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Abstract. 1. For a field F and a family of central simple F -
algebras we prove that there exists a regular field extension E/F
preserving indices of F -algebras such that all the algebras from the
family are cyclic after scalar extension by E.

2. Let A be a central simple algebra over a field F of degree
n with a primitive n-th root of unity ρn. We construct a quasi-
affine F -variety Symb(A) such that, for a field extension L/F , the
variety Symb(A) has an L-rational point iff A ⊗F L is a symbol
algebra.

3. Let A be a central simple algebra over a field F of degree
n and K/F a cyclic field extension of degree n. We construct a
quasi-affine F -variety C(A, K) such that, for a field extension L/F
with the property [KL : L] = [K : F ] ,the variety C(A, K) has an
L-rational point iff KL is a subfield of A⊗F L.

0. Introduction

Let A be a finite dimensional central simple algebra over a field
F . By Wedderburn’s theorem, there is a unique integer m ≥ 1 and a
central division F -algebra D which is unique up to F -isomorphism such
that A ∼= Mm(D). The degree of A is defined by deg(A) =

√
dimF A,

the index of A is said to be ind(A) = deg(D), and the exponent exp(A)
of A is the order of the equivalence class [A] in the Brauer group
Br(F ). For a field extension E/F , res : Br(F ) −→ Br(E) denotes the
restriction homomorphism and AE denotes the tensor product A⊗F E.

In the paper we consider the following problems related to properties
of central simple algebras over scalar extensions.

Problem 0.1. Let {Aα}α∈I be some family of central simple F -algebras.
Fix some central simple algebra property P. Does there exist a field ex-
tension E/F (if possible, regular) such that each member of the family
{Aα ⊗F E}α∈I has the property P?
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Problem 0.2. Let A/F be a central simple algebra. Fix some central
simple algebra property P. Does there exists an algebraic F -variety V
(affine, quasi-affine, projective or quasi-projective) such that A ⊗F L
has the property P iff V has an L-rational point?

Of course, the above problems in their all generality are vague, so
below we explain (and motivate) which kind of properties P we mean.

Example 0.3. P is a property to have a given index.

Example 0.4. P is a property to have a given exponent.

Example 0.5. P is a property to have given both exponent and index.

In [12, Lemma 1.3.] it is proved that given a central simple algebra
A over F of exponent e and index d with prime power decomposition
d =

∏

pvp(d), then for any divisor δ of d there exists a field extension
E(δ) such that

exp(A⊗F E(δ)) = gcd(e, δ) and ind(A⊗F E(δ)) =
∏

p|δ

pvp(d).

Example 0.6. P is a property for an algebra to have coincided exponent
and index (index-exponent property).

Remark 0.7. The latter Example leads us to the index-exponent prob-
lem.

Problem 0.8. Describe a class of fields F for which ind(A) = exp(A)
for any central simple F -algebra.

It is an old open question whether this problem has a positive so-
lution in the class of C2-fields. The recent results of A. J. de Jong
([11]) and M. Lieblich ([14]) show that for the class of function fields of
surfaces over algebraically closed fields this question has an affirmative
answer.

Another kind of properties P is related to presentation of algebras
by generators and defining relations. The most popular and simple
classes of algebras in this sense are the following.

(i) Matrix algebras Mn(F ).
(ii) Crossed products (L/F, Gal(L/F ), f). Let L/F be a Galois field

extension, Gal(L/F ) its Galois group and f a 2-cocycle of G with
values in L∗. Then (L/F, Gal(L/F ), f) is a left L-module with L-base
{uτ}τ∈Gal(L/F ) and multiplication table:

usl = lsus, usut = f(s, t)ust

for any s, t ∈ Gal(L/F ) and l ∈ L.
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(iii) Cyclic algebras (Z/F, s, a). They are a special form of crossed
products. Let Z/F be a cyclic field extension of degree n, s a generator
of Gal(Z/F ) and a ∈ F ∗. Then (Z/F, s, a) is a left Z-module with Z-
base {ui

s}i=1,...,n and multiplication table:

ui
sc = csi

ui
s

and
un

s = a

for any i = 1, . . . , n and c ∈ Z.
(iv) Symbol algebras (a, b)n. These algebras also have a simple set

of generators and defining relations. Let ρn ∈ F be a primitive root
of unity of degree n and a, b ∈ F ∗. Then (a, b)n is an n2-dimensional
vector F -space with an F -base

{AiBj}i,j=1,...,n

and multiplication table

AjBi = ρj
nBiAj, An = a, Bn = b.

