) * o(z) for all
z,y € Ap(). Since 0(Vp()) = Vi(.), we have

(a(v) *A%(w)) N (A%(w) *a(u)) = (u*AOF(w)) N (A%(w) *v).

Hence there exists A € F(w)* such that o(u) = Av. Replacing v by Av if
necessary we may assume that o(u) = v and thus o(v) = u. Recall that

1—
vu = TwT(uv) + wuw,

hence we have
o(t) = o(uw)— %U(T(uv))

= o(u)o(v) — =T (o(uv))
1

= vu—=T(vu

1
3
5 T (vu)

= wt.

Therefore w?t € A and wt? € V. Set e := wt?, then V is spanned by e, e(v + u)
and e(wv + w?u).

We shall find a Galois Z/3Z-algebra (L, p) such that L C A, the vector e
and L generate A, and ex = p(z)e for all € L. To do this we first construct
an element 7 € Ap(, such that en = wne, n* € F(w)* and o(n)n € F*. Recall
that 3 = w303 — $-T(w)?, vt = wiv, tu = wut and

2
1
t? = wuv? + u%T(uv)uv + §T(uv)2.

12



Set

n =

3

then en = wne, n® = w38 and

T 2
onn = (1;1)) ww — 2 :(;w)utz) + wut?v
= i

We set A := u3v3, so n+ Anp~! is fixed under o.

If n° ¢ F(w)*3, then set L := F(n+ A~!) and let p: L — L be the F-
automorphism defined by p(n + An~!) = wn + w?Ap~!. Then L is a cyclic
extension of degree 3 over F' which is contained in A and with a Galois group
generated by p. Moreover ex = p(x)e for all z € L.

If 3 € F(w)*3, then n® = v3 for some v € F(w)*. Replacing n by v~1n if
necessary, we may assume that 773 =1 and o(n)n = 1. Set

L:=F-1+F-(p+n )+ F-(wn+’n")

and define p as the F-automorphism of L such that p(n +n~!) = wn + w?n=!

and p(wn +w?n~t) = w?n+wn=t. Since (n +n71)2% =n+n~! + 2, the algebra
L is isomorphic to F' x F' x F. Again (L, p) is a Galois Z/3Z-algebra such that
L C A and ex = p(x)e for all z € L.
In both cases we obtain that A = 69?:0 Le® where the multiplication in A is
determined by €® = a € F* and ex = p(z)e for all z € L.

To finish the description of the pair (A4, V'), we shall write ev in function of
e and n:

eV =

@

T(uv) 1 5\~!

( 3 +t_36) "
1

= ugvg(a+a_1a2e+62)n

where a := —T(uv)t?/3. Hence Vp(,) is spanned by e, (o +a~'a?e 4 €?)n and
(a+a"ta?e + e2)M~t. Note that a® # a? since ev is invertible. We obtain
that

V = spang{e, (a +a tae + )0, (a + a tale + e*)p(0))

where 0 = n+ An~! € L\ {0} is such that 0§ + p(0) + p*(6) = 0.
We shall prove that the cubic form f4,y is isometric to the form

Trgp—3Ng: K — F:z— TrK(ﬂ;pS) — 3bN g ()
for K = F x F(w) and, for some € K* and b € F. We set

v i=e, vg:=(a+atalte+ e, vs:=(a+atale +e?)p(h)

13



so that V' is the vector space spanned by v1, v, v3. Then fa v (xvi + yve + 2zv3)
is equal to

3
(zul + (y + wz)u2 + (y + WQZ) Ug)

where uj := e, ug := (o +a"tae +e?)n, uz == (a +a ta’e +e2)Ap~!. But

(ruy + yus + zu3z)? is equal to

az® + 773((171043 — a)2y3 + 0(7]3)((171043 - a)223 — 3/\04((171043 —a)zyz.

Therefore fa,y is isometric to the form Trx g — 3bNg where K := F x F(w),
B:= (a,n*(a e — a)?) and b := Aa(a"'a® — a).

