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Abstract. Using the ideas and techniques developed by Bayer-Fluckiger,
Shapiro and Tignol about hyperbolic involutions of central simple algebras,
criteria for the hyperbolicity of involutions of the form σ ⊗ τ and σ⊗ ρ, where

σ is an involution of a central simple algebra A, τ is the nontrivial automor-
phism of a quadratic extension of the center of A and ρ is an involution of a
quaternion algebra are obtained.
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1. Introduction

Given a ring R with unity, a map σ : R → R is called an involution if σ(x+y) =
σ(x) + σ(y), σ(xy) = σ(y)σ(x) and σ(σ(x)) = x for all x, y ∈ R. The pair (R, σ)
(or simply σ) is called hyperbolic if there exists an idempotent e ∈ R such that
σ(e) = 1− e. This notion was introduced in [2]. An involution σ of R is said to be
isotropic if there exists a nonzero element a ∈ R such that σ(a)a = 0; otherwise, σ
is called anisotropic.

Various hyperbolicity criteria have been obtained by several authors. It is helpful
to recall some of these basic criteria here.

Let K be a field of characteristic different from 2. Let A be a K-central simple
algebra with an involution σ and let k be the fixed field of σ|K . When σ is of

the first kind, i.e., K = k, it was shown in [2, Thm. 3.3] that if L = K(
√

d)
is a quadratic extension of K, then (A ⊗ L, σ ⊗ idL) is hyperbolic if and only if
there exists r ∈ A such that r2 = d and σ(r) = −r. This criterion excludes the
exceptional case, where A is split, σ is of orthogonal type and the Witt index of
the quadratic form, to which σ is adjoint, is odd. This result was generalized in
[13] and [10], in various ways, to the case where σ is of the second kind.

When L/k is an extension of odd degree, it was shown in [1] that if σ ⊗ idL

is hyperbolic, then so is σ. This result was originally stated in [1] in terms of
hermitian forms (see [5, pp. 79-80]).

If L is the function field of a quadratic form, defined over k, the behavior of
σ ⊗ idL (in other words, the behavior of σ under the field extension L/k) has
been studied by various authors. If σ becomes hyperbolic over L = K[t]/(π(t)),
where π(t) ∈ K[t] is a separable monic polynomial of degree 2n, it was shown in
[13] that (A, σ) is homomorphic image of a certain universal free K-algebra Hπ on
2n indeterminates with an involution σπ. A quadratic form-theoretic formulation
of this criterion was given in [4] by showing that Hπ has a homomorphic image,
which is the Clifford algebra of some quadratic form over a certain polynomial ring.
A necessary and sufficient condition for a quaternion or a biquaternion algebra
to become hyperbolic over a field extension was obtained in [3]. An interesting
question about hyperbolicity of a central simple algebra with involution (A, σ) (of
low dimension) over the function field of a quadratic form q and its relationship
with the existence of some homomorphic images of the even Clifford algebra C0(q)
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in A was studied in [7]. The hyperbolicity of (A, σ) (of low dimension) over the
function field of three-dimensional forms was studied in [12].

Let A be a K-central simple algebra with an involution σ and let k be the fixed
field of σ|K . Let τ be the nontrivial automorphism of a quadratic extension L/k.
Let Q be a quaternion algebra over K with an involution ρ such that σ|K = ρ|K . In
this article we provide criteria for hyperbolicity of σ⊗τ and σ⊗ρ (see Theorem 3.2,
Corollary 4.2 and Corollary 4.6). Our main motivation to search for such criteria
arises from our previous work [11], which investigates the hyperbolicity of canonical
involutions of Clifford algebra (or the even Clifford algebra) of a quadratic form
q and its connection with the existence of particular subforms of q. In fact, the
standard isomorphism theorems of Clifford algebras like C(q′⊥q) ≃ C(q′)⊗C(d · q)
and C0(q