Remark 0.9. Because of the simplicity of sets of the above generators
and defining relations it is interesting to study the properties P of
algebras to be one of the kinds above four types (i)-(iv), especially to
be cyclic or symbol (more generally to be a crossed product with a
Galois group of simple structure, for instance abelian).

Remark 0.10. Over an arbitrary field F an arbitrary central simple
algebra A/F does not necessarily belong to one of the classes (i)-(iv).
Hamilton in 1843 proved that over R not every central simple algebra is
a matrix algebra. Albert in 1932 ([1]) gave an example of a non-cyclic
division algebra, and later Amitsur in 1972 ([2]) proved that there do
exist noncrossed product algebras. It is easily derived from the latter
result that Amitsur’s algebras are not symbol algebras.

Before we formulate our main results let us list some known facts
with different properties P.

(i) If P is a property to be a matrix algebra, then for a single finite
dimensional central simple algebra A, problem 0.1 always has a solu-
tion, given by a so-called splitting field for A. There are a lot of results
about splitting fields, which are regular extensions of the ground field,
obtained by Witt, Brauer, Roquette, Chatelet, Kovach, Heuser and
others. In this case also problem 0.2 has a solution: The Severi-Brauer
variety associated to A has the required properties.

(ii) If P is a property to be a crossed product algebra with a given
finite group G and with injective restriction homomorphism Br(F ) −→
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Br(E), then the answer is also positive. In the appendix to [5, Th. 4]
a proof of an unpublished result of D. Saltman is given:

Theorem 0.11. Let F be a field, A a central simple algebra of degree
n over F and G a finite group of order n. Then there exists a finitely
generated field extension E/F such that:
AE is isomorphic to a G-crossed product;
the restriction homomorphism res : Br(F ) −→ Br(E) is an injection.

Remark 0.12. For G cyclic and ρn ∈ F , a simple proof of this fact is
given in [8, Th. 5.5.1].

Remark 0.13. The first mentioning about existence of positive solutions
in the latter two cases is due to M. van den Bergh and A. Schofield.
They also showed how one could be able to prove corresponding state-
ments ([3]). In [3] it was noted that given a central division algebra
A over a field F , there exists a regular field extension E/F such that
AE = A ⊗F E is a cyclic division algebra (see the discussion after
Theorem 2.6 in [3]).

In our paper we extend this result and prove that for a field F there
exists a regular field extension E/F preserving indices of all central
simple F -algebras such that all E-algebras are cyclic.

As for Problem 0.2, we construct a quasi-affine variety such that
the existence of L-rational point of that variety is responsible roughly
speaking for A ⊗F L to be an algebra with a maximal cyclic subfield
coming from a given cyclic extension Z/F of degree deg(A). (The fact
that for a given cyclic extension Z/F of degree deg(A) there exists at
least one regular extension L/F such that [LZ : L] = deg(A) and LZ
is a maximal subfield of A⊗F L follows from [4, Th. 3.7].)

More precisely, in Section 1 we prove the following

Theorem 0.14. Let F be a field. Then there exists a regular field
extension E/F with the following properties:

(i) any central simple E-algebra is cyclic,
(ii) for any central simple F -algebra C, ind(CE) = ind(C),
(iii) for any central simple F -algebra C, exp(CE) = exp(C),
(iv) the restriction homomorphism res : Br(F ) −→ Br(E) is an

injection.

In Sections 2 and 3 we prove the following

Theorem 0.15. Let ρn ∈ F and A be a central simple F -algebra of
degree n. Then there exists a quasi-affine F -variety Symb(A) such that
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for a field extension L/F Symb(A) has an L-rational point iff AL is a
symbol algebra.

Theorem 0.16. Let A be a central simple algebra over a field F of
degree n and K/F a cyclic field extension of degree n. Then there
exists a quasi-affine F -variety C(A, K) such that for a field extension
L/F with the property [KL : L] = [K : F ] C(A, K) has an L-rational
point iff KL is a maximal subfield of AL.

To illustrate the usefulness of our considerations we will show how
one can reduce a well known conjecture of Suslin related to generic
elements of reduced Whitehead groups to the case of central division
algebras of a special type.

First recall a few definitions. For any central simple algebra A/F a
reduced norm mapping Nrd : A −→ F is defined. Its restriction to the
multiplicative group A∗ of A gives a homomorphism Nrd : A∗ −→ F ∗.
Then the factor group SK1(A) of the kernel of this homomorphism by
the commutator subgroup of A∗ is usually called the reduced White-
head group of A. At least two observations make this group of a special
interest. The first is its well known relation to Kneser-Tits conjecture
for algebraic groups ([7]) and second its connection with a problem of
rationality for such groups via group of R-equivalences classes for a
group algebraic varieties ([7]).