Observe that if (L, p) is a Galois Z/3Z-algebra, then there exist A € F'* and
¢ € L ®F F(w) such that ¢ € F(w)*, ¢ € F(w), o(¢?) = XA3¢3 and

L=F-1+F -(¢+Xp" )+ F-(wp+w?rp™ ).

Indeed, suppose that (L, p) is not split, then L(w) & L ®p F(w) is a Galois
extension of F' with a Galois group isomorphic to Z/2Z x 7Z/3Z. Let 6,7 be
F-automorphisms of L(w) such that L (resp. F'(w)) is the subfield of L(w) which
is fixed under & (resp. 7). Let ¢ € L(w) be such that ¢* € F(w)* and ¢ € F(w).
Replacing ¢ by ¢~ ! if necessary, we may assume that 7(¢) = w¢. Hence

75(6) = 57(6) = 5(we) = w?5(¢).
Thus 6(¢) = A¢~! for some A € F(w)*. But
p=56(A"") =3(MA"o,
s0 G(A\) = A and A € FX. Then we have L = F(¢ 4+ A¢™!) with
o(6%) = (6(9))° = (Mo™!)* = A,

Suppose that L = F' x F x F, then we may choose A = 1 and ¢ = (1,w,w?).
Now let (L,p) be a Galois Z/3Z-algebra, a € F* and a € F such that
a3 #a?. Set

2
(B,W) := (@ Le', spang(e, (o + a ta?e + €2)0, (a +a 'a’e + 62)p(9)>),
i=0

where the multiplication in B is defined by e® = a, ex = p(x)e for all z € L,
and 6 € L\ {0} is such that 6 + p(6) + p?(#) = 0. Then one can check that
(B,W) is a cubic pair over F and fp w is nonsingular.

We summarize this subsection by the following Theorem:
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Theorem 2.1 Suppose that F does not contain a primitive cube root of unity.
Let (A,V) be a cubic pair over F such that fa v is nonsingular. Then (A,V)
s 1somorphic to

2
(@ Le',spanp{e, (o +a ta?e + €20, (a + a 'a’e + eQ)p(9)>)
=0

for some Galois Z/3Z-algebra (L, p), a € F*, a € F such that o® # a?, where
e = a, ex = p(x)e for all x € L and 0 € L\ {0} is such that 0 + p(0) +
p%(0) = 0. Conversely, let (L,p) be a Galois Z/3Z-algebra, a € F*, o € F
such that o # a®. Let B = 69?:0 Let be the algebra with multiplication defined
by €2 = a, ex = p(x)e for all x € L, and let W be the subspace spanned
by e, (a+ a~ta?e + e2)0, (a + a~ta?e + €?)p(h), where 0 € L\ {0} is such
that 0 + p(0) + p*>(0) = 0. Then (B,W) is a cubic pair over F and fpw
is nonsingular. Let ¢ € L ®@p F(w) and X\ € F* be such that ¢* € F(w)*,
¢ & F(w), o(¢®)=Xp3 and 1, + ¢~ 1, wo + w? X! span L, where o is the
nontrivial F-automorphism of F(w). Then fpw is isometric to Trix g — 3bNg
where K = F x F(w), B = (a,¢*(a™'a® — a)?) and b = Aa(a™'a® — a).

2.2. Triangular form

Let (A, V') be a cubic pair over F such that fa v is triangular. By Subsection 1.2,
there exists v € A,y such that T(v?) =0, v € AL, and

V= (02« A%(w)) N (A%(w) *u);

then V = {z € Ap(,) | v = w?zv}. Fix e € V, then ev = wve. We extend the
F-automorphism o of F(w) to Ap(,. Then o(v) = Av? for some A € F(w)*.
Since

v =0c(M?) = a(\)\2v?,

we deduce that o(A\)A?v% = 1. Hence
o(\) =c(N)o(v) = X203 ? = (W)™
so we may assume that o(v) = v~ Set

L:=F-14+F -(w+v H)+F-(wv+w?v™)

and define p as the F-automorphism of L such that p(v +v7!) = wv + w?v ™!
and p(wv + w?v™!) = w?v +wv™t. Then (L, p) is a Galois Z/3Z-algebra (note
that (L, p) is split if and only if v3 € F(w)*3). Moreover L C A, ex = p(z)e for
allz e L, A= 69?:0 Le' and V = eL. It is easy to check that fa  is isometric

to aNy, where a := e3.
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Conversely, let (L, p) be a Galois Z/3Z-algebra and a € F*. Set