′′⊥q) ≃ C0(q
′′) ⊗ C(−d · q), where q′ is a form of even dimension, q′′ is a

form of odd dimension and d is the discriminant of q (see [8, Ch. V, §2]), induce
isomorphisms of algebras with involution (see [9]). If we choose, in the first (resp.
second) isomorphism, q to be a two (resp. one) dimensional form, the canonical
involutions of C(q′⊥q) (resp. C0(q

′′⊥q)) are decomposed as σ ⊗ ρ (resp. σ ⊗ τ).
Finding criteria for the hyperbolicity of σ ⊗ τ and σ ⊗ ρ are therefore useful in this
regard.

The criterion for hyperbolicity of σ ⊗ ρ is deduced from a general criterion for
the hyperbolicity of a central simple algebra with involution in terms of certain
subalgebra of codimension two. This criterion is given in Theorem 4.1 (see also
Theorem 4.5).

As an application, a corollary about the hyperbolicity of the tensor product of
two quaternion algebras with involution is drawn (c.f. Proposition 4.10, compare
with [11, Prop. 3.9]).

2. Preliminaries

All fields considered in this paper are supposed to be of characteristic different
from 2.

Let A be a K-central simple algebra with an involution σ. If σ|K is the identity
map, σ is called of the first kind. Otherwise σ|K is a nontrivial automorphism of
K. In this case, σ is called of the second kind. If k is the fixed field of σ|K , in both
cases, we say, in short, that σ is a K/k-involution. Let ε ∈ K be an element with
σ(ε)ε = 1. An element a ∈ A which satisfies σ(a) = εa is called ε-hermitian. A
(1)-hermitian element is usually called a symmetric element and a (−1)-hermitian
element is usually called a skew-symmetric element.

We define
A+ = {x ∈ A : σ(x) = x},

A− = {x ∈ A : σ(x) = −x}.
Note that A+ and A− are k-vector spaces.

The involution σ is said to be of orthogonal type if dimA+ > dimA−. It is said
to be of symplectic type if dim A+ < dimA−.

If σ is of the first kind, it is known that the square class of the reduced norm of
any skew-symmetric invertible element a of A with respect to σ is independent of
the choice of a (cf. [6]). The discriminant of σ is so defined in [5] as the square class
of (−1)m Nrd(a), where a is a skew-symmetric element of A and m = 1

2 deg(A).
Here deg(A) is the degree of A (the degree of a central simple algebra is square root
of its dimension, as a vector space, over its center).

Let (A, σ) be a K-central simple algebra with involution. Let ε ∈ K be an
element with εσ(ε) = 1 and let V be a right A-module of finite rank. An ε-
hermitian form over V with respect to σ, is a biadditive map h : V × V → A such
that

1) h(xα, yβ) = σ(α)h(x, y)β for all x, y ∈ V and all α, β ∈ A,
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2) εh(y, x) = σ(h(x, y)) for all x, y ∈ V .

If ε = 1, h is called a hermitian form and if ε = −1, h is called a skew-hermitian

form.
For a non-degenerate ε-hermitian space (V, h) over (A, σ), the adjoint involution

of EndA(V ) with respect to (V, h), is the unique involution Ih of EndA(V ) such
that

1) Ih(α) = σ(α) for every α ∈ K,
2) h(x, f(y)) = h(Ih(f)(x), y) for all x, y ∈ V and all f ∈ EndA(V ).

When the role of EndA(V ) is clear in the context, we simply say that Ih is the
involution, which is adjoint to h.

3. Quadratic extensions and hyperbolic involutions

Lemma 3.1. Let A be a K-central simple algebra with an anisotropic K/k-involution

σ. For d ∈ k, let L = k(
√

d) be a quadratic extension of k with the nontrivial k-

automorphism τ . If σ ⊗ τ is hyperbolic, then there exists an element r ∈ A such

that r2 = d and σ(r) = r.

