
SK1 OF GRADED DIVISION ALGEBRAS

R. HAZRAT AND A. R. WADSWORTH

Abstract. The reduced Whitehead group SK1 of a graded division algebra graded by a
torsion-free abelian group is studied. It is observed that the computations here are much
more straightforward than in the non-graded setting. Bridges to the ungraded case are then
established by the following two theorems: It is proved that SK1 of a tame valued division
algebra over a henselian field coincides with SK1 of its associated graded division algebra.
Furthermore, it is shown that SK1 of a graded division algebra is isomorphic to SK1 of its
quotient division algebra. The first theorem gives the established formulas for the reduced
Whitehead group of certain valued division algebras in a unified manner, whereas the latter
theorem covers the stability of reduced Whitehead groups, and also describes SK1 for generic
abelian crossed products.
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1. Introduction

Let D be a division algebra with a valuation. To this one associates a graded division
algebra gr(D) =

⊕
γ∈ΓD

gr(D)γ, where ΓD is the value group of D and the summands gr(D)γ

arise from the filtration on D induced by the valuation (see §2 for details). As is illustrated in
[HwW2], even though computations in the graded setting are often easier than working directly
with D, it seems that not much is lost in passage from D to its corresponding graded division
algebra gr(D). This has provided motivation to systematically study this correspondence,
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notably by Boulagouaz [B], Hwang, Tignol and Wadsworth [HwW1, HwW2, TW], and to
compare certain functors defined on these objects, notably the Brauer group.

In particular, the associated graded ring gr(D) is an Azumaya algebra ([HwW2], Cor. 1.2);
so the reduced norm map exists for it, and one defines the reduced Whitehead group SK1 for
gr(D) as the kernel of the reduced norm map and SH0 as its cokernel (see §3). In this paper
we study these groups for a graded division algebra.

Apart from the work of Panin and Suslin [PS] on SH0 for Azumaya algebras over semilocal
regular rings and [H4] which studies SK1 for Azumaya algebras over henselian rings, it seems
that not much is known about these groups in the setting of Azumaya algebras. Specializing
to division algebras, however, there is an extensive literature on the group SK1. Platonov [P1]
showed that SK1 could be non-trivial for certain division algebras over henselian valued fields.
He thereby provided a series of counter-examples to questions raised in the setting of algebraic
groups, notably the Kneser-Tits conjecture. (For surveys on this work and the group SK1, see
[P2], [G], [Mer] or [W2], §6.)

In this paper we first study the reduced Whitehead group SK1 of a graded division algebra
whose grade group is totally ordered abelian (see §3). It can be observed that the computations
here are significantly easier and more transparent than in the non-graded setting. For a
division algebra D finite-dimensional over a henselian valued field F , the valuation on F
extends uniquely to D (see Th. 2.1 in [W2], or [W1]), and the filtration on D induced by the
valuation yields an associated graded division algebra gr(D). Previous work on the subject
has shown that this transition to graded setting is most “faithful” when the valuation is tame.
Indeed, in Section 4, we show that for a tame valued division algebra D over a henselian
field, SK1(D) coincides with SK1(gr(D)) (Th. 4.8). Having established this bridge between
the graded setting and non-graded case, we will easily deduce known formulas in the literature
for the reduced Whitehead group of certain valued division algebras, by passing to the graded
setting; this shows the utility of the graded approach (see Cor. 4.10).

In the other direction, if E =
⊕

γ∈ΓE
Eγ is a graded division algebra whose grade group

ΓE is torsion-free abelian, then E has a quotient division algebra q(E) which has the same
index as E. The same question on comparing the reduced Whitehead groups of these objects
can also be raised here. It is known that when the grade group is Z, then E has the sim-
ple form of a skew Laurent polynomial ring D[x, x−1, ϕ], where D is a division algebra and
ϕ is an automorphism of D. In this setting the quotient division algebra of D[x, x−1, ϕ] is
D(x, ϕ). In [PY], Platonov and Yanchevskĭı compared SK1(D(x, ϕ)) with SK1(D). In partic-
ular, they showed that if ϕ is an inner automorphism then SK1(D(x, ϕ)) ∼= SK1(D). In fact,
if ϕ is inner, then D[x, x−1, ϕ] is an unramified graded division algebra and we prove that
SK1(D[x, x−1, ϕ]) ∼= SK1(D) (Th. 3.6). By combining these, one concludes that the reduced
Whitehead group of the graded division algebra D[x, x−1, ϕ], where ϕ is inner, coincides with
SK1 of its quotient division algebra. In Section 5, we show that this is a very special case
of stability of SK1 for graded division algebras; namely, for any graded division algebra with
torsion-free grade group, the reduced Whitehead group coincides with the reduced Whitehead
group of its quotient division algebra. This allows us to give a formula for SK1 for generic
abelian crossed product algebras.
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The paper is organized as follows: In Section 2, we gather relevant background on the the-
ory of graded division algebras indexed by a totally ordered abelian group and establish several
homomorphisms needed in the paper. Section 3 studies the reduced Whitehead group SK1 of
a graded division algebra. We establish analogues to Ershov’s linked exact sequences [E] in
the graded setting, easily deducing formulas for SK1 of unramified, totally ramified, and semi-
ramified graded division algebras. In Section 4, we prove that SK1 of a tame division algebra
over a henselian field coincides with SK1 of its associated graded division algebra. Section 5 is
devoted to proving that SK1 of a graded division algebra is isomorphic to SK1 of is quotient
division algebra. We conclude the paper with two appendices. Appendix A establishes the
Wedderburn factorization theorem on the setting of graded division rings, namely that the
minimal polynomial of a homogenous element of a graded division ring E splits completely
over E (Th. A.1). Appendix B provides a complete proof of the Congruence Theorem for all
tame division algebras over henselian valued fields. This theorem was originally proved by
Platonov for the case of complete discrete valuations of rank 1, and it was a key tool in his
calculations of SK1 for certain valued division algebras.