(B,W) := (é Lé', eL)
1=0

where the multiplication in B is defined by e = a and ex = p(z)e for all z € L.
Then (B, W) is a cubic pair over F and fp w is triangular.
Thus we obtain:

Theorem 2.2 Suppose that F does not contain a primitive cube root of unity.
Let (A, V) be a cubic pair over F such that fa v is triangular. Then (A,V) is
isomorphic to

2
( @ Le®, eL)
i=0

for some Galois Z./3Z-algebra (L, p) and a € F*, where €3 = a and ex = p(x)e
for all x € L. Conversely, let (L, p) be a Galois Z/3Z-algebra and a € F*. Let
B = 69?:0 Let be the algebra with multiplication defined by €2 = a, ex = p(z)e
for all x € L, and set W := eL. Then (B,W) is a cubic pair over F' and fpw
is triangular. Moreover fpw is isometric to aNp,.

3. The form determines the algebra

Let (A, V) and (A’, V') be cubic pairs over F' and suppose that fa v and fa: v
are isometric. In this section we shall prove that A and A’ are either isomorphic
or anti-isomorphic.

We may assume that F' contains a primitive cube root of unity. Indeed,
if AQp F(w) &2 A’ @ F(w), then A = A’ since A and A’ are central simple
algebras of degree 3 and F(w)/F is an extension of degree at most 2. We may
also assume that A is division, because there is nothing to prove if A and A’ are
split. Therefore, by Theorem 1.7, the cubic form f,4 y is either nonsingular or
triangular.

First case: Suppose that f4 v is nonsingular, then so is fasy/. By Theo-
rem 1.7, there exist a;,a; € F*, \,\ € F such that 1+ Xaj,1+ N3a} # 0
and

A= (a1,02)wr, V =spanp(&1,&2,6185 + AEFET)
A" = (a},ay)w,r, V' =spanp (€], &, &7 + NEPER)

where A (resp. A’) is generated by £1,& such that & = a; and &€ = wéaé
(resp. &],&, such that €2 = a} and &&= wEhE)). Set

& =68 + NG, a3:=§, & =& +NEFE, a5 =&
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We recall properties of nonsingular cubic forms and we refer to [Brieskorn
and Knorrer, 1986] or [Hirschfeld, 1979] for more details. A nonsingular cubic
form f on a 3-dimensional vector space V has 9 inflexion points in the projec-
tive plane Py (Fs). There are four triangles (i.e. cubic curves associated with
triangular cubic forms) in Py (Fs) with the property that each inflexion point is
incident with one and only one line of the triangle and each line of the triangle
passes through exactly 3 inflexion points. These triangles are called inflezional
triangles of f. For a triangular cubic form g = 1203 over V| we denote by
g = 0 the triangle formed by the zeros of the linear forms ¢; in Py (Fy).

The map V — K := F x F x F which sends &;1,&2,£3 on the canonical
basis of K is an F-vector space isomorphism. Under this isomorphism, f4 v is
isometric to the form

Trga—3WNg: K — F:z— Trr (az®) — 30N (2)

where o = (a1,a2,a3) and b = w?ajaz ). The inflexional triangles of the form

Trrx,a — 3bNg are Ng = 0 and Trg o — 30Nk = 0 for all & € F, such that
03 = N (a). Let (¢1,92,¢3) denote the dual basis of (£1,&2,&3), then under
the previous isomorphism V — K, the form @123 is isometric to Nx. Hence
I acts trivially on the lines of the corresponding inflexional triangle. In fact, we
have the following;:

Lemma 3.1 There exists a unique inflexional triangle of fa, v whose lines are
defined over F'.