In this context A.A. Suslin assumed that

Conjecture 0.17. (Suslin, 1991, [20], [21]). Let A/F be a central
simple algebra of ind(A) prime to char(F ), G the algebraic group de-
fined by SL(1,A), F (G) its function field, G(F(G)) the group of F (G)-
rational points of G. If ind(A) is not square-free then a generic point
ξ ∈ G(F(G)) leads to a nontrivial generic element of SK1(A⊗F F (G)).

Nowadays this conjecture is proved only in case where ind(A) is
divisible by 4 ([15]).

Remark 0.18. It is easy to see that to prove Suslin’s conjecture it is suf-
ficient to prove the following statement: for any central simple algebra
A/F with ind(A) which is not square-free there exists a field extension
E/F such that SK1(A⊗F E) 6= {0}.

Using above results we prove immediately the following.

Theorem 0.19. Suslin’s conjecture is true iff it is true for all cyclic
division algebras.

Combining the above theorems with the main result of [18] one can
prove the stronger
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Theorem 0.20. Suslin’s conjecture is true iff it is true for all cyclic
division algebras of the form (a, c)p ⊗ (b, d)p.

1. Cyclicity after a scalar extension

In order to prove the Theorem 0.14 we need a few preliminary state-
ments.

Proposition 1.1. ([3, Th. 1.3], [19, Th. 13.10]) Let D, E be central
division algebras over F of indices m and n respectively. Let BS(E) be
the Severi-Brauer variety of E and let K be its function field. Then

ind(D ⊗F K) = gcd{ind(D ⊗F E i)}
where i ranges from 1 to n.

Remark 1.2. In the literature the latter formula is called the index
reduction formula.

Corollary 1.3. Let D, E be central division algebras over F . Let K
be the function field of the Severi-Brauer variety BS(E). Assume that
ind(D) is coprime to ind(E). Then ind(D ⊗F K) = ind(D).

Proof. Use the index reduction formula. �

Lemma 1.4. ([6, p. 176, ex. 7]) Let E/F be a cyclic field extension of
degree ql−1 (q is prime). Let Gal(E/F ) =< σ >. Let also (char(F ), q) =
1. Assume that there exists an element β ∈ E such that NE/F (β) = ρq

(ρq= primitive q-th root of unity). Let a ∈ E be such that aσ/a = βq.
Then

(i) for any λ ∈ F ∗ the polynomial

xq − λa

is irreducible over E,
(ii) if θ is a root of that polynomial, then E(θ) is a cyclic extension

of F of degree ql.

The following result we will use only in the case p = 2, but for the
sake of generality, we will prove it for any p.

Lemma 1.5. Assume ρp ∈ F . Then for any m ∈ N there exists a
tower of field extensions

F ⊂ K ⊂ E

such that
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(i) E/F is a regular extension;
(ii) E/K is a cyclic extension of degree pm;
(iii) for any central simple F -algebra C, ind(CE) = ind(C).

Proof.
We will prove the statement by induction on m. Let C be a central

simple F -algebra. If m = 1, set K = F (x) and E = K( p
√

x) where x is
a transcendental variable.

Suppose that the statement of lemma is true for m = m0, i.e. there
exists a tower of field extensions F ⊂ Km0

⊂ Em0
such that Em0

/Km0

is cyclic with |Em0
: Km0

| = pm0 , Em0
/F is regular and

ind(CEm0
) = ind(C).

Consider the case m = m0 + 1. Set

B = (Em0
/Km0

, σ, ρp)

be a cyclic algebra over Km0
. Let M be the function field of the corre-

sponding Severi-Brauer variety SB(B).
Note that the compositum MEm0

/M is a cyclic extension of degree
pm0 . Since Em0

is a splitting field of B, then MEm0
is a purely tran-

scendental extension of Em0
. Hence MEm0

/F is a regular extension.
Moreover,

ind(CMEm0
) = ind(CEm0

) = ind(C).

Besides, BM ∼ 1. Then there exists β ∈ MEm0
such that

NMEm0
/M (β) = ρp.

