HYPERBOLICITY CRITERIA FOR CERTAIN INVOLUTIONS

M. G. MAHMOUDI

ABSTRACT. Using the ideas and techniques developed by Bayer-Fluckiger, Shapiro and Tignol about hyperbolic involutions of central simple algebras, criteria for the hyperbolicity of involutions of the form $\sigma \otimes \tau$ and $\sigma \otimes \rho$, where σ is an involution of a central simple algebra A, τ is the nontrivial automorphism of a quadratic extension of the center of A and ρ is an involution of a quaternion algebra are obtained.

2000 Mathematics Subject Classification: 16W10, 11E39

Key words: Hyperbolic involution, central simple algebra, hermitian form

1. Introduction

Given a ring R with unity, a map $\sigma: R \to R$ is called an *involution* if $\sigma(x+y) = \sigma(x) + \sigma(y)$, $\sigma(xy) = \sigma(y)\sigma(x)$ and $\sigma(\sigma(x)) = x$ for all $x, y \in R$. The pair (R, σ) (or simply σ) is called *hyperbolic* if there exists an idempotent $e \in R$ such that $\sigma(e) = 1 - e$. This notion was introduced in [2]. An involution σ of R is said to be *isotropic* if there exists a nonzero element $a \in R$ such that $\sigma(a)a = 0$; otherwise, σ is called *anisotropic*.

Various hyperbolicity criteria have been obtained by several authors. It is helpful to recall some of these basic criteria here.

Let K be a field of characteristic different from 2. Let A be a K-central simple algebra with an involution σ and let k be the fixed field of $\sigma|_K$. When σ is of the first kind, i.e., K=k, it was shown in [2, Thm. 3.3] that if $L=K(\sqrt{d})$ is a quadratic extension of K, then $(A\otimes L,\sigma\otimes \mathrm{id}_L)$ is hyperbolic if and only if there exists $r\in A$ such that $r^2=d$ and $\sigma(r)=-r$. This criterion excludes the exceptional case, where A is split, σ is of orthogonal type and the Witt index of the quadratic form, to which σ is adjoint, is odd. This result was generalized in [13] and [10], in various ways, to the case where σ is of the second kind.

When L/k is an extension of odd degree, it was shown in [1] that if $\sigma \otimes id_L$ is hyperbolic, then so is σ . This result was originally stated in [1] in terms of hermitian forms (see [5, pp. 79-80]).

If L is the function field of a quadratic form, defined over k, the behavior of $\sigma \otimes \operatorname{id}_L$ (in other words, the behavior of σ under the field extension L/k) has been studied by various authors. If σ becomes hyperbolic over $L = K[t]/(\pi(t))$, where $\pi(t) \in K[t]$ is a separable monic polynomial of degree 2n, it was shown in [13] that (A, σ) is homomorphic image of a certain universal free K-algebra H_{π} on 2n indeterminates with an involution σ_{π} . A quadratic form-theoretic formulation of this criterion was given in [4] by showing that H_{π} has a homomorphic image, which is the Clifford algebra of some quadratic form over a certain polynomial ring. A necessary and sufficient condition for a quaternion or a biquaternion algebra to become hyperbolic over a field extension was obtained in [3]. An interesting question about hyperbolicity of a central simple algebra with involution (A, σ) (of low dimension) over the function field of a quadratic form q and its relationship with the existence of some homomorphic images of the even Clifford algebra $C_0(q)$

in A was studied in [7]. The hyperbolicity of (A, σ) (of low dimension) over the function field of three-dimensional forms was studied in [12].

Let A be a K-central simple algebra with an involution σ and let k be the fixed field of $\sigma|_K$. Let τ be the nontrivial automorphism of a quadratic extension L/k. Let Q be a quaternion algebra over K with an involution ρ such that $\sigma|_K = \rho|_K$. In this article we provide criteria for hyperbolicity of $\sigma \otimes \tau$ and $\sigma \otimes \rho$ (see Theorem 3.2, Corollary 4.2 and Corollary 4.6). Our main motivation to search for such criteria arises from our previous work [11], which investigates the hyperbolicity of canonical involutions of Clifford algebra (or the even Clifford algebra) of a quadratic form q and its connection with the existence of particular subforms of q. In fact, the standard isomorphism theorems of Clifford algebras like $C(q' \perp q) \simeq C(q') \otimes C(d \cdot q)$ and $C_0(q''\perp q)\simeq C_0(q'')\otimes C(-d\cdot q)$, where q' is a form of even dimension, q'' is a form of odd dimension and d is the discriminant of q (see [8, Ch. V, §2]), induce isomorphisms of algebras with involution (see [9]). If we choose, in the first (resp. second) isomorphism, q to be a two (resp. one) dimensional form, the canonical involutions of $C(q'\perp q)$ (resp. $C_0(q''\perp q)$) are decomposed as $\sigma\otimes\rho$ (resp. $\sigma\otimes\tau$). Finding criteria for the hyperbolicity of $\sigma \otimes \tau$ and $\sigma \otimes \rho$ are therefore useful in this regard.