2. Graded division algebras

In this section we establish notation and recall some fundamental facts about graded di-
vision algebras indexed by a totally ordered abelian group, and about their connections with
valued division algebras. In addition, we establish some important homomorphisms relating
the group structure of a valued division algebra to the group structure of its associated graded
division algebra.

Let R =
⊕

γ∈ΓRγ be a graded ring, i.e., Γ is an abelian group, and R is a unital ring such

that each Rγ is a subgroup of (R,+) and Rγ · Rδ ⊆ Rγ+δ for all γ, δ ∈ Γ. Set

ΓR = {γ ∈ Γ | Rγ 6= 0}, the grade set of R;

Rh =
⋃

γ∈ΓR
Rγ , the set of homogeneous elements of R.

For a homogeneous element of R of degree γ, i.e., an r ∈ Rγ \ 0, we write deg(r) = γ. Recall
that R0 is a subring of R and that for each γ ∈ ΓR, the group Rγ is a left and right R0-module.
A subring S of R is a graded subring if S =

⊕
γ∈ΓR

(S ∩ Rγ). For example, the center of R,

denoted Z(R), is a graded subring of R. If T =
⊕

γ∈Γ Tγ is another graded ring, a graded ring

homomorphism is a ring homomorphism f : R → T with f(Rγ) ⊆ Tγ for all γ ∈ Γ. If f is also
bijective, it is called a graded ring isomorphism; we then write R ∼=gr T .

For a graded ringR, a graded leftR-moduleM is a leftR-module with a gradingM =
⊕

γ∈Γ′ Mγ ,
where the Mγ are all abelian groups and Γ′ is a abelian group containing Γ, such that
Rγ · Mδ ⊆ Mγ+δ for all γ ∈ ΓR, δ ∈ Γ′. Then, ΓM and Mh are defined analogously to
ΓR and Rh. We say that M is a graded free R-module if it has a base as a free R-module
consisting of homogeneous elements.

A graded ring E =
⊕

γ∈ΓEγ is called a graded division ring if Γ is a torsion-free abelian
group and every non-zero homogeneous element of E has a multiplicative inverse. Note that
the grade set ΓE is actually a group. Also, E0 is a division ring, and Eγ is a 1-dimensional
left and right E0 vector space for every γ ∈ ΓE . The requirement that Γ be torsion-free is
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made because we are interested in graded division rings arising from valuations on division
rings, and all the grade groups appearing there are torsion-free. Recall that every torsion-free
abelian group Γ admits total orderings compatible with the group structure. (For example,
Γ embeds in Γ ⊗Z Q which can be given a lexicographic total ordering using any base of it
as a Q-vector space.) By using any total ordering on ΓE , it is easy to see that E has no
zero divisors and that E∗, the multiplicative group of units of E, coincides with Eh \ {0} (cf.
[HwW2], p. 78). Furthermore, the degree map

deg : E∗ → ΓE (2.1)

is a group homomorphism with kernel E∗
0 .

By an easy adaptation of the ungraded arguments, one can see that every graded module M
over a graded division ring E is graded free, and every two homogenous bases have the same
cardinality. We thus call M a graded vector space over E and write dimE(M) for the rank
of M as a graded free E-module. Let S ⊆ E be a graded subring which is also a graded
division ring. Then, we can view E as a graded left S-vector space, and we write [E : S] for
dimS(E). It is easy to check the “Fundamental Equality,”

[E : S] = [E0 : S0] |ΓE : ΓS|, (2.2)

where [E0 : S0] is the dimension of E0 as a left vector space over the division ring S0 and
|ΓE : ΓS| denotes the index in the group ΓE of its subgroup ΓS.

A graded field T is a commutative graded division ring. Such a T is an integral domain,
so it has a quotient field, which we denote q(T ). It is known, see [HwW1], Cor. 1.3, that
T is integrally closed in q(T ). An extensive theory of graded algebraic extensions of graded
fields has been developed in [HwW1]. For a graded field T , we can define a grading on the
polynomial ring T [x] as follows: Let ∆ be a totally ordered abelian group with ΓT ⊆ ∆, and
fix θ ∈ ∆. We have

T [x] =
⊕
γ∈∆

T [x]γ , where T [x]γ = {
∑
aix

i | ai ∈ T h, deg(ai) + iθ = γ}. (2.3)

This makes T [x] a graded ring, which we denote T [x]θ. Note that ΓT [x]θ = ΓT + 〈θ〉. A

homogeneous polynomial in T [x]θ is said to be θ-homogenizable. If E is a graded division
algebra with center T , and a ∈ Eh is homogeneous of degree θ, then the evaluation homo-
morphism ǫa : T [x]θ → T [a] given by f 7→ f(a) is a graded ring homomorphism. Assuming
[T [a] : T ] < ∞, we have ker(ǫa) is a principal ideal of T [x] whose unique monic generator
ha is called the minimal polynomial of a over T . It is known, see [HwW1], Prop. 2.2, that if
deg(a) = θ, then ha is θ-homogenizable.

If E is a graded division ring, then its center Z(E) is clearly a graded field. The graded
division rings considered in this paper will always be assumed finite-dimensional over their
centers. The finite-dimensionality assures that E has a quotient division ring q(E) obtained
by central localization, i.e., q(E) = E ⊗T q(T ) where T = Z(E). Clearly, Z(q(E)) = q(T )
and ind(E) = ind(q(E)), where the index of E is defined by ind(E)2 = [E : T ]. If S is a
graded field which is a graded subring of Z(E) and [E : S] <∞, then E is said to be a graded
division algebra over S.
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A graded division algebra E with center T is said to be unramified if ΓE = ΓT . From (2.2),
it follows then that [E : S] = [E0 : T0]. At the other extreme, E is said to be totally ram-
ified if E0 = T0. In a case in the middle, E is said to be semiramified if E0 is a field and
[E0 : T0] = |ΓE : ΓT | = ind(E). These definitions are motivated by analogous definitions for
valued division algebras ([W2]). Indeed, if a valued division algebra is unramified, semirami-
fied, or totally ramfied, then so is its associated graded division algebra (see §4).