Let a ∈ MEm0
be such that aσ/a = βp. Let also y be a new transcen-

dental variable. Then MEm0
(y)/M(y) is cyclic of degree pm0 . More-

over, using Lemma 1.4 we conclude that

MEm0
( p
√

ay)/M(y)

is cyclic of degree pm0+1. It is clear that MEm0
( p
√

ay)/F is regular.
Finally,

ind(CMEm0
( p
√

ay)) = ind(CMEm0
) = ind(C)

�

Lemma 1.6. Let F be a field. Then for any n ∈ N there exists a tower
of field extensions F ⊂ K ⊂ E such that E/F is regular, E/K is cyclic
of degree n and

ind(CE) = ind(C)

for any central simple F -algebra C.
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Proof. At first, consider the case where char(F ) = 2 or 4 ∤ n. Let x be a
transcendental variable and vx the valuation of F (x) corresponding to
the polynomial x. Then by [16, Th. 5], there exists a cyclic field exten-
sion E/F (x) of degree n such that the completion Evx

coincides with
F (x)vx

. Note that F (x)vx
= F ((x)). Hence for any central simple F -

algebra C, ind(C) = ind(CF ((x))) = ind(CEvx
). Then ind(C) = ind(CE).

Moreover, since F is algebraically closed in Evx
, then E/F is a regular

extension.
Now consider the case char(F ) 6= 2 and 4|n. Let n = 2sm where

2 ∤ m. In view of the case considered above, there exists a tower of
field extensions F ⊂ K1 ⊂ E1 such that E1/F is regular, E/K is
cyclic of degree m and E1 preserves indices of F -algebras. Besides,
by Lemma 1.5, there exists a tower of field extensions F ⊂ K2 ⊂ E2

such that E2/F is a regular extension, E2/K2 is cyclic of degree 2s and
ind(CE2

) = ind(C) for any central simple F -algebra C. Set

K = K1K2, E = E1E2

be respectively the free composita over F of K1, K2 and E1, E2. Then
E/K is a cyclic extension of degree n. Furthermore, since Ei does not
change the index of C, then

ind(C) = ind(CE1
) = ind(CE1E2

) = ind(CE).

�

Lemma 1.7. Let A and B be central simple F -algebras. Assume
ind(A) = pm, ind(B) = pn and m ≥ n. Then ind(A⊗F B) ≥ pm−n.

Proof. Let E/F be a field extension of degree pn which splits B. Let
also ind(A ⊗F B) = ps. Assume ps < pm−n. Then there exists a field
extension L/F of degree ps splitting A⊗F B. Hence

1 ∼ (A⊗F B)EL ∼ AEL ⊗EL BEL ∼ AEL.

Thus EL is a splitting field of A. Since |EL : F | < pm, then ind(A) <
pm. Contradiction. �

Lemma 1.8. Let A be a central simple F -algebra with ind(A) = pm.
Then ind(A⊗p) < ind(A).

Proof. Without loss of generality we can assume that there exists a
splitting field L of A such that |L : F | = ind(A) and L contains a
subfield K with |L : K| = p. Then ind(AK) = p. Hence 1 = ind(A⊗p

K ).
Thus ind(A⊗p) ≤ |K : F | < |L : F | = ind(A). �
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Lemma 1.9. Let K/F be a cyclic field extension, 〈σi〉 = Gal(K(z)/F (z))
and z is a transcendental variable. Let also C be a central division F -
algebra such that CK is a division algebra. Then

(K(z)/F (z), σ, z) ⊗ CF (z)

is a division F (z)-algebra.

Proof: Analogous to that of Proposition 1.3 from [13]. �

In the notations of the previous lemma we have immediately the
following

Corollary 1.10. Let A be a central simple F -algebra such that ind(AK) =
ind(A). Then

ind
(

(K(z)/F (z), σ, z) ⊗AF (z)

)

= ind((K(z)/F (z), σ, z))ind(A).

Theorem 1.11. Let A be a central simple algebra over a field F . Then
there exists a regular field extension M/F such that

(i) AM is cyclic,
(ii) for any central simple F -algebra C, ind(CM) = ind(C),
(iii) for any central simple F -algebra C, exp(CM) = exp(C),
(iv) the restriction homomorphism res : Br(F ) −→ Br(M) is an

injection.
Moreover, for any field extension L/F , the free compositum ML over

F preserves indices of L-algebras.

Proof. Let deg(A) = n = pn1

1 . . . pns
s (pi-s are distinct primes) and

A = ⊗s
i=1Ai, where ind(Ai) = pli

i , li ≤ ni. By Lemma 1.6, there exists
a tower of field extensions F ⊂ K ⊂ E such that E/F is regular, E/K
is a cyclic extension of degree n and E preserves indices of F -algebras.
Let Ei/K be a cyclic subextension of degree pni

i .
Consider cyclic algebras

Di = (Ei(z)/K(z), σi, z), i = 1, . . . , s,

where < σi >= Gal(Ei(z)/K(z)) and z is a transcendental variable.
Set

D = ⊗s
i=1Di.