Proof. If σ ⊗ τ is hyperbolic, there exists e ∈ A ⊗k L such that e2 = e and
(σ ⊗ τ)(e) = 1 − e. We can write e = e1 ⊗ 1 + e2 ⊗

√
d, where e1, e2 ∈ A. The

following systems of equations are obtained:

(1)

{
e2
1 + de2

2 = e1

e1e2 + e2e1 = e2,

{
σ(e1) = 1 − e1

σ(e2) = e2.

We first show that e2 is invertible. As σ is anisotropic, the right ideal I = {x ∈ A :
e2x = 0} is generated by a symmetric idempotent f (cf. [2, Cor. 1.8]). The relation
e2f = 0 implies e1e2f = 0 and e2

2f = 0. Using the previous system of equations
and e2

2f = 0 we obtain (e1 − e2
1)f = 0. We deduce that (fe1)σ(fe1) = fe1σ(e1)f =

fe1(1 − e1)f = f(e1 − e2
1)f = 0. As σ is anisotropic, we obtain fe1 = 0. A similar

argument shows that σ(e1f)e1f = f(1 − e1)e1f = f(e1 − e2
1)f = 0. Thus e1f = 0.

We now have: 0 = σ(fe1) = (1 − e1)f = f − e1f = f . Therefore I = {0}. This
implies that e2 is invertible. Now consider the element r = e1e

−1
2 . According to

(1), we have e1 + e2e1e
−1
2 = 1 thus e2e1e

−1
2 = 1 − e1.

On the other hand σ(r) = σ(e2)
−1σ(e1) = e−1

2 (1 − e1) = e1e
−1
2 = r. Similarly

r2 = e1e2
−1e1e2

−1 = e1e2
−1(1−e2e1e2

−1)e2
−1 = e1e2

−2−e1
2e−2

2 = (e1−e2
1)e

−2
2 =

de2
2e

−2
2 = d. This completes the proof. �

Theorem 3.2. Let A be a K-central simple algebra with a K/k-involution σ. We

exclude the case where A is split, σ is symplectic and deg(A) = 2m, where m is an

odd integer. Let L = k(
√

d) be a quadratic extension of k and let τ be the nontrivial

automorphism of L/k. Then there exists an element r ∈ A with the properties

r2 = d and σ(r) = r if and only if (A ⊗k L, σ ⊗ τ) is hyperbolic.

Proof. First, suppose that the element r with the indicated properties exists.
Take t = d−1r ⊗

√
d ∈ A ⊗k L. We have: t2 = (d−1r ⊗

√
d)2 = d−2r2 ⊗ d = 1

and (σ ⊗ τ)(t) = d−1r ⊗ (−
√

d) = −t. Take e = 1
2 (1 + t). We obtain e2 = e and

σ(e) = 1 − e. Thus, (A ⊗k L, σ ⊗ τ) is hyperbolic.
Conversely, suppose that (A⊗k L, σ⊗τ) is hyperbolic. Let A = EndD(V ), where

D is a division algebra which is Brauer-equivalent to A. Let σ′ be an involution of
D of the same kind as σ. Finally let (V, h) be a ε-hermitian space over (D, σ′) such
that σ is the adjoint involution with respect to (V, h) (we take ε = 1 when σ is of
the second kind).

Consider the Witt decomposition (V, h) = (V0, h0)⊥(V1, h1), where (V0, h0) is
hyperbolic and (V1, h1) is anisotropic. Let σ0 and σ1 be the adjoint involutions of
EndD(V0) and EndD(V1) with respect to h0 and h1, respectively.
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The hermitian space (V1, h1) becomes hyperbolic over (L, τ). The previous
lemma implies the existence of an element r1 ∈ EndD(V1) such that r2

1 = d and
σ1(r1) = r1.