A main theme of this paper is to study the correspondence between SK1 of a valued division
algebra and that of its associated graded division algebra. We now recall how to associate a
graded division algebra to a valued division algebra.

LetD be a division algebra finite dimensional over its center F , with a valuation v : D∗ → Γ.
So Γ is a totally ordered abelian group, and v satisifies the conditions that for all a, b ∈ D∗,

(1) v(ab) = v(a) + v(b);
(2) v(a+ b) ≥ min{v(a), v(b)} (b 6= −a).

Let

VD = {a ∈ D∗ : v(a) ≥ 0} ∪ {0}, the valuation ring of v;

MD = {a ∈ D∗ : v(a) > 0} ∪ {0}, the unique maximal left (and right) ideal of VD;

D = VD/MD, the residue division ring of v on D; and

ΓD = im(v), the value group of the valuation.

For background on valued division algebras, see [JW] or the survey paper [W2]. One associates
to D a graded division algebra as follows: For each γ ∈ ΓD, let

D≥γ = {d ∈ D∗ : v(d) ≥ γ} ∪ {0}, an additive subgroup of D;

D>γ = {d ∈ D∗ : v(d) > γ} ∪ {0}, a subgroup of D≥γ; and

gr(D)γ = D≥γ
/
D>γ.

Then define
gr(D) =

⊕
γ∈ΓD

gr(D)γ.

Because D>γD≥δ + D≥γD>δ ⊆ D>(γ+δ) for all γ, δ ∈ ΓD, the multiplication on gr(D) induced
by multiplication on D is well-defined, giving that gr(D) is a graded ring, called the associated
graded ring of D. The multiplicative property (1) of the valuation v implies that gr(D) is a
graded division ring. Clearly, we have gr(D)0 = D and Γgr(D) = ΓD. For d ∈ D∗, we write

d̃ for the image d + D>v(d) of d in gr(D)v(d). Thus, the map given by d 7→ d̃ is a group
epimorphism D∗ → gr(D)∗ with kernel 1 +MD.

The restriction v|F of the valuation on D to its center F , is a valuation on F , which induces
a corresponding graded field gr(F ). Then it is clear that gr(D) is a graded gr(F )-algebra, and
by (2.2) and the Fundamental Inequality for valued division algebras,

[gr(D) : gr(F )] = [D : F ] |ΓD : ΓF | ≤ [D : F ] <∞.

Let F be a field with a henselian valuation v. Recall that a field extension L of F of de-
gree n <∞ is said to be tamely ramified or tame over F if, with respect to the unique extension
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of v to L, the residue field L is a separable field extension of F and char(F ) ∤ n
/
[L : F ]. Such

an L is necessarily defectless over F , i.e., [L : F ] = [L : F ] |ΓL : ΓF | = [gr(L) : gr(F )]. Along
the same lines, letD be a division algebra with center F (so, by convention, [D : F ] <∞); then
v on F extends uniquely to a valuation on D. With respect to this valuation, D is said to be
tamely ramified or tame if Z(D) is separable over F and char(F ) ∤ ind(D)

/(
ind(D)[Z(D) : F ]

)
.

It is known (cf. Prop. 4.3 in [HwW2]) that D is tame if and only if [gr(D) : gr(F )] = [D : F ]
and Z(gr(D)) = gr(F ), if and only if D is split by the maximal tamely ramified extension
of F , if and only if char(F ) = 0 or char(F ) = p 6= 0 and the p-primary component of D is split
by the maximal unramified extension of F . We say D is strongly tame if char(F ) ∤ ind(D).
Note that strong tameness implies tameness. This is clear from the last characterization of
tameness, or from (2.4) below. For a detailed study of the associated graded algebra of a
valued division algebra refer to §4 in [HwW2]. Recall also from [Mor], Th. 3, that for a valued
division algebra D finite dimensional over its center F (here not necessarily henselian), we
have the “Ostrowski theorem”

[D : F ] = qk [D : F ] |ΓD : ΓF | (2.4)

where q = char(D) and k ∈ Z with k ≥ 0 (and qk = 1 if char(D) = 0). If qk = 1 in
equation (2.4), then D is said to be defectless over F .

Let E be a graded division algebra with, as we always assume, ΓE a torsion-free abelian
group. After fixing some total ordering on ΓE , define a function

λ : E \ {0} → E∗ by λ(
∑
cγ) = cδ,

where δ is minimal among the γ ∈ ΓE with cγ 6= 0. Note that λ(a) = a for a ∈ E∗, and

λ(ab) = λ(a)λ(b) for all a, b ∈ E \ {0}. (2.5)

Let Q = q(E). We can extend λ to a map defined on all of Q∗ as follows: for q ∈ Q∗,
write q = ac−1 with a ∈ E \ {0}, c ∈ Z(E) \ {0}, and set λ(q) = λ(a)λ(c)−1. It follows from
(2.5) that λ : Q∗ → E∗ is well-defined and is a group homomorphism. Since the composition
E∗ →֒ Q∗ → E∗ is the identity, λ is a splitting map for the injection E∗ →֒ Q∗. (In Lemma 5.5
below, we will observe that this map induces a monomorphism from SK1(E) to SK1(Q).)