Since
Di ∼ (E(z)/K(z), σ, zn/pni ),

where < σ >= Gal(E(z)/K(z)), then

D ∼= (E(z)/K(z), σ, zΣs
i=1

n/pni ).

Then D is cyclic of index n with a maximal subfield E(z).
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One has

D ∼ D ⊗K(z) Aop
K(z) ⊗K(z) AK(z).

Let M be the function field of the Severi-Brauer variety SB(D ⊗K(z)

Aop
K(z)). Then AM ∼ DM . Since deg(AM) = deg(DM), then AM

∼= DM

Let C be a central simple F -algebra and C = ⊗m
i=1Ci the decompo-

sition of C as a tensor product of algebras of primary indices. Since
ind(CM) =

∏m
i=1 ind(CiM), then it is enough to consider the case where

C has a primary index. Moreover, if pi ∤ ind(C), 1 ≤ i ≤ s, then
ind(CM) = ind(C) by Corollary 1.3. Thus we will assume that ind(C) =
pmi

i is a power of pi for some 1 ≤ i ≤ s.
Using the index reduction formula we obtain

ind(CM) = gcd{ind(D⊗j ⊗K(z) Aop
K(z)

⊗j ⊗K(z) CK(z))}
where j ranges from 1 to n.

Thus since ind(C) is a power of some pi, then

ind(CM) = minni

j=1{ind(D⊗j
i ⊗K(z) Ai

op
K(z)

⊗j ⊗K(z) CK(z))}.

Consider the algebra Bi,j = D⊗j
i ⊗K(z) Ai

op
K(z)

⊗j ⊗K(z) CK(z). Note

that by Corollary 1.10,

ind(Bi,j) = ind(D⊗j
i )ind(Ai

op
K

⊗j ⊗K CK).

Fix some j. Let j = pi
tj1, where pi ∤ j1. Then ind(D⊗j

i ) = pni−t
i . Let

ind(Aop⊗j) = psi

i . Then si ≤ li − t by Lemma 1.8. Hence

ind(Bi,j) = pni−t
i p

|si−mi|
i = p

ni−t+|si−mi|
i

in view of Lemma 1.7.
Finally consider two cases. If si ≥ mi, then ni − t ≥ mi and ni − t +

|si−mi| ≥ mi. If si < mi, then ni−t+ |si−mi| = ni−t−si +mi ≥ mi.
Therefore, ind(Bi,j) ≥ pmi = ind(C) for any j. Thus ind(CM ) = ind(C).

Note that, for a field extension M/F , preserving indices for all F -
algebras implies also preserving exponents of F -algebras. Indeed, as-
sume C⊗m

M ∼ 1 for some central simple F -algebra C. Since

1 = ind(C⊗m
M ) = ind(C⊗m),

then C⊗m ∼ 1. Thus exp(CM) = exp(C). Moreover, preserving expo-
nents implies, in turn, that the restriction homomorphism

res : Br(F ) −→ Br(M)

is an embedding.
Now consider the last statement about free composita. The free

compositum LM can be constructed using the same procedure as the
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field M . We just replace the constant field F by L. Now the statement
about preserving indices of L-algebras is obtained automatically. �

Remark 1.12. Note that preserving exponents for all F -algebras does
not imply preserving indices as is easily seen.

Now we are in a position to prove the main result.
Proof of Theorem 0.14.

Note that in view of Remark after Theorem 1.11, preserving indices
implies preserving exponents and injectivity of the restriction map.

First, we will prove that for any field K there exists a regular field
extension making all K-algebras cyclic and preserving their indices. If
the set I of central simple K-algebras is finite, use Theorem 1.11 and
induction.

If I is countable, we can construct a sequence of field extensions

E1 ⊂ E2 ⊂ . . . Ei ⊂ Ei+1 ⊂ . . .

such that Ei+1 is a regular extension of Ei making Ai+1Ei
cyclic and

preserving indices of Ei-algebras. Then the field E = ∪iEi has the
required properties.

Finally, if I is not countable, then the statement can be proved using
Zorn’s lemma. Indeed, consider the set

M =















for any field extension L/F , the free
regular field compositum LK over F preserves
extensions K/F indices of L -algebras and there exists

an F -algebra A s.t. AK is cyclic















All the fields in M are assumed to be in some universal domain. In-
clusions of fields define partial order on this set. If we have a totally
ordered subset S = {Kα} ⊂ M, then ∪αKα is an upper bound for this
subset. Hence, by Zorn’s lemma, there exists a maximal element E in
M.

We will show that E has the required properties by the rule of con-
traries. Assume that there exists an F -algebra A such that AE is not
cyclic. By Theorem 1.11, there exists a field extension E1 ∈ M such
that AE1

is cyclic. Then E1E ∈ M and contains E. Contradiction.
Thus, the field E has the required properties.