Proof : Suppose that I' acts trivially on the lines of Trx o —30Ng = 0, for some
§ € Fy such that 03 = Ng (o). For # = (v1,72,23) € K, Tri(ax?®) — 30Nk ()
is equal to

(0121 + Oaxo + O323) (0111 + Whoxo + W2 323) (0121 + W2haxs + wWh3T3)

for some 6; € F, such that 9? = a; and 0160203 = 0. Since I' acts trivially
on the line 6121 + 0225 + 0323 = 0, there exists a nonzero u € F such that
0> = ub;. This implies that as = ud

A is division. O

a1, which contradicts the assumption that

Let (¢, ¢h, ©5) be the dual basis of (£, &5,&5). Then ¢ pheh = 0 is an inflex-
ional triangle of fas v+ whose lines are defined over F. Let ©: V — V' be an
F-vector space isomorphism such that fa4 v = far,y’ 0O, then

Prp203F = (P03 0 O)F.
Thus there exist \; € F* and a permutation 7 of {1, 2,3} such that

(p; 00 = Ar())Pr(4) for all i € {1,2,3}.
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For all 4,5 € {1,2,3}, we have

90; 0 6(571'(])) = Aﬂ'(z)@ﬂ(z) (&W(])) = 5ij>\ﬂ'(i)7

hence ©(&r(j)) = Ar(j&;- We obtain that ar;) = )\f’r(j)a} and b = A A3

where b’ = w?ajay)\. But a; is the only scalar among the a;’s such that

ajaoa3 — bg

2
a;

e F*3,

Indeed ajasaz — b® = a?a3, thus aIQ(a1a2a3 —b3) € F*3; if a;Q(alagag —
b3) € F*3, then a; F*® = aoF*3 and it contradicts the assumption that A
is division; similarly, a§2(a1a2a3 —b%) & F*3. On the other hand, we have
ay"2(ahahaly — b'3) € F*3 and

2 ’
A (1) A af

3
_bS A o\ ol _bl3
a1G20a3 :< 122 3) 10503 c Fx3.
m(1)

therefore 7(1) = 1. If 7(2) = 2, then
M€’ =a;  and  (M€]) (M) = w(Aaby) (M),
thus A’ = A. If 7(2) = 3, then
MED? = a1, (Me&y)® =az and (M€ (Nadh) = W (Maés)(M&)),

thus A’ =2 A°P.

Second case: Suppose that fa v is triangular. Then there exist a;,a) € F*
such that

A= (ar,a2)u,p, V =spang (1, &2, £763)

A = (a’llv a’l2)w-,Fa V' = spanF<§iv géa 5&2 é2>
where A (resp. A’) is generated by &1,&> such that € = a; and &€& = wéé
(resp. &}, &5 such that &3 = @} and &1&5 = wéhéy). Let 0 € Fs be a cube root of
aflag. Since A is division, 6 ¢ F. We have

fav (@€ + 226 + 236765) = aaNpg) (21 + 220 + w?a1236%).
Let ' € F be a cube root of a|"'a). Similarly, far v+ (x1&] + 228 + x362E2) is
equal to
al(x1 + 200" + wia|z30?) (21 + wral + walx30™)(x1 + WPae0 + a)x30"?).

~

Since fav = farvr, we have ¢ ¢ F and, by Proposition 8 in [Raczek and
Tignol, 2008], the fields F(#) and F'(0') are isomorphic. We deduce that either
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O'F = OF or 'F = 0*F. Identifying 0 with & !¢ (resp. 0 with &71¢)), we
have

2 2
A=EPFrO)E and A =EPFO)E
=0 =0

where &0 = wl&; and &[0 = wl'E]. Because fa,y is isometric to fas v/, there
exist u; € F such that

arNpeg)(u1 + uzf + uzb?) = a}.
Set m1 := &1 (uy + uof + u36?), then
77? = a1Np(g) (u1 + u20 + U392) =a} and 1m0 = wln.
Hence A = @7, F(0)ni with n} = a} and 17,6 = wfn;. So

e A" i O'F =0F,
T AP if 0'F = 0°F.
We thus obtain the following:

Theorem 3.2 Let (A, V) and (A', V") be cubic pairs over F. Suppose that fa v
and far v, are isometric, then the algebras A and A’ are either isomorphic or
anti-isomorphic.
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