The criterion for hyperbolicity of $\sigma \otimes \rho$ is deduced from a general criterion for the hyperbolicity of a central simple algebra with involution in terms of certain subalgebra of codimension two. This criterion is given in Theorem 4.1 (see also Theorem 4.5).

As an application, a corollary about the hyperbolicity of the tensor product of two quaternion algebras with involution is drawn (c.f. Proposition 4.10, compare with [11, Prop. 3.9]).

2. Preliminaries

All fields considered in this paper are supposed to be of characteristic different from 2.

Let A be a K-central simple algebra with an involution σ . If $\sigma|_K$ is the identity map, σ is called of the *first kind*. Otherwise $\sigma|_K$ is a nontrivial automorphism of K. In this case, σ is called of the *second kind*. If k is the fixed field of $\sigma|_K$, in both cases, we say, in short, that σ is a K/k-involution. Let $\varepsilon \in K$ be an element with $\sigma(\varepsilon)\varepsilon=1$. An element $a\in A$ which satisfies $\sigma(a)=\varepsilon a$ is called ε -hermitian. A (1)-hermitian element is usually called a *symmetric* element and a (-1)-hermitian element is usually called a *skew-symmetric* element.

We define

$$A^+ = \{x \in A : \sigma(x) = x\},\ A^- = \{x \in A : \sigma(x) = -x\}.$$

Note that A^+ and A^- are k-vector spaces.

The involution σ is said to be of *orthogonal* type if dim $A^+ > \dim A^-$. It is said to be of *symplectic* type if dim $A^+ < \dim A^-$.

If σ is of the first kind, it is known that the square class of the reduced norm of any skew-symmetric invertible element a of A with respect to σ is independent of the choice of a (cf. [6]). The discriminant of σ is so defined in [5] as the square class of $(-1)^m \operatorname{Nrd}(a)$, where a is a skew-symmetric element of A and $m = \frac{1}{2} \operatorname{deg}(A)$. Here $\operatorname{deg}(A)$ is the degree of A (the degree of a central simple algebra is square root of its dimension, as a vector space, over its center).

Let (A, σ) be a K-central simple algebra with involution. Let $\varepsilon \in K$ be an element with $\varepsilon \sigma(\varepsilon) = 1$ and let V be a right A-module of finite rank. An ε -hermitian form over V with respect to σ , is a biadditive map $h: V \times V \to A$ such that

1)
$$h(x\alpha, y\beta) = \sigma(\alpha)h(x, y)\beta$$
 for all $x, y \in V$ and all $\alpha, \beta \in A$,

2) $\varepsilon h(y,x) = \sigma(h(x,y))$ for all $x, y \in V$.

If $\varepsilon = 1$, h is called a hermitian form and if $\varepsilon = -1$, h is called a skew-hermitian form.

For a non-degenerate ε -hermitian space (V, h) over (A, σ) , the adjoint involution of $\operatorname{End}_A(V)$ with respect to (V, h), is the unique involution I_h of $\operatorname{End}_A(V)$ such that

- 1) $I_h(\alpha) = \sigma(\alpha)$ for every $\alpha \in K$,
- 2) $h(x, f(y)) = h(I_h(f)(x), y)$ for all $x, y \in V$ and all $f \in \text{End}_A(V)$.

When the role of $\operatorname{End}_A(V)$ is clear in the context, we simply say that I_h is the involution, which is adjoint to h.

3. Quadratic extensions and hyperbolic involutions

Lemma 3.1. Let A be a K-central simple algebra with an anisotropic K/k-involution σ . For $d \in k$, let $L = k(\sqrt{d})$ be a quadratic extension of k with the nontrivial k-automorphism τ . If $\sigma \otimes \tau$ is hyperbolic, then there exists an element $r \in A$ such that $r^2 = d$ and $\sigma(r) = r$.