Suppose that σ is of the second kind or of the first kind and of orthogonal type.
According to [2, Thm. 2.2], EndD(V0) contains a σ0-invariant subalgebra M such
that

(2) (M2(K), Θ1) ≃ (M, σ0|M ),

where Θ1 is the involution of M2(K) defined by

Θ1

(
a b
c d

)
=

(
σ0(d) σ0(b)
σ0(c) σ0(a)

)
.

Let r0 ∈ M ⊂ EndD(V0) be the image of

(
0 d
1 0

)
under the isomorphism given

in (2). We have σ1(r0) = r0 and r2
0 = d. Let r ∈ A = End(V ) be the element

defined by

(3) r(x, y) = (r0(x), r1(y)).

We obtain σ(r) = r and r2 = d.
If σ is of the first kind and of symplectic type and deg(EndD(V0)) is divisible by

4 (this is always the case except when D is split and deg(A) = 2m, where m is an
odd integer), then again using [2, Thm. 2.2], there exists a σ0-invariant subalgebra
M such that

(4) (M, σ0|M ) ≃ (M2(K), Θ1).

Let r0 be the image of

(
0 d
1 0

)
under the isomorphism given in (4). We have

σ0(r0) = r0 and r2
0 = d. The element r defined in (3) satisfies σ(r) = r and r2 = d.

�

4. Quadratic extensions of algebras and hyperbolic involutions

Theorem 4.1. Let (A, σ) be a K-central simple algebra with involution. Suppose

that there exist λ, µ ∈ A× such that λµ = −µλ, σ(λ) = −λ, σ(µ) = −µ and

K(λ)/K is a quadratic extension. Let Ã = CA(λ) be the centralizer of λ in A.

Suppose that σ| eA
is anisotropic. Then σ is hyperbolic if and only if there exists

r ∈ Ã such that σ(r)µ = µr and σ(r)r = µ2.

Proof. As σ is hyperbolic, there exists an idempotent e ∈ A such that σ(e) = 1−e.

We can write e = x + µy, where x, y ∈ Ã. We obtain the following systems of
equations:

(5)

{
x2 + µyµy = x
xµy + µyx = µy,

{
σ(x) = 1 − x
σ(y) = µyµ−1.

We first show that y is invertible. We observe that the right ideal I = {z ∈
Ã : yz = 0} is generated by a symmetric idempotent f (cf. [2, Cor. 1.8]). The
relation yf = 0 implies µyµyf = 0. Therefore (x − x2)f = 0. We now have:
(fx)σ(fx) = fx(1 − x)f = f(x − x2)f = 0. In the same way σ(xf)(xf) = f(1 −
x)xf = f(x − x2)f = 0. As σ| eA

is anisotropic we deduce that fx = xf = 0. On
the other hand 0 = σ(fx) = (1− x)f = f −xf = f . This implies I = {0} and thus
y is invertible.

Now take r = xy−1. Using (5), we obtain:

σ(r)r = σ(xy−1)xy−1 = σ(y−1)σ(x)xy−1 = µy−1µ−1(1 − x)xy−1

= µy−1µ−1(x − x2)y−1 = µy−1µ−1(µyµy)y−1

= µ2,
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σ(r)µ = σ(xy−1)µ = σ(y)−1σ(x)µ = µy−1µ−1(1 − x)µ
= µy−1 − µy−1µ−1xµ
= µy−1 − µy−1µ−1(µ − µyxy−1) = µxy−1

= µr.

Conversely, suppose that there exists r ∈ Ã such that σ(r)µ = µr and σ(r)r = µ2.
Take t = rµ−1. We have t2 = µ−1σ(r)rµ−1 = 1 and σ(t) = −µ−1σ(r) = −rµ−1 =
−t. Now, if e = 1

2 (1 + t), then e2 = e and σ(e) = 1 − e. Therefore σ is hyperbolic.
�

Corollary 4.2. Let A be a K-central simple algebra with an involution σ. Let Q
be a quaternion algebra over K endowed with an involution ρ. Suppose that ρ and

σ have the same restriction to K. Let λ, µ be elements in Q such that ρ(λ) = −λ,

ρ(µ) = −µ, µ2 ∈ K, λµ = −µλ and let L = K(λ) be a quadratic extension of

K. Suppose that σ ⊗ ρ|L is anisotropic. Then the involution σ ⊗ ρ of A ⊗K Q is

hyperbolic if and only if there exist a, b ∈ A with σ(a) = a, σ(b) = b, ab = ba and

σ(a)a − λ2σ(b)b = µ2.