Now, by composing λ with the degree map of (2.1) we get a map v,

Q∗ λ
//

v

  B
B

B

B

B

B

B

B

E∗

deg

��

ΓE

(2.6)

This v is in fact a valuation on Q: for a, b ∈ Q∗, v(ab) = v(a)+ v(b) as v is the composition of
two group homomorphisms, and it is straightforward to check that v(a+ b) ≥ min(v(a), v(b))
(check this first for a, b ∈ E \{0}). It is easy to see that for the associated graded ring for this
valuation on q(E), we have gr(q(E)) ∼=gr E; this is a strong indication of the close connection
between graded and valued structures.
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3. Reduced norm and reduced Whitehead group of a graded division algebra

Let A be an Azumaya algebra of constant rank n2 over a commutative ring R. Then there
is a commutative ring S faithfully flat over R which splits A, i.e., A ⊗R S ∼= Mn(S). For
a ∈ A, considering a⊗ 1 as an element of Mn(S), one then defines the reduced characteristic
polynomial, the reduced trace, and the reduced norm of a by

charA(x, a) = det(x− (a⊗ 1)) = xn − TrdA(a)xn−1 + . . .+ (−1)nNrdA(a).

Using descent theory, one shows that charA(x, a) is independent of S and of the choice of
isomorphism A⊗R S ∼= Mn(S), and that charA(x, a) lies in R[x]; furthermore, the element a is
invertible in A if and only if NrdA(a) is invertible in R (see Knus [K], III.1.2, and Saltman [S2],
Th. 4.3). Let A(1) denote the set of elements of A with the reduced norm 1. One then defines
the reduced Whitehead group of A to be SK1(A) = A(1)/A′, where A′ denotes the commutator
subgroup of the group A∗ of invertible elements of A. The reduced norm residue group of A is
defined to be SH0(A) = R∗/NrdA(A∗). These groups are related by the exact sequence:

1 −→ SK1(A) −→ A∗/A′ Nrd
−→ R∗ −→ SH0(A) −→ 1

Now let E be a graded division algebra with center T . Since E is an Azumaya algebra
over T ([B], Prop. 5.1 or[HwW2], Cor. 1.2), its reduced Whitehead group SK1(E) is defined.

Remark 3.1. The reduced norm for an Azumaya algebra is defined using a splitting ring, and
in general splitting rings can be difficult to find. But for a graded division algebra E we
observe that, analogously to the case of ungraded division rings, any maximal graded subfield
L of E splits E. For, the centralizer C = CE(L) is a graded subring of E containing L, and for
any homogeneous c ∈ C, L[c] is a graded subfield of E containing L. Hence, C = L, showing
that L is a maximal commutative subring of E. Thus, by Lemma 5.1.13(1), p. 141 of [K],
as E is Azumaya, E ⊗T L ∼= EndL(E) ∼= Mn(L). Thus, we can compute reduced norms for
elements of E by passage to E ⊗T L.

We have other tools as well for computing NrdE and TrdE :

Proposition 3.2. Let E be a graded division ring with center T . Let q(T ) be the quotient field
of T , and let q(E) = E ⊗T q(T ), which is the quotient division ring of E. We view E ⊆ q(E).
Let n = ind(E) = ind(q(E)). Then for any a ∈ E,

(i) charE(x, a) = charq(E)(x, a), so

NrdE(a) = Nrdq(E)(a) and TrdE(a) = Trdq(E)(a). (3.1)

(ii) If K is any graded subfield of E containing T and a ∈ K, then

NrdE(a) = NK/T (a)n/[K:T ] and TrdE(a) = n
[K:T ]

TrK/T (a).

(iii) For γ ∈ ΓE, if a ∈ Eγ then NrdE(a) ∈ Enγ and Trd(a) ∈ Eγ. In particular, E(1) ⊆ E0.
(iv) Set δ = ind(E)

/(
ind(E0)[Z(E0) : T0]

)
. If a ∈ E0, then,

NrdE(a) = NZ(E0)/T0
NrdE0

(a) δ ∈ T0 and TrdE(a) = δTrZ(E0)/T0
TrdE0

(a) ∈ T0. (3.2)
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Proof. (i) The construction of reduced characteristic polynonials described above is clearly
compatible with scalar extension of the ground ring. Hence, charE(x, a) = charq(E)(x, a) (as
we are identifying a ∈ E with a⊗ 1 in E⊗T q(T ) ). The formulas in (3.1) follow immediately.

(ii) Let ha = xm + tm−1x
m−1 + . . .+ t0 ∈ q(T )[x] be the minimal polynomial of a over q(T ).

As noted in [HwW1], Prop. 2.2, since the integral domain T is integrally closed and E is
integral over T , we have ha ∈ T [x]. Let ℓa = xk + sk−1x

k−1 + . . . + s0 ∈ T [x] be the
characteristic polynomial of the T -linear function on the free T -module K given by c 7→ ac.
By definition, NK/T (a) = (−1)ks0 and TrK/T (a) = −sk−1. Since q(K) = K ⊗T q(T ), we have
[q(K) : q(T )] = [K : T ] = k and ℓa is also the characteristic polynomial for the q(T )-linear

transformation of q(K) given by q 7→ aq. So, ℓa = h
k/m
a . Since charq(E)(x, a) = h

n/m
a (see [R],

Ex. 1, p. 124), we have charq(E)(x, a) = ℓ
n/k
a . Therefore, using (i),

NrdE(a) = Nrdq(E)(a) =
[
(−1)ks0

]n/k
= NK/T (a)n/k.

The formula for TrdE(a) in (ii) follows analogously.