Proof. If $\sigma \otimes \tau$ is hyperbolic, there exists $e \in A \otimes_k L$ such that $e^2 = e$ and $(\sigma \otimes \tau)(e) = 1 - e$. We can write $e = e_1 \otimes 1 + e_2 \otimes \sqrt{d}$, where $e_1, e_2 \in A$. The following systems of equations are obtained:

(1)
$$\begin{cases} e_1^2 + de_2^2 = e_1 \\ e_1e_2 + e_2e_1 = e_2, \end{cases} \begin{cases} \sigma(e_1) = 1 - e_1 \\ \sigma(e_2) = e_2. \end{cases}$$

We first show that e_2 is invertible. As σ is anisotropic, the right ideal $I=\{x\in A:e_2x=0\}$ is generated by a symmetric idempotent f (cf. [2, Cor. 1.8]). The relation $e_2f=0$ implies $e_1e_2f=0$ and $e_2^2f=0$. Using the previous system of equations and $e_2^2f=0$ we obtain $(e_1-e_1^2)f=0$. We deduce that $(fe_1)\sigma(fe_1)=fe_1\sigma(e_1)f=fe_1(1-e_1)f=f(e_1-e_1^2)f=0$. As σ is anisotropic, we obtain $fe_1=0$. A similar argument shows that $\sigma(e_1f)e_1f=f(1-e_1)e_1f=f(e_1-e_1^2)f=0$. Thus $e_1f=0$.

We now have: $0 = \sigma(fe_1) = (1 - e_1)f = f - e_1f = f$. Therefore $I = \{0\}$. This implies that e_2 is invertible. Now consider the element $r = e_1e_2^{-1}$. According to (1), we have $e_1 + e_2e_1e_2^{-1} = 1$ thus $e_2e_1e_2^{-1} = 1 - e_1$.

(1), we have $e_1 + e_2e_1e_2^{-1} = 1$ thus $e_2e_1e_2^{-1} = 1 - e_1$. On the other hand $\sigma(r) = \sigma(e_2)^{-1}\sigma(e_1) = e_2^{-1}(1 - e_1) = e_1e_2^{-1} = r$. Similarly $r^2 = e_1e_2^{-1}e_1e_2^{-1} = e_1e_2^{-1}(1 - e_2e_1e_2^{-1})e_2^{-1} = e_1e_2^{-2} - e_1^2e_2^{-2} = (e_1 - e_1^2)e_2^{-2} = de_2^2e_2^{-2} = d$. This completes the proof.

Theorem 3.2. Let A be a K-central simple algebra with a K/k-involution σ . We exclude the case where A is split, σ is symplectic and $\deg(A)=2m$, where m is an odd integer. Let $L=k(\sqrt{d})$ be a quadratic extension of k and let τ be the nontrivial automorphism of L/k. Then there exists an element $r \in A$ with the properties $r^2 = d$ and $\sigma(r) = r$ if and only if $(A \otimes_k L, \sigma \otimes \tau)$ is hyperbolic.

Proof. First, suppose that the element r with the indicated properties exists. Take $t=d^{-1}r\otimes \sqrt{d}\in A\otimes_k L$. We have: $t^2=(d^{-1}r\otimes \sqrt{d})^2=d^{-2}r^2\otimes d=1$ and $(\sigma\otimes\tau)(t)=d^{-1}r\otimes (-\sqrt{d})=-t$. Take $e=\frac{1}{2}(1+t)$. We obtain $e^2=e$ and $\sigma(e)=1-e$. Thus, $(A\otimes_k L,\sigma\otimes\tau)$ is hyperbolic.

Conversely, suppose that $(A \otimes_k L, \sigma \otimes \tau)$ is hyperbolic. Let $A = \operatorname{End}_D(V)$, where D is a division algebra which is Brauer-equivalent to A. Let σ' be an involution of D of the same kind as σ . Finally let (V, h) be a ε -hermitian space over (D, σ') such that σ is the adjoint involution with respect to (V, h) (we take $\varepsilon = 1$ when σ is of the second kind).

Consider the Witt decomposition $(V, h) = (V_0, h_0) \perp (V_1, h_1)$, where (V_0, h_0) is hyperbolic and (V_1, h_1) is anisotropic. Let σ_0 and σ_1 be the adjoint involutions of $\operatorname{End}_D(V_0)$ and $\operatorname{End}_D(V_1)$ with respect to h_0 and h_1 , respectively.

The hermitian space (V_1, h_1) becomes hyperbolic over (L, τ) . The previous lemma implies the existence of an element $r_1 \in \operatorname{End}_D(V_1)$ such that $r_1^2 = d$ and $\sigma_1(r_1) = r_1.$

Suppose that σ is of the second kind or of the first kind and of orthogonal type. According to [2, Thm. 2.2], $\operatorname{End}_D(V_0)$ contains a σ_0 -invariant subalgebra M such that

$$(2) (M_2(K), \Theta_1) \simeq (M, \sigma_0|_M),$$

$$\Theta_1 \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \left(\begin{array}{cc} \sigma_0(d) & \sigma_0(b) \\ \sigma_0(c) & \sigma_0(a) \end{array} \right)$$

where Θ_1 is the involution of $M_2(K)$ defined by $\Theta_1 \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \sigma_0(d) & \sigma_0(b) \\ \sigma_0(c) & \sigma_0(a) \end{pmatrix}.$ Let $r_0 \in M \subset \operatorname{End}_D(V_0)$ be the image of $\begin{pmatrix} 0 & d \\ 1 & 0 \end{pmatrix}$ under the isomorphism given in (2). We have $\sigma_1(r_0) = r_0$ and $r_0^2 = d$. Let $r \in A = \text{End}(V)$ be the element defined by

(3)
$$r(x,y) = (r_0(x), r_1(y)).$$

We obtain $\sigma(r) = r$ and $r^2 = d$.