Proof. First, suppose that σ ⊗ ρ is hyperbolic. According to Theorem 4.1, there
exists an element r ∈ A⊗L such that (σ⊗ρ)(r)r = 1⊗µ2 and σ(r)(1⊗µ) = (1⊗µ)r.
We can write r = a ⊗ 1 + b ⊗ λ for some a, b ∈ A. We have (σ ⊗ ρ)(r) =
σ(a) ⊗ 1 − σ(b) ⊗ λ.

The condition (σ ⊗ ρ)(r)(1 ⊗ µ) = (1 ⊗ µ)r implies σ(a) ⊗ µ − σ(b) ⊗ λµ =
a⊗µ+b⊗µλ. Therefore σ(a) = a and σ(b) = b. The condition (σ⊗ρ)(r)r = 1⊗µ2

implies σ(a)a ⊗ 1 − σ(b)b ⊗ λ2 + σ(a)b ⊗ λ − σ(b)a ⊗ λ = 1 ⊗ µ2. We deduce that
σ(a)a − λ2σ(b)b = µ2 and σ(a)b − σ(b)a = 0, which implies ab = ba.

Conversely, suppose that a and b with the indicated properties exist. Take
r = a⊗ 1 + b⊗ λ. We have: (σ ⊗ ρ)(r)r = 1⊗ µ2 and (σ ⊗ ρ)(r)(1 ⊗ µ) = (1⊗ µ)r.
From Theorem 4.1 we conclude that σ ⊗ ρ is hyperbolic. �

Remark 4.3. In Corollary 4.2, the condition concerning the anisotropy of σ ⊗ ρ|L
can also be stated as follows: If a, b ∈ A satisfy σ(a)a − λ2σ(b)b = 0 and σ(a)b =
σ(b)a, then a = b = 0.

Remark 4.4. If (A, σ) = (K, id), Corollary 4.2 states that the canonical involution
of the quaternion algebra Q = (α, β)K is hyperbolic if and only if the quadratic
form 〈1,−α,−β, αβ〉 is isotropic over K if and only if Q is split. This is well known
(see [4, Prop. 18]).

Theorem 4.1 can be established under more general hypotheses. In fact, we have:

Theorem 4.5. Let (A, σ) be a K-central simple algebra with involution. Suppose

that there exist λ, µ ∈ A× such that λµ = −µλ, σ(λ) = ελλ, σ(µ) = εµµ and

K(λ)/K is a quadratic extension, where ελ, εµ ∈ K satisfy σ(ελ)ελ = 1 and

σ(εµ)εµ = 1. Let Ã = CA(λ) be the centralizer of λ in A. Suppose that σ| eA

is anisotropic. Then σ is hyperbolic if and only if there exists r ∈ Ã such that

σ(r)µ = −εµµr and σ(r)r = −εµµ2.

Proof. Using an argument similar to the one given in the proof of Theorem 4.1,
we find the following systems of equations:

(6)

{
x2 + µyµy = x
xµy + µyx = µy,

{
σ(x) = 1 − x
σ(y) = −σ(εµ)µyµ−1.

For r = xy−1 we have: σ(r)r = −εµµ2 and σ(r)µ = −εµµr.