(iii) From the equalities charE(x, a) = charq(E)(x, a) = h
n/m
a noted in proving (i) and (ii),

we have NrdE(a) = [(−1)mt0]
n/m and TrdE(a) = − n

m
tm−1. As noted in [HwW1], Prop. 2.2, if

a ∈ Eγ, then its minimal polynomial ha is γ-homogenizable in T [x] as in (2.3) above. Hence,
t0 ∈ Emγ and tm−1 ∈ Eγ . Therefore, NrdE(a) ∈ Enγ and Trd(a) ∈ Eγ . If a ∈ E(1) then a is
homogeneous, since it is a unit of E, and since 1 = NrdE(a) ∈ Endeg(a), necessarily deg(a) = 0.

(iv) Suppose a ∈ E0. Then, ha is 0-homogenizable in T [x], i.e., ha ∈ T0[x]. Hence, ha is
the minimal polynomial of a over the field T0. Therefore, if L is any maximal subfield of E0

containing a, we have NL/T0(a) = [(−1)mt0]
[L:T0]/m. Now,

n/m = δ ind(E0)[Z(E0) : T0]
/
m = δ [L : T0]/m.

Hence,

NrdE(a) =
[
(−1)mt0

]n/m
=
[
(−1)mt0

]δ[L:T0]/m
= NL/T0

(a)δ

= NZ(E0)/T0NL/T0(a)
δ = NZ(E0)/T0NrdE0

(a)δ.

The formula for TrdE(a) is proved analogously. �

In the rest of this section we study the reduced Whitehead group SK1 of a graded division
algebra. As we mentioned in the introduction, the motif is to show that working in the graded
setting is much easier than in the non-graded setting.

The most successful approach to computing SK1 for division algebras over henselian fields
is due to Ershov in [E], where three linked exact sequences were constructed involving a
division algebra D, its residue division algebra D, and its group of units UD (see also [W2],
p. 425). From these exact sequences, Ershov recovered Platonov’s examples [P1] of division
algebras with nontrivial SK1 and many more examples as well. In this section we will easily
prove the graded version of Ershov’s exact sequences (see diagram (3.4)), yielding formulas
for SK1 of unramified, semiramified, and totally ramified graded division algebras. This will
be applied in §4, where it will be shown that SK1 of a tame division algebra over a henselian
field coincides with SK1 of its associated graded division algebra. We can then readily deduce
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from the graded results many established formulas in the literature for the reduced Whitehead
groups of valued division algebras (see Cor. 4.10). This demonstrates the merit of the graded
approach.

IfN is a group, we denote byNn the subgroup ofN generated by all n-th powers of elements
of N . A homogeneous multiplicative commutator of E where E is a graded division ring, is
an element of the form aba−1b−1 where a, b ∈ E∗ = Eh \ {0}. We will use the notation [a, b] =
aba−1b−1 for a, b ∈ Eh. Since a and b are homogeneous, note that [a, b] ∈ E0. If H and K are
subsets of E∗, then [H,K] denotes the subgroup of E∗ generated by {[h, k] : h ∈ H, k ∈ K}.
The group [E∗, E∗] will be denoted by E ′.

Proposition 3.3. Let E =
⊕

α∈ΓEα be a graded division algebra with graded center T , with
ind(E) = n. Then,

(i) If N is a normal subgroup of E∗, then Nn ⊆ NrdE(N)[E∗, N ].
(ii) SK1(E) is n-torsion.

Proof. Let a ∈ N and let ha ∈ q(T )[x] be the minimal polynomial of a over q(T ), and let m =
deg(ha). As noted in the proof of Prop. 3.2, ha ∈ T [x] and NrdE(a) = [(−1)mha(0)]n/m. By the
graded Wedderburn Factorization Theorem A.1, we have ha = (x− d1ad

−1
1 ) . . . (x− dmad

−1
m )

where each di ∈ E∗ ⊆ Eh. Note that [E∗, N ] is a normal subgroup of E∗, since N is normal
in E∗. It follows that

NrdE(a) =
(
d1ad

−1
1 . . . dmad

−1
m

)n/m
=
(
[d1, a]a[d2, a]a . . . a[dm, a]a

)n/m

= anda where da ∈ [E∗, N ].

Therefore, an = NrdE(a)d−1
a ∈ NrdE(N)[E∗, N ], yielding (i). (ii) is immediate from (i) by

taking N = E(1). �

The fact that SK1(E) is n-torsion is also deducible from the injectivity of the map SK1(E) →
SK1(q(E)) shown in Lemma 5.5 below.

We recall the definition of the group Ĥ−1(G,A), which will appear in our description of
SK1(E). For any finite group G and any G-module A, define the norm map NG : A → A as
follows: for any a ∈ A, let NG(a) =

∑
g∈G ga. Consider the G-module IG(A) generated as an

abelian group by {a− ga : a ∈ A and g ∈ G}. Clearly, IG(A) ⊆ ker(NG). Then,

Ĥ−1(G,A) = ker(NG)
/
IG(A). (3.3)

Theorem 3.4. Let E be any graded division ring finite dimensional over its center T . Let
δ = ind(E)

/(
ind(E0) [Z(E0) : T0]

)
, and let µδ(T0) be the group of those δ-th roots of unity

lying in T0. Let G = Gal(Z(E0)/T0) and let Ñ = NZ(E0)/T0 ◦NrdE0
: E∗

0 → T ∗
0 . Then, the rows
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and column of the following diagram are exact:

1

��

SK1(E0) // ker Ñ/[E∗
0 , E

∗]
NrdE0

//

��

Ĥ−1(G,NrdE0
(E∗

0))
// 1

ΓE

/
ΓT ∧ ΓE

/
ΓT

// E(1)/[E∗
0 , E

∗] //

eN
��

SK1(E) // 1

µδ(T0) ∩ Ñ(E∗
0)

��

1

(3.4)

Proof. By Prop. 2.3 in [HwW2], Z(E0)/T0 is a Galois extension and the map θ : E∗ → Aut(E0),
given by e 7→ (a 7→ eae−1) for a ∈ E0, induces an epimorphism E∗ → G = Gal(Z(E0)/T0).
In the notation for (3.3) with A = NrdE0

(E∗
0), we have NG coincides with NZ(E0)/T0 on A.