If σ is of the first kind and of symplectic type and deg(End_D(V₀)) is divisible by 4 (this is always the case except when D is split and deg(A) = 2m, where m is an odd integer), then again using [2, Thm. 2.2], there exists a σ_0 -invariant subalgebra M such that

$$(4) (M, \sigma_0|_M) \simeq (M_2(K), \Theta_1).$$

Let r_0 be the image of $\begin{pmatrix} 0 & d \\ 1 & 0 \end{pmatrix}$ under the isomorphism given in (4). We have $\sigma_0(r_0) = r_0$ and $r_0^2 = d$. The element r defined in (3) satisfies $\sigma(r) = r$ and $r^2 = d$.

4. Quadratic extensions of algebras and hyperbolic involutions

Theorem 4.1. Let (A, σ) be a K-central simple algebra with involution. Suppose that there exist λ , $\mu \in A^{\times}$ such that $\lambda \mu = -\mu \lambda$, $\sigma(\lambda) = -\lambda$, $\sigma(\mu) = -\mu$ and $K(\lambda)/K$ is a quadratic extension. Let $\widetilde{A} = C_A(\lambda)$ be the centralizer of λ in A. Suppose that $\sigma|_{\widetilde{A}}$ is anisotropic. Then σ is hyperbolic if and only if there exists $r \in \widetilde{A}$ such that $\sigma(r)\mu = \mu r$ and $\sigma(r)r = \mu^2$.

Proof. As σ is hyperbolic, there exists an idempotent $e \in A$ such that $\sigma(e) = 1 - e$. We can write $e = x + \mu y$, where $x, y \in A$. We obtain the following systems of equations:

(5)
$$\begin{cases} x^2 + \mu y \mu y = x \\ x \mu y + \mu y x = \mu y, \end{cases} \begin{cases} \sigma(x) = 1 - x \\ \sigma(y) = \mu y \mu^{-1}. \end{cases}$$

We first show that y is invertible. We observe that the right ideal $I = \{z \in$ A: yz = 0 is generated by a symmetric idempotent f (cf. [2, Cor. 1.8]). The relation yf = 0 implies $\mu y \mu y f = 0$. Therefore $(x - x^2)f = 0$. We now have: $(fx)\sigma(fx) = fx(1-x)f = f(x-x^2)f = 0$. In the same way $\sigma(xf)(xf) = f(1-x)\sigma(fx)$ $x)xf = f(x-x^2)f = 0$. As $\sigma|_{\widetilde{A}}$ is anisotropic we deduce that fx = xf = 0. On the other hand $0 = \sigma(fx) = (1-x)f = f - xf = f$. This implies $I = \{0\}$ and thus y is invertible.

Now take $r = xy^{-1}$. Using (5), we obtain:

$$\begin{array}{ll} \sigma(r)r &= \sigma(xy^{-1})xy^{-1} = \sigma(y^{-1})\sigma(x)xy^{-1} = \mu y^{-1}\mu^{-1}(1-x)xy^{-1} \\ &= \mu y^{-1}\mu^{-1}(x-x^2)y^{-1} = \mu y^{-1}\mu^{-1}(\mu y\mu y)y^{-1} \\ &= \mu^2, \end{array}$$

$$\sigma(r)\mu = \sigma(xy^{-1})\mu = \sigma(y)^{-1}\sigma(x)\mu = \mu y^{-1}\mu^{-1}(1-x)\mu$$

$$= \mu y^{-1} - \mu y^{-1}\mu^{-1}x\mu$$

$$= \mu y^{-1} - \mu y^{-1}\mu^{-1}(\mu - \mu yxy^{-1}) = \mu xy^{-1}$$

$$= \mu r.$$

Conversely, suppose that there exists $r \in \widetilde{A}$ such that $\sigma(r)\mu = \mu r$ and $\sigma(r)r = \mu^2$. Take $t = r\mu^{-1}$. We have $t^2 = \mu^{-1}\sigma(r)r\mu^{-1} = 1$ and $\sigma(t) = -\mu^{-1}\sigma(r) = -r\mu^{-1} = -t$. Now, if $e = \frac{1}{2}(1+t)$, then $e^2 = e$ and $\sigma(e) = 1 - e$. Therefore σ is hyperbolic. \square