Conversely, suppose that there exists r ∈ Ã such that σ(r)µ = −εµµr and
σ(r)r = −εµµ2. Take t = rµ−1. We have: t2 = rµ−1 · rµ−1 = −σ(εµ)µ−1σ(r) ·
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rµ−1 = σ(εµ)εµ = 1 and σ(t) = σ(µ−1)σ(r) = (εµµ)−1(−εµµrµ−1) = −rµ−1 = −t.
Now, if e = 1

2 (1 + t), then e2 = e and σ(e) = 1 − e. Therefore σ is hyperbolic. �

Corollary 4.6. Let (A, σ) be a K-central simple algebra with involution. Let (Q, ρ)
be a K-quaternion algebra with involution. Suppose that ρ and σ have the same

restriction to K. Let λ, µ be elements of Q such that ρ(λ) = ελλ, ρ(µ) = εµµ,

µ2 ∈ K, λµ = −µλ and let L = K(λ) be a quadratic extension of K, where

ελ, εµ ∈ K satisfy ρ(ελ)ελ = 1 and ρ(εµ)εµ = 1. Suppose that σ⊗ρ|L is anisotropic.

Then the involution σ ⊗ ρ of A⊗Q is hyperbolic if and only if there exist a, b ∈ A
with σ(a) = −εµa, σ(b) = ε−1

λ εµb, ab = ba and σ(a)a + ελλ2σ(b)b + εµµ2 = 0.

Proof. According to Theorem 4.5, there exists an element r ∈ A ⊗ L such
that (σ ⊗ ρ)(r)r = −εµ(1 ⊗ µ2) and σ(r)(1 ⊗ µ) = −εµ(1 ⊗ µ)r. We can write
r = a ⊗ 1 + b ⊗ λ for some a, b ∈ A. We have (σ ⊗ ρ)(r) = σ(a) ⊗ 1 + ελσ(b) ⊗ λ.

The condition σ(r)(1 ⊗ µ) = −εµ(1⊗ µ)r implies that σ(a)⊗ µ + ελσ(b)⊗ λµ =
−εµ(a ⊗ µ − b ⊗ µλ). Therefore σ(a) = −εµa and ελσ(b) = εµb. The condition
(σ⊗ρ)(r)r = −εµ(1⊗µ2) implies σ(a)a⊗1+ελσ(b)b⊗λ2+σ(a)b⊗λ+ελσ(b)a⊗λ =
−ελ(1⊗µ2). We deduce that σ(a)a+ ελλ2σ(b)b = −εµµ2 and σ(a)b+ ελσ(b)a = 0,
which implies ab = ba. �

Remark 4.7. In Corollary 4.6, the condition concerning the anisotropy of σ ⊗ ρ|L
can also be stated as follows: If a, b ∈ A satisfy σ(a)a + ελλ2σ(b)b = 0 and
σ(a)b + ελσ(b)a, then a = b = 0.

Remark 4.8. Let (A, σ) = (K, id). Suppose that Q = (a, b)K is the quaternion
algebra with the orthogonal involution ρ defined by ρ(i) = i, ρ(j) = j. Then

Corollary 4.6 implies that the involution ρ is hyperbolic if and only if −ab ∈ K×2
.

This is well known (see [3, Thm. 2.1]).

As an application of above results, we present an alternative proof for the fol-
lowing result stated in [3, Prop. 3.1]. As it is mentioned in [3], this result is an
immediate consequence of [2, Cor. 2.5].

Corollary 4.9. Let A be a biquaternion algebra over a field K with an orthogonal

involution σ such that disc(σ) = 1. We can write the following decomposition

(A, σ) = (Q1, σ1) ⊗K (Q2, σ2), where σ1 and σ2 are the symplectic involutions.

Then σ is hyperbolic if and only if Q1 or Q2 is split.

Proof. If one of the algebras Q1 or Q2 is split, then one of the involutions σ1 or
σ2 is hyperbolic. Therefore σ is hyperbolic.