Now we will finish the proof of the theorem. Let K0 be the field
making all F -algebras cyclic and preserving their indices. Let also K1

be the field making all K0-algebras cyclic and preserving their indices,
and so on. Then the field ∪iKi has the required properties.
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�

2. Symbol algebra variety Symb(A)

Recall firstly how the Severi-Brauer variety corresponding to a cen-
tral simple algebra A can be defined by polynomial equations. For
a given n-dimensional F -vector space V , let GrassF (m, V ) be the set
of its m-dimensional subspaces. GrassF (m, V ) has the structure of a
projective variety via the Plücker embedding

GrassF (m, V ) −→ P(∧mV ),

Fw1 ⊕ Fw2 ⊕ · · · ⊕ Fwm 7→ F (w1 ∧ w2 ∧ · · · ∧ wm),

where ∧mV is the m-th wedge power of V . Fixing a base e1, e2, . . . , en

for V we obtain a base ei1 ∧ ei2 ∧ · · · ∧ eim , 1 ≤ i1 < i2 < · · · <
im ≤ n for ∧mV . This gives in turn homogeneous coordinates for
F (w1 ∧ w2 ∧ · · · ∧ wm).

Now let A be a central simple F -algebra with F -base e1, e2, . . . , en2.
Then the Severi-Brauer variety SB(A) is a subvariety of the Grassma-
nian GrassF (n,A) consisting of those points which correspond to right
ideals of A. This condition can be expressed by polynomial relations
as follows (see [10, p.112]).)

Let T ⊂ A∗ be a subset such that the multiplicative group generated
by T contains a base of A. Let I = F (w1∧w2∧· · ·∧wn) ∈ GrassF (n,A),
i.e., I corresponds to a vector space W = Fw1⊕Fw2⊕· · ·⊕Fwn ⊂ A.
Then W is a right ideal of A iff I = F (w1t ∧ w2t ∧ · · · ∧ wnt) for all
t ∈ T .

For t ∈ T , write

eit =
∑

aijej. (2.1)

Then

ei1t ∧ ei2t ∧ · · · ∧ eint =
∑

1≤j1<···<jn≤n2

tj1,...,jn,i1,...,inej1 ∧ ej2 ∧ · · · ∧ ejn
,

where

tj1,...,jn,i1,...,in =

∣

∣

∣

∣

∣

∣

ai1j1 . . . ai1jn

...
...

ainj1 . . . ainjn

∣

∣

∣

∣

∣

∣

.

Then for

w1 ∧ w2 ∧ · · · ∧ wn =
∑

1≤i1<···<in≤n2

pi1,...,inei1 ∧ ei2 ∧ · · · ∧ ein
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we have

w1t ∧ w2t ∧ · · · ∧ wnt =
∑

1≤i1<···<in≤n2

qi1,...,inei1 ∧ ei2 ∧ · · · ∧ ein ,

where
qi1,...,in =

∑

1≤j1<···<jn≤n2

ti1,...,in,j1,...,jn
pj1,...,jn

.

Thus F (w1∧w2∧· · ·∧wn) = F (w1t∧w2t∧· · ·∧wnt) iff their Plücker
coordinates are proportional, that is

qi1,...,inpj1,...,jn
= qj1,...,jn

pi1,...,in.

Hence each t ∈ T defines the following set of polynomial equations
for SB(A)





∑

1≤k1<···<kn≤n2

ti1,...,in,k1,...,kn
ξk1,...,kn



 ξj1,...,jn

−





∑

1≤k1<···<kn≤n2

tj1,...,jn,k1,...,kn
ξk1,...,kn



 ξi1,...,in = 0

where 1 ≤ i1 < · · · < in ≤ n2, 1 ≤ j1 < · · · < jn ≤ n2.
Thus the Severi-Brauer variety of A is defined in GrassF (n,A) by

this system of equations for all t ∈ T .
Let ρn ∈ F and B be a central simple F -algebra of degree m. Set

D = (x, y)n ⊗ BF (x,y)

where F (x, y) is a purely transcendental extension of F . Let

n
√

x
i

n
√

yj , 0 ≤ i, j ≤ n − 1,

be a standard base for the algebra (x, y)n and v1, . . . , vm2 a base for B
over F consisting from invertible elements. Then

n
√

x
i

n
√

yjvl, 0 ≤ i, j ≤ n − 1, 1 ≤ l ≤ m2,

is a base for D over F (x, y).
Now using the procedure above we will construct equations for the