Corollary 4.2. Let A be a K-central simple algebra with an involution σ . Let Q be a quaternion algebra over K endowed with an involution ρ . Suppose that ρ and σ have the same restriction to K. Let λ , μ be elements in Q such that $\rho(\lambda) = -\lambda$, $\rho(\mu) = -\mu$, $\mu^2 \in K$, $\lambda \mu = -\mu \lambda$ and let $L = K(\lambda)$ be a quadratic extension of K. Suppose that $\sigma \otimes \rho|_L$ is anisotropic. Then the involution $\sigma \otimes \rho$ of $A \otimes_K Q$ is hyperbolic if and only if there exist $a, b \in A$ with $\sigma(a) = a, \sigma(b) = b$, ab = ba and $\sigma(a)a - \lambda^2 \sigma(b)b = \mu^2$.

Proof. First, suppose that $\sigma \otimes \rho$ is hyperbolic. According to Theorem 4.1, there exists an element $r \in A \otimes L$ such that $(\sigma \otimes \rho)(r)r = 1 \otimes \mu^2$ and $\sigma(r)(1 \otimes \mu) = (1 \otimes \mu)r$. We can write $r = a \otimes 1 + b \otimes \lambda$ for some $a, b \in A$. We have $(\sigma \otimes \rho)(r) = \sigma(a) \otimes 1 - \sigma(b) \otimes \lambda$.

The condition $(\sigma \otimes \rho)(r)(1 \otimes \mu) = (1 \otimes \mu)r$ implies $\sigma(a) \otimes \mu - \sigma(b) \otimes \lambda \mu = a \otimes \mu + b \otimes \mu \lambda$. Therefore $\sigma(a) = a$ and $\sigma(b) = b$. The condition $(\sigma \otimes \rho)(r)r = 1 \otimes \mu^2$ implies $\sigma(a)a \otimes 1 - \sigma(b)b \otimes \lambda^2 + \sigma(a)b \otimes \lambda - \sigma(b)a \otimes \lambda = 1 \otimes \mu^2$. We deduce that $\sigma(a)a - \lambda^2 \sigma(b)b = \mu^2$ and $\sigma(a)b - \sigma(b)a = 0$, which implies ab = ba.

Conversely, suppose that a and b with the indicated properties exist. Take $r = a \otimes 1 + b \otimes \lambda$. We have: $(\sigma \otimes \rho)(r)r = 1 \otimes \mu^2$ and $(\sigma \otimes \rho)(r)(1 \otimes \mu) = (1 \otimes \mu)r$. From Theorem 4.1 we conclude that $\sigma \otimes \rho$ is hyperbolic.

Remark 4.3. In Corollary 4.2, the condition concerning the anisotropy of $\sigma \otimes \rho|_L$ can also be stated as follows: If $a, b \in A$ satisfy $\sigma(a)a - \lambda^2 \sigma(b)b = 0$ and $\sigma(a)b = \sigma(b)a$, then a = b = 0.

Remark 4.4. If $(A, \sigma) = (K, \mathrm{id})$, Corollary 4.2 states that the canonical involution of the quaternion algebra $Q = (\alpha, \beta)_K$ is hyperbolic if and only if the quadratic form $\langle 1, -\alpha, -\beta, \alpha\beta \rangle$ is isotropic over K if and only if Q is split. This is well known (see [4, Prop. 18]).

Theorem 4.1 can be established under more general hypotheses. In fact, we have:

Theorem 4.5. Let (A, σ) be a K-central simple algebra with involution. Suppose that there exist λ , $\mu \in A^{\times}$ such that $\lambda \mu = -\mu \lambda$, $\sigma(\lambda) = \varepsilon_{\lambda} \lambda$, $\sigma(\mu) = \varepsilon_{\mu} \mu$ and $K(\lambda)/K$ is a quadratic extension, where ε_{λ} , $\varepsilon_{\mu} \in K$ satisfy $\sigma(\varepsilon_{\lambda})\varepsilon_{\lambda} = 1$ and $\sigma(\varepsilon_{\mu})\varepsilon_{\mu} = 1$. Let $\widetilde{A} = C_{A}(\lambda)$ be the centralizer of λ in A. Suppose that $\sigma|_{\widetilde{A}}$ is anisotropic. Then σ is hyperbolic if and only if there exists $r \in \widetilde{A}$ such that $\sigma(r)\mu = -\varepsilon_{\mu}\mu r$ and $\sigma(r)r = -\varepsilon_{\mu}\mu^{2}$.