Hence,

ker(NG) = NrdE0
(ker(Ñ)). (3.5)

Take any e ∈ E∗ and let σ = θ(e) ∈ Aut(E0). For any a ∈ E∗
0 , let ha ∈ Z(T0)[x] be the

minimal polynomial of a over Z(T0). Then σ(ha) ∈ Z(T0)[x] is the minimal polynomial of
σ(a) over Z(T0). Hence, NrdE0

(σ(a)) = σ(NrdE0
(a)). Since σ|Z(T0) ∈ G, this yields

NrdE0
([a, e]) = NrdE0

(aσ(a−1)) = NrdE0
(a)σ(NrdE0

(a))−1 ∈ IG(A), (3.6)

hence Ñ([a, e]) = 1. Thus, we have [E∗
0 , E

∗] ⊆ ker(Ñ) ⊆ E(1) with the latter inclusion

from Prop. 3.2(iv). The formula in Prop. 3.2(iv) also shows that Ñ(E(1)) ⊆ µδ(T0). Thus,
the vertical maps in diagram (3.4) are well-defined, and the column in (3.4) is exact. Be-

cause NrdE0
maps ker(Ñ) onto ker(NG) by (3.5) and it maps [E∗

0 , E
∗] onto IG(A) by (3.6)

(as θ(E∗) maps onto G), the map labelled NrdE0
in diagram (3.4) is surjective with kernel

E
(1)
0 [E∗

0 , E
∗]
/
[E∗

0 , E
∗]. Therefore, the top row of (3.4) is exact. For the lower row, since

[E∗, E∗] ⊆ E∗
0 and E∗

/
(E∗

0 Z(E∗)) ∼= ΓE/ΓT , the following lemma yields an epimorphism
ΓE/ΓT ∧ΓE/ΓT → [E∗, E∗]/[E∗

0 , E
∗]. Given this, the lower row in (3.4) is evidently exact. �

Lemma 3.5. Let G be a group, and let H be a subgroup of G with H ⊇ [G,G]. Let
B = G

/
(H Z(G)). Then, there is an epimorphism B ∧B → [G,G]

/
[H,G].

Proof. Since [G,G] ⊆ H , we have
[
[G,G], [G,G]

]
⊆ [H,G], so [G,H ] is a normal sub-

group of [G,G] with abelian factor group. Consider the map β : G × G → [G,G]/[H,G]
given by (a, b) 7→ aba−1b−1[H,G]. For any a, b, c ∈ G we have the commutator identity
[a, bc] = [a, b] [b, [a, c]] [a, c]. The middle term [b, [a, c]] lies in [H,G]. Thus, β is multiplicative in
the second variable; likewise, it is multiplicative in the first variable. As [H Z(G), G] ⊆ [H,G],
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this β induces a well-defined group homomorphism β ′ : B⊗ZB → [G,G]/[H,G], which is sur-
jective since im(β) generates [G,G]/[H,G]. Since β ′(η ⊗ η) = 1 for all η ∈ B, there is an
induced epimorphism B ∧B → [G,G]/[H,G]. �

Corollary 3.6. Let E be a graded division ring with graded center T .

(i) If E is unramified, then SK1(E) ∼= SK1(E0).
(ii) If E is totally ramified, then SK1(E) ∼= µn(T0)/µe(T0) where n = ind(E) and e is the

exponent of ΓE/ΓT .
(iii) If E is semiramified, then for G = Gal(E0/T0) ∼= ΓE/ΓT there is an exact sequence

G ∧G → Ĥ−1(G,E∗
0) → SK1(E) → 1. (3.7)

(iv) If E has maximal subfields L and K which are respectively unramified and totally

ramified over T , then E is semiramified and SK1(E) ∼= Ĥ−1(Gal(E0/T0), E
∗
0).

Proof. (i) Since E is unramified over T , we have E0 is a central T0-division algebra, ind(E0) = ind(E),

and E∗ = E∗
0T

∗. It follows that G = Gal(Z(E0)/T0) is trivial, and thus Ĥ−1(G,NrdE0
(E0))

is trivial; also, δ = 1, and from (3.2), NrdE0
(a) = NrdE(a) for all a ∈ E0. Furthermore,

[E∗
0 , E

∗] = [E∗
0 , E

∗
0T

∗] = [E∗
0 , E

∗
0 ] as T ∗ is central. Plugging this information into the ex-

act top row of diagram (3.4) and noting that the exact sequence extends to the left by
1 → [E∗

0 , E
∗]/[E∗

0 , E
∗
0 ] → SK1(E0), part (i) follows.

(ii) When E is totally ramified, E0 = T0, δ = n, Ñ is the identity map on T0, and
[E∗, E∗

0 ] = [E∗, T ∗
0 ] = 1. Plugging all this into the exact column of diagram (3.4), it follows

that E(1) ∼= µn(T0). Also by [HwW2] Prop. 2.1, E ′ ∼= µe(T0) where e is the exponent of the
torsion abelian group ΓE/ΓT . Part (ii) now follows.

(iii) As recalled at the beginning of the proof of Th. 3.4, for any graded division al-
gebra E with center T , we have Z(E0) is Galois over T0, and there is an epimorphism
θ : E∗ → Gal(Z(E0)/T0). Clearly, E∗

0 and T ∗ lie in ker(θ), so θ induces an epimorphism
θ′ : ΓE/ΓT → Gal(Z(E0)/T0). When E is semiramified, by definition [E0 : T0] = |ΓE : ΓT | = ind(E)
and E0 is a field. Let G = Gal(E0/T0). Because |G| = [E0 : T0] = |ΓE : ΓT |, the map θ′ must
be an isomorphism. In diagram (3.4), since SK1(E0) = 1 and clearly δ = 1, the exact top row

and column yield E(1)
/
[E∗

0 , E
∗] ∼= Ĥ−1(G,E∗

0). Therefore, the exact row (3.7) follows from
the exact second row of diagram (3.4) and the isomorphism ΓE/ΓT

∼= G given by θ′.