Conversely, suppose that σ is hyperbolic. We can write Q2 = (c, d)K , where

c, d ∈ K×. If Q2 is not split, we have in particular, c /∈ K×2
. If the involution

σ1⊗σ2|K(
√

c) of Q1⊗K(
√

c) is isotropic, then [3, Lem. 2.3] implies that Q1 is split.

If σ1 ⊗σ2|K(
√

c) is anisotropic, Corollary 4.6 implies the existence of x, y ∈ K such

that x2 − cy2 − d = 0. Thus the quadratic form 〈1,−c,−d〉 is isotropic. Therefore
Q2 is split. �

Proposition 4.10. Let Q1 = (a, b)K and Q2 = (c, d)K be two K-quaternion alge-

bras. Let σ1 be the orthogonal involution of Q1 defined by σ1(λ) = λ, σ1(µ) = µ,

where {λ, µ} is a standard basis of Q1 with λµ = −µλ, λ2 = a, µ2 = b and let σ2

be the canonical involution of Q2. Then σ = σ1 ⊗ σ2 is hyperbolic if and only if

Q2 is split or at least one of the quadratic forms 〈a, b,−ac,−bc,−d〉 or 〈a, b,−c〉 is

isotropic over K.
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Proof. Suppose that σ is hyperbolic. If c ∈ K×2
, then Q2 is split. Now suppose

that c /∈ K×2
. Consider the quadratic extension L/K, where L = K(

√
c). The

restriction σ2|L is the nontrivial automorphism of L/K.
If σ1 ⊗ σ2|L is isotropic, then Q1 ⊗ L is split. Therefore σ1 ⊗ σ2|L is adjoint to

an isotropic hermitian form of dimension 2 over a field. In particular, σ1 ⊗ σ2|L is
hyperbolic. According to Theorem 3.2, there exists r ∈ Q1 with the properties r2 =
c and σ1(r) = r. Thanks to these last properties one can write r = γ11+ γ2λ+ γ3µ
for some γ1, γ2, γ3 ∈ K. However, r2 = c implies that γ2

1 + aγ2
2 + bγ2

3 = c
and γ1γ2 = γ1γ3 = 0. If γ1 = 0, we deduce that the quadratic form 〈a, b,−c〉 is
isotropic. If γ1 6= 0, we deduce that γ2 = γ3 = 0. Therefore c is a square, which is
a contradiction.

Now consider the case where σ1 ⊗ σ2|L is anisotropic. In this case, Corollary 4.6
implies the existence of x, y ∈ Q1 such that σ1(x) = x, σ1(y) = y, xy = yx and

(7) σ1(x)x − cσ1(y)y − d = 0.

We can write x = γ11 + γ2λ + γ3µ and y = γ′
11 + γ′

2λ + γ′
3µ for some γ1, γ2, γ3, γ′

1,
γ′
2, γ′

3 ∈ K. The condition xy = yx implies that the elements w = γ2λ + γ3µ and
w′ = γ′

2λ + γ′
3µ are linearly dependent over K. So there exists a nonzero element

v ∈ Kλ ⊕ Kµ ⊂ Q1 such that w = θv and w′ = θ′v for some θ, θ′ ∈ K. Now (7)
implies that λ2

1 − cλ′2
1 + q(v)θ2 − cq(v)θ′2 − d = 0, where q is the quadratic form

〈a, b〉. It follows that the quadratic form 〈1,−c〉⊗〈a, b〉⊥〈−d〉 ≃ 〈a, b,−ac,−bc,−d〉
is isotropic over K.
Conversely, suppose that one of the following conditions holds:

Q2 is split or
〈a, b,−c〉 is isotropic or
〈a, b,−ab,−ac,−d〉 is isotropic.

In the first case, σ is hyperbolic because σ2 is hyperbolic too. In the second case, σ
is hyperbolic because σ1 ⊗σ2|L is hyperbolic. In the third case, we obtain a system
of the form of (7). Therefore σ is hyperbolic. �
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