Proof. Using an argument similar to the one given in the proof of Theorem 4.1, we find the following systems of equations:

(6)
$$\begin{cases} x^2 + \mu y \mu y = x \\ x \mu y + \mu y x = \mu y, \end{cases} \begin{cases} \sigma(x) = 1 - x \\ \sigma(y) = -\sigma(\varepsilon_{\mu}) \mu y \mu^{-1}. \end{cases}$$

For $r = xy^{-1}$ we have: $\sigma(r)r = -\varepsilon_{\mu}\mu^{2}$ and $\sigma(r)\mu = -\varepsilon_{\mu}\mu r$.

Conversely, suppose that there exists $r \in \widetilde{A}$ such that $\sigma(r)\mu = -\varepsilon_{\mu}\mu r$ and $\sigma(r)r = -\varepsilon_{\mu}\mu^{2}$. Take $t = r\mu^{-1}$. We have: $t^{2} = r\mu^{-1} \cdot r\mu^{-1} = -\sigma(\varepsilon_{\mu})\mu^{-1}\sigma(r)$.

 $r\mu^{-1} = \sigma(\varepsilon_{\mu})\varepsilon_{\mu} = 1$ and $\sigma(t) = \sigma(\mu^{-1})\sigma(r) = (\varepsilon_{\mu}\mu)^{-1}(-\varepsilon_{\mu}\mu r\mu^{-1}) = -r\mu^{-1} = -t$. Now, if $e = \frac{1}{2}(1+t)$, then $e^2 = e$ and $\sigma(e) = 1-e$. Therefore σ is hyperbolic. \square

Corollary 4.6. Let (A, σ) be a K-central simple algebra with involution. Let (Q, ρ) be a K-quaternion algebra with involution. Suppose that ρ and σ have the same restriction to K. Let λ , μ be elements of Q such that $\rho(\lambda) = \varepsilon_{\lambda}\lambda$, $\rho(\mu) = \varepsilon_{\mu}\mu$, $\mu^2 \in K$, $\lambda \mu = -\mu \lambda$ and let $L = K(\lambda)$ be a quadratic extension of K, where ε_{λ} , $\varepsilon_{\mu} \in K$ satisfy $\rho(\varepsilon_{\lambda})\varepsilon_{\lambda} = 1$ and $\rho(\varepsilon_{\mu})\varepsilon_{\mu} = 1$. Suppose that $\sigma \otimes \rho|_{L}$ is anisotropic. Then the involution $\sigma \otimes \rho$ of $A \otimes Q$ is hyperbolic if and only if there exist $a, b \in A$ with $\sigma(a) = -\varepsilon_{\mu}a$, $\sigma(b) = \varepsilon_{\lambda}^{-1}\varepsilon_{\mu}b$, ab = ba and $\sigma(a)a + \varepsilon_{\lambda}\lambda^{2}\sigma(b)b + \varepsilon_{\mu}\mu^{2} = 0$.

Proof. According to Theorem 4.5, there exists an element $r \in A \otimes L$ such that $(\sigma \otimes \rho)(r)r = -\varepsilon_{\mu}(1 \otimes \mu^2)$ and $\sigma(r)(1 \otimes \mu) = -\varepsilon_{\mu}(1 \otimes \mu)r$. We can write $r = a \otimes 1 + b \otimes \lambda$ for some $a, b \in A$. We have $(\sigma \otimes \rho)(r) = \sigma(a) \otimes 1 + \varepsilon_{\lambda}\sigma(b) \otimes \lambda$. The condition $\sigma(r)(1 \otimes \mu) = -\varepsilon_{\mu}(1 \otimes \mu)r$ implies that $\sigma(a) \otimes \mu + \varepsilon_{\lambda}\sigma(b) \otimes \lambda \mu = -\varepsilon_{\mu}(a \otimes \mu - b \otimes \mu\lambda)$. Therefore $\sigma(a) = -\varepsilon_{\mu}a$ and $\varepsilon_{\lambda}\sigma(b) = \varepsilon_{\mu}b$. The condition $(\sigma \otimes \rho)(r)r = -\varepsilon_{\mu}(1 \otimes \mu^2)$ implies $\sigma(a)a \otimes 1 + \varepsilon_{\lambda}\sigma(b)b \otimes \lambda^2 + \sigma(a)b \otimes \lambda + \varepsilon_{\lambda}\sigma(b)a \otimes \lambda = -\varepsilon_{\lambda}(1 \otimes \mu^2)$. We deduce that $\sigma(a)a + \varepsilon_{\lambda}\lambda^2\sigma(b)b = -\varepsilon_{\mu}\mu^2$ and $\sigma(a)b + \varepsilon_{\lambda}\sigma(b)a = 0$, which implies ab = ba.