Severi-Brauer variety SB(D). First of all take standard polynomials
Gj ∈ F (x, y)[ξ0, . . . , ξN ], j ∈ J , defining the Grassmanian

Grass(nm,D) ⊂ PN ,

where N = Cnm
n2m2 − 1. Note that coefficients of Gj-s, j ∈ J , belong to

the set {±1, 0}.
Further, set

TD = { n
√

x, n
√

y, v1, . . . , vm2}.
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Then the multiplicative group generated by TD contains a base of D
over F (x, y). Then each t ∈ TD defines a family of polynomial equations

{F (t)
i }, i ∈ It, of SB(D). Note that even {F (t)

i } ∈ F [x, y][ξ0, . . . , ξN ],
i ∈ It. To see this it is enough to show that, for each t ∈ TD, the
coefficients aij from (2.1) belong to F [x, y]. Indeed, if t = vl, then

( n
√

x
i

n
√

yjvk)vl = n
√

x
i

n
√

yj(
∑

asvs)

for some as ∈ F . If t = n
√

x, then

( n
√

x
i

n
√

yjvk)
n
√

x =

{

ρj
n

n
√

x
i+1

n
√

yjvk if i < n − 1;
xρj

n
n
√

yjvk if i = n − 1. (2.2)

Similar relations hold for n
√

y.
Now let L/F be a field extension and a, b ∈ L∗. Consider the algebra

D = (a, b)n ⊗L BL.

Then
n
√

a
i n
√

b
j
vl, 0 ≤ i, j ≤ n − 1, 1 ≤ l ≤ m2,

is a base for D over L. Moreover, the multiplicative group generated
by { n

√
a, n

√
b, vl| 1 ≤ l ≤ m2} contains a base of D over L. Hence this

set can be used in order to construct equations of the Severi-Brauer
variety of SB(D).

Note that

( n
√

a
i n
√

b
j
vk)

n
√

a =

{

ρj
n

n
√

a
i+1 n

√
b
j
vk if i < n − 1;

aρj
n

n
√

b
j
vk if i = n − 1.

Thus the coefficients of this expansion are obtained as the specialization
x 7→ a, y 7→ b of the coefficients of the expansion 2.2. Similar relations
take place for n

√
b and vl, 1 ≤ l ≤ m2.

Hence polynomials from L[ξ1, . . . , ξN ] defining SB(D) are obtained
as the specialization

x 7→ a, y 7→ b

of polynomials in F [x, y][ξ1, . . . , ξN ] defining SB(D).
Thus we have proved the following

Lemma 2.1. Let ρn ∈ F , B a central simple F -algebra of degree m
and a, b ∈ L∗. Let also D = (x, y)n ⊗ BF (x,y). Then the Severi-Brauer
variety SB(D) of D can be defined by polynomials in F [x, y][ξ0, . . . , ξN ]
(N = Cnm

n2m2 − 1) such that for any field extension L/F and a, b ∈ L∗,
their specialization x 7→ a, y 7→ b gives polynomials in L[ξ0, . . . , ξN ]
defining the Severi-Brauer variety SB(D) of D = (a, b)n ⊗ BL.
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Now we are in a position to prove the main result of this section.
Proof of Theorem 0.15. Set

D = (x, y)n ⊗Aop
F (x,y)

where F (x, y) is a purely transcendental extension of F .
The Severi-Brauer variety of D is a subvariety of the projective space

PN
F (x,y), where N = Cn

n2 − 1. Let Fj ∈ F [x, y][ξ0, . . . , ξN ], j ∈ J ,

be polynomials defining SB(D) constructed in the proof of Lemma
2.1. Now consider the Fj as polynomials in F [x, y, ξ0, . . . , ξN ]. Then
these polynomials define the affine variety X ⊂ AN+3

F . For H ∈
F [x, y, ξ0, . . . , ξN ], denote by D(H) the open complement of the va-
riety defined by H in AN+3

F . Set

Symb(A) = X ∩ D(x) ∩ D(y) ∩
(

∪N
i=0D(ξi)

)

.

Now we will show that Symb(A) has the required properties. Assume
(x0, y0, c0, . . . , cN) ∈ Symb(A)(L) for a field extension L/F . Hence

Fj(x0, y0, c0, . . . , cN) = 0 (2.3)

for any j ∈ J . Note that the specialization x 7→ x0, y 7→ y0 of polyno-
mials Fj ∈ F [x, y, ξ0, . . . , ξN ] gives the polynomials defining the Severi-
Brauer variety of the algebra (x0, y0)n⊗Aop

L . The condition (2.3) shows
that SB((x0, y0)n ⊗Aop

L ) has an L-rational point. Then (x0, y0)n ⊗Aop
L

is a matrix algebra, that is (x0, y0)n is Brauer equivalent to AL. Since
deg(AL) = deg((x0, y0)n), we have (x0, y0) ∼= AL.