(iv) Since L andK are maximal subfields of E, we have ind(E) = [L : T ] = [L0 : T0] ≤ [E0 : T0]
and ind(E) = [K : T ] = |ΓK : ΓT | ≤ |ΓE : ΓT |. It follows from (2.2) that these inequalities are
equalities, so E0 = L0 and ΓE = ΓK . Hence, E is semiramified, and (iii) applies. Take any
η, ν ∈ ΓE/ΓT , and any inverse images a, b of η, ν in E∗. The left map in (3.7) sends η ∧ ν to
aba−1b−1 mod IG(E∗

0). Since ΓE = ΓK , these a and b can be chosen in K∗, so they commute.
Thus, the left map of (3.7) is trivial here, yielding the isomorphism of (iv). �

For a graded division algebra E with center T , define

CK1(E) = E∗
/
(T ∗E ′). (3.8)
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This is the graded analogue to CK1(D) for a division algebra D, which is defined as
CK1(D) = D∗

/
(F ∗D′), where F = Z(D). That is, CK1(D) is the cokernel of the canoni-

cal map K1(F ) → K1(D). See [H1] for background on CK1(D). Notably, it is known that
CK1(D) is torsion of bounded exponent n = ind(D), and CK1 has functorial properties sim-
ilar to SK1. The CK1 functor was used in [HW] in showing that for “nearly all” division
algebras D, the multiplicative group D∗ has a maximal proper subgroup. It is conjectured
(see [HW] and its references) that if CK1(D) is trivial, then D is a quaternion division algebra
(necessarily over a real Pythagorean field).

Now, for the graded division algebra E with center T , the degree map (2.1) induces a
surjective map E∗ → ΓE/ΓT which has kernel T ∗E0

∗. One can then observe that there is an
exact sequence

1 −→ E0
∗
/
T0

∗E ′ −→ CK1(E) −→ ΓE

/
ΓT −→ 1.

Thus if E is unramified, CK1(E) ∼= E0
∗/(T0

∗E ′) and E∗ ∼= T ∗E0
∗. It then follows that

E ′ ∼= E0
′, yielding CK1(E) ∼= CK1(E0). At the other extreme, when E is totally ramified then

E0
∗
/
(T0

∗E ′) = 1, so the exact sequence above yields CK1(E) ∼= ΓE/ΓT .

4. SK1 of a valued division algebra and its associated graded division

algebra

The aim of this section is to study the relation between the reduced Whitehead group
(and other related functors) of a valued division algebra with that of its corresponding graded
division algebra. We will prove that SK1 of a tame valued division algebra over a henselian
field coincides with SK1 of its associated graded division algebra. We start by recalling the
concept of λ-polynomials introduced in [MW]. We keep the notations introduced in §2.

Let F be a field with valuation v, let gr(F ) be the associated graded field, and F alg the

algebraic closure of F . For a ∈ F ∗, let ã ∈ gr(F )v(a) be the image of a in gr(F ), let 0̃ = 0gr(F ),

and for f =
∑
aix

i ∈ F [x], let f̃ =
∑
ãix

i ∈ gr(F )[x].

Definition 4.1. Take any λ in the divisible hull of ΓF and let f = anx
n + . . .+ aix

i + . . .+ a0 ∈ F [x]
with ana0 6= 0. Take any extension of v to F alg. We say that f is a λ-polynomial if it satisfies
the following equivalent conditions:

(a) Every root of f in F alg has value λ;
(b) v(ai) ≥ (n− i)λ + v(an) for all i and v(a0) = nλ + v(an);
(c) Take any c ∈ F alg with v(c) = λ and let h = 1

ancnf(cx) ∈ F alg[x]; then h is monic in

VF alg [x] and h(0) 6= 0 (so h is a 0-polynomial).

If f is a λ-polynomial, let

f (λ) =
n∑

i=0

a′ix
i ∈ gr(F )[x], (4.1)

where a′i is the image of ai in gr(F )(n−i)λ+v(an) (so a′0 = ã0 and a′n = ãn, but for 1 ≤ i ≤ n− 1,

a′i = 0 if v(ai) > (n− i)λ+ v(an) ). Note that f (λ) is a homogenizable polynomial in gr(F )[x],
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i.e., f (λ) is homogeneous (of degree v(a0)) with respect to the the grading on gr(F )[x] as in
(2.3) with θ = λ. Also, f (λ) has the same degree as fas a polynomial in x.

The λ-polynomials are useful generalizations of polynomials h ∈ VF [x] with h(0) 6= 0—these
are 0-polynomials. The following proposition collects some basic properties of λ-polynomials
over henselian fields, which are analogous to well-known properties for 0-polynomials, and
have similar proofs. See, e.g., [EP], Th. 4.1.3, pp. 87–88 for proofs for 0-polynomials, and
[MW] for proofs for λ-polynomials.

Proposition 4.2. Suppose the valuation v on F is henselian. Then,

(i) If f is a λ-polynomial and f = gh in F [x], then g and h are λ-polynomials and
f (λ) = g(λ)h(λ) in gr(F )[x]. So, if f (λ) is irreducible in gr(F )[x], then f is irreducible
in F [x].