Remark 4.7. In Corollary 4.6, the condition concerning the anisotropy of $\sigma \otimes \rho|_L$ can also be stated as follows: If $a, b \in A$ satisfy $\sigma(a)a + \varepsilon_{\lambda}\lambda^2\sigma(b)b = 0$ and $\sigma(a)b + \varepsilon_{\lambda}\sigma(b)a$, then a = b = 0.

Remark 4.8. Let $(A, \sigma) = (K, \mathrm{id})$. Suppose that $Q = (a, b)_K$ is the quaternion algebra with the orthogonal involution ρ defined by $\rho(i) = i$, $\rho(j) = j$. Then Corollary 4.6 implies that the involution ρ is hyperbolic if and only if $-ab \in K^{\times 2}$. This is well known (see [3, Thm. 2.1]).

As an application of above results, we present an alternative proof for the following result stated in [3, Prop. 3.1]. As it is mentioned in [3], this result is an immediate consequence of [2, Cor. 2.5].

Corollary 4.9. Let A be a biquaternion algebra over a field K with an orthogonal involution σ such that $\operatorname{disc}(\sigma) = 1$. We can write the following decomposition $(A, \sigma) = (Q_1, \sigma_1) \otimes_K (Q_2, \sigma_2)$, where σ_1 and σ_2 are the symplectic involutions. Then σ is hyperbolic if and only if Q_1 or Q_2 is split.

Proof. If one of the algebras Q_1 or Q_2 is split, then one of the involutions σ_1 or σ_2 is hyperbolic. Therefore σ is hyperbolic.

Conversely, suppose that σ is hyperbolic. We can write $Q_2=(c,d)_K$, where $c,\ d\in K^\times$. If Q_2 is not split, we have in particular, $c\notin K^{\times 2}$. If the involution $\sigma_1\otimes\sigma_2|_{K(\sqrt{c})}$ of $Q_1\otimes K(\sqrt{c})$ is isotropic, then [3, Lem. 2.3] implies that Q_1 is split. If $\sigma_1\otimes\sigma_2|_{K(\sqrt{c})}$ is anisotropic, Corollary 4.6 implies the existence of $x,\ y\in K$ such that $x^2-cy^2-d=0$. Thus the quadratic form $\langle 1,-c,-d\rangle$ is isotropic. Therefore Q_2 is split.

Proposition 4.10. Let $Q_1 = (a, b)_K$ and $Q_2 = (c, d)_K$ be two K-quaternion algebras. Let σ_1 be the orthogonal involution of Q_1 defined by $\sigma_1(\lambda) = \lambda$, $\sigma_1(\mu) = \mu$, where $\{\lambda, \mu\}$ is a standard basis of Q_1 with $\lambda \mu = -\mu \lambda$, $\lambda^2 = a$, $\mu^2 = b$ and let σ_2 be the canonical involution of Q_2 . Then $\sigma = \sigma_1 \otimes \sigma_2$ is hyperbolic if and only if Q_2 is split or at least one of the quadratic forms $\langle a, b, -ac, -bc, -d \rangle$ or $\langle a, b, -c \rangle$ is isotropic over K.

Proof. Suppose that σ is hyperbolic. If $c \in K^{\times 2}$, then Q_2 is split. Now suppose that $c \notin K^{\times 2}$. Consider the quadratic extension L/K, where $L = K(\sqrt{c})$. The restriction $\sigma_2|_L$ is the nontrivial automorphism of L/K.

If $\sigma_1 \otimes \sigma_2|_L$ is isotropic, then $Q_1 \otimes L$ is split. Therefore $\sigma_1 \otimes \sigma_2|_L$ is adjoint to an isotropic hermitian form of dimension 2 over a field. In particular, $\sigma_1 \otimes \sigma_2|_L$ is hyperbolic. According to Theorem 3.2, there exists $r \in Q_1$ with the properties $r^2 = c$ and $\sigma_1(r) = r$. Thanks to these last properties one can write $r = \gamma_1 1 + \gamma_2 \lambda + \gamma_3 \mu$ for some $\gamma_1, \ \gamma_2, \ \gamma_3 \in K$. However, $r^2 = c$ implies that $\gamma_1^2 + a\gamma_2^2 + b\gamma_3^2 = c$ and $\gamma_1\gamma_2 = \gamma_1\gamma_3 = 0$. If $\gamma_1 = 0$, we deduce that the quadratic form $\langle a, b, -c \rangle$ is isotropic. If $\gamma_1 \neq 0$, we deduce that $\gamma_2 = \gamma_3 = 0$. Therefore c is a square, which is a contradiction.