Now assume that (x0, y0)n
∼= AL for some x0, y0 ∈ L∗. Then

SB((x0, y0)n ⊗Aop
L )

has an L-rational point, say, (c0, . . . , cN). That is, Fj(x0, y0, c0, . . . , cN) =
0 for any j ∈ J . Hence (x0, y0, c0, . . . , cN) ∈ X. Since x0, y0 ∈ L∗ and
some of ci-s is not zero, then (x0, y0, c0, . . . , cN) ∈ Symb(A).

�

Finally, one can easy prove the following property of Symb(A).

Proposition 2.2. Let A/F be a central simple algebra. Then, for any
field extension K/F ,

Symb(A⊗F K) = Symb(A) ×F K.

3. The variety C(A, K)

Let A be a central simple algebra over a field F of degree n and K/F
a cyclic field extension of degree n.

Consider a cyclic F (x)-algebra

C = (K(x)/F (x), σ, x),
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where Gal(K(x)/F (x)) = 〈σ〉. One has C =
∑

0≤i≤n−1 uσiK(x) and

uσiuσj =

{

uσi+j if i + j < n,
xuσi+j−n if i + j ≥ n.

Let b1, . . . , bn be a base of an F -vector space K and v1, . . . , vn2 a
base of a central simple F -algebra B of degree n consisting of invertible
elements.

Then the multiplicative group generated by the set

{uσ, b1, . . . , bn, v1, . . . , vn2}
contains a base of

D = C ⊗F (x) BF (x).

Then, as in the section 2, we can construct polynomials

Fj ∈ F (x)[ξ0, . . . , ξN ],

j ∈ J , defining the Severi-Brauer variety SB(D), where N = Cn2

n4 − 1.
Moreover, one can prove that these polynomials have coefficients not
only in F (x), but in F [x].

Let L/F be a field extension such that [LK : L] = [K : F ]. For
a ∈ L∗, consider the algebra

D = (LK/L, τ, a) ⊗L BL,

where Gal(LK/L) = 〈τ〉. One has (LK/L, τ, a) =
∑

0≤i≤n−1 wτ iLK
and

wτ iwτ j =

{

wτ i+j if i + j < n,
awτ i+j−n if i + j ≥ n.

Since [LK : L] = [K : F ], then b1, . . . , bn is a base of an L-vector
space LK. Then the multiplicative group generated by the set

{wτ , b1, . . . , bn, v1, . . . , vn2}
contains a base of D.

Proceeding as in the proof of Lemma 2.1 we can prove

Lemma 3.1. Let B be a central simple F -algebra of degree n, K/F a
cyclic field extension of degree n. Let also

D = (K(x)/F (x), σ, x) ⊗F (x) BF (x).

Then the Severi-Brauer variety SB(D) of D can be defined by poly-
nomials in F [x][ξ0, . . . , ξN ] such that for any field extension L/F and
a ∈ L∗ their specialization x 7→ a gives polynomials in L[ξ0, . . . , ξN ]
defining the Severi-Brauer variety SB(D) of D = (LK/L, τ, a) ⊗L BL.
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Now we can construct the variety C(A, K).
Proof of Theorem 0.16. Set

D = (K(x)/F (x), σ, x) ⊗F (x) AF (x),

where F (x) is a purely transcendental extension of F .
The Severi-Brauer variety of D is a closed subvariety of the projec-

tive space PN
F (x), where N = Cn2

n4 − 1. Let Fj ∈ F [x][ξ0, . . . , ξN ], j ∈ J ,

be polynomials defining SB(D) constructed in the proof of Lemma 3.1.
Now consider Fj as polynomials in F [x, ξ0, . . . , ξN ]. Then these poly-
nomials define an affine variety X ⊂ AN+2

F . For H ∈ F [x, ξ0, . . . , ξN ],
denote by D(H) the open complement of the variety defined by H in
AN+2

F . Set
C(A, K) = X ∩ D(x) ∩

(

∪N
i=0D(ξi)

)

.

The rest of the proof is the same as in Theorem 1.11.
�

As in the case of Symb(A), we have the following property of C(A, K).

Proposition 3.2. Let A be a central simple algebra over a field F of
degree n and K/F a cyclic field extension of degree n. Let also L/F be
a field extension such that |K : F | = |LK : L|.

Then
C(A⊗F L, LK) = C(A, K) ×F L.
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