Now consider the case where $\sigma_1 \otimes \sigma_2|_L$ is anisotropic. In this case, Corollary 4.6 implies the existence of $x, y \in Q_1$ such that $\sigma_1(x) = x$, $\sigma_1(y) = y$, xy = yx and

(7)
$$\sigma_1(x)x - c\sigma_1(y)y - d = 0.$$

We can write $x = \gamma_1 1 + \gamma_2 \lambda + \gamma_3 \mu$ and $y = \gamma_1' 1 + \gamma_2' \lambda + \gamma_3' \mu$ for some $\gamma_1, \gamma_2, \gamma_3, \gamma_1', \gamma_2', \gamma_3' \in K$. The condition xy = yx implies that the elements $w = \gamma_2 \lambda + \gamma_3 \mu$ and $w' = \gamma_2' \lambda + \gamma_3' \mu$ are linearly dependent over K. So there exists a nonzero element $v \in K\lambda \oplus K\mu \subset Q_1$ such that $w = \theta v$ and $w' = \theta' v$ for some θ , $\theta' \in K$. Now (7) implies that $\lambda_1^2 - c\lambda_1'^2 + q(v)\theta^2 - cq(v)\theta'^2 - d = 0$, where q is the quadratic form $\langle a, b \rangle$. It follows that the quadratic form $\langle 1, -c \rangle \otimes \langle a, b \rangle \perp \langle -d \rangle \simeq \langle a, b, -ac, -bc, -d \rangle$ is isotropic over K.

Conversely, suppose that one of the following conditions holds:

 Q_2 is split or

 $\langle a, b, -c \rangle$ is isotropic or

 $\langle a, b, -ab, -ac, -d \rangle$ is isotropic.

In the first case, σ is hyperbolic because σ_2 is hyperbolic too. In the second case, σ is hyperbolic because $\sigma_1 \otimes \sigma_2|_L$ is hyperbolic. In the third case, we obtain a system of the form of (7). Therefore σ is hyperbolic.

Acknowledgments. I thank Behrooz Mirzaii for careful reading of an earlier version of this manuscript and for his useful suggestions. I also thank Eva Bayer-Fluckiger and Karim Becher for their constructive comments on this work. I acknowledge the financial support provided by the Research Council of Sharif University of Technology.

REFERENCES

- [1] Bayer-Fluckiger, E.; Lenstra, Jr., H. W.; Forms in odd degree extensions and self-dual normal bases. Amer. J. Math. **112** (1990), no. 3, 359–373.
- [2] Bayer-Fluckiger, E.; Shapiro, D. B.; Tignol, J.-P.; Hyperbolic involutions. Math. Z. 214 (1993), 461–476.
- [3] Haile, D. E.; Morandi, P. J.; Hyperbolicity of algebras with involution and connections with Clifford algebras. Comm. Algebra 29 (2001), no. 12, 5733–5753.
- [4] Haile, D. E.; Tignol, J.-P.; Algebras with involution that become hyperbolic under a given extension. J. Algebra 199 (1998), no. 1, 94–115.
- [5] Knus, M.-A.; Merkurjev, A.; Rost, M.; Tignol, J.-P.; The book of involutions. American Mathematical Society Colloquium Publications, 44, American Mathematical Society, Providence, RI, 1998.
- [6] Knus, M.-A.; Parimala, R.; Sridharan, R.; On the discriminant of an involution. Bull. Soc. Math. Belg. Sér. A 43 (1991), no. 1-2, 89–98.
- [7] Laghribi, A.; Hyperbolicité de certaines involutions sur le corps des fonctions d'une quadrique. Indag. Math. (N.S.) **12** (2001), no. 3, 337–351.
- [8] Lam, T. Y.; Introduction to quadratic forms over fields. Graduate Studies in Mathematics 67, Providence, RI: American Mathematical Society (AMS), 2005.
- [9] Lewis, D. W.; Periodicity of Clifford algebras and exact octagons of Witt groups. Math. Proc. Cambridge Philos. Soc. 98 (1985), no. 2, 263–269.

- [10] Lewis, D. W.; Unger, T.; A local-global principle for algebras with involution and hermitian forms Math. Z. 244 (2003), 469–477.
- [11] Mahmoudi, M. G.; On hyperbolic Clifford algebras with involution. Preprint. Available at http://www.math.uni-bielefeld.de/LAG/man/307.html
- [12] Quéguiner-Mathieu, A.; Tignol, J.-P.; Algebras with involution that become hyperbolic over the fonction field of a conic. Preprint: http://www.math.uni-bielefeld.de/LAG/man/294.html
- [13] Tignol, J.-P.; A Cassels-Pfister theorem for involutions on central simple algebras. J. Algebra 181 (1996), no. 3, 857–875.

DEPARTMENT OF MATHEMATICAL SCIENCES, SHARIF UNIVERSITY OF TECHNOLOGY, P. O. BOX: 11155-9415, Tehran, Iran. E-Mail address: mmahmoudi@sharif.ir