(ii) If f =
∑n

i=0 aix
i is irreducible in F [x] with ana0 6= 0, then f is a λ-polynomial for

λ = (v(a0) − v(an))/n. Furthermore, f (λ) = ãnh
s for some irreducible monic λ-

homogenizable polynomial h ∈ gr(F )[x].
(iii) If f is a λ-polynomial in F [x] and if f (λ) = g′h′ in gr(F )[x] with gcd(g′, h′) = 1, then

there exist λ-polynomials g, h ∈ F [x] such that f = gh and g(λ) = g′ and h(λ) = h′.
(iv) If f is a λ-polynomial in F [x] and if f (λ) has a simple root b in gr(F ), then f has a

simple root a in F with ã = b.
(v) Suppose k is a λ-polynomial in gr(F )[x] with k(0) 6= 0, and suppose f ∈ F [x] with

f̃ = k. Then f is a λ-polynomial and f (λ) = k.

Lemma 4.3. Let F ⊆ K be fields with [K : F ] < ∞. Let v be a henselian valuation on F
such that K is defectless over F . Then, for every a ∈ K∗, with ã its image in gr(K)∗,

ÑK/F (a) = Ngr(K)/gr(F )(ã).

Proof. Let n = [K : F ]. Note that [gr(K) : gr(F )] = n as K is defectless over F . Let
f = xℓ + cℓ−1x

ℓ−1 + . . . + c0 ∈ F [x] be the minimal polynomial of a over F . Then f is
irreducible in F [x] and since v is henselian, f is a λ-polynomial, where λ = v(a) = v(c0)/n
(see Prop. 4.2(ii)). Let f (λ) be the corresponding λ-homogenizable polynomial in gr(F )[x] as
in (4.1). Then f (λ)(ã) = 0 in gr(K) (by Prop. 4.2(i) with g = x − a), and by Prop. 4.2(ii)
f (λ) has only one monic irreducible factor in gr(F )[x], say f (λ) = hs, with deg(h) = ℓ/s.
Since f (λ)(ã) = 0, h must be the minimal polynomial of ã over gr(F ) and over q(gr(F )).
(Recall that since gr(F ) is integrally closed, a monic polynomial in gr(F )[x] is irreducible

in gr(F )[x] iff it is irreducible in q(gr(F ))[x].) We have NK/F (a) = (−1)nc
n/ℓ
0 . Hence, as

q(gr(K)) ∼= gr(K) ⊗gr(F ) q(gr(F )),

Ngr(K)/gr(F )(ã) = Nq(gr(K))/q(gr(F ))(ã) = (−1)nh(0)ns/ℓ = (−1)n(h(0)s)n/ℓ

= (−1)n(c̃0
n/ℓ) = ˜(−1)nc0n/ℓ = ÑK/F (a). �

Remark. The preceding lemma is still valid if v on F is not assumed to be henselian, but
merely assumed to have a unique and defectless extension to K. This can be proved by scalar
extension to the henselization F h of F . (Since v extends uniquely and defectlessly to K,
K ⊗F F

h is a field, and gr(K ⊗F F
h) ∼=gr gr(K).)
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Corollary 4.4. Let F be a field with henselian valuation v, and let D be a tame F -central

division algebra. Then for every a ∈ D∗, Nrdgr(D)(ã) = ˜NrdD(a).

Proof. Recall from §2 that the assumptionD is tame over F means that [D : F ] = [gr(D) : gr(F )]
and gr(F ) = Z(gr(D)). Take any maximal subfield L of D containing a. Then L/F is defect-
less as D/F is defectless, so [gr(L) : gr(F )] = [L : F ] = ind(D) = ind(gr(D)). Hence, using
Lemma 4.3 and Prop. 3.2(ii), we have,

˜NrdD(a) = ÑL/F (a) = Ngr(L)/gr(F )(ã) = Nrdgr(D)(ã). �

Remarks 4.5. (i) Again, we do not need that v be henselian for Cor. 4.4. It suffices that the
valuation v on F extends to D and D is tame over F .

(ii) Analogous results hold for the trace and reduced trace, with analogous proof. In the

setting of Lemma 4.3, we have: if v(TrK/F (a)) = v(a), then TrK/F (ã) = ˜TrK/F (a), but if
v(TrK/F (a)) > v(a), then TrK/F (ã) = 0.

(iii) By combining Cor. 4.4 with equation (3.2), for a tame valued division algebra D over
henselian field F , we can relate the reduced norm of D with the reduced norm of D as follows:

NrdD(a) = NZ(D)/F NrdD(a)δ, (4.2)

for any a ∈ VD\MD (thus, NrdD(a) ∈ VF\MF ) and δ = ind(D)
/(

ind(D) [Z(D) : F ]
)

(cf. [E], Cor. 2).

The next proposition will be used several times below. It was proved by Ershov in [E],
Prop. 2, who refers to Yanchevskĭı [Y] for part of the argument. We give a proof here for the
convenience of the reader, and also to illustrate the utility of λ-polynomials.

Proposition 4.6. Let F ⊆ K be fields with henselian valuations v such that [K : F ] < ∞
and K is tamely ramified over F . Then NK/F (1 +MK) = 1 +MF .

Proof. If s ∈ 1 + MK then s̃ = 1 in gr(K). So, as K is defectless over F by Lemma. 4.3,

ÑK/F (s) = Ngr(K)/gr(F )(s̃) = 1 in gr(F ), i.e., NK/F (s) ∈ 1+MF . Thus NK/F (1+MK) ⊆ 1+MF .
To prove that this inclusion is an equality, we can assume [K : F ] > 1. We have
[gr(K) : gr(F )] = [K : F ] > 1, since tamely ramified extensions are defectless. Also, the
tame ramification implies that q(gr(K)) is separable over q(gr(F )). For, q(gr(F )) · gr(K)0 is
separable over q(gr(F )) since gr(K)0 = K and K is separable over gr(F )0 = F . But also,
q(gr(K)) is separable over q(gr(F )) · gr(K)0 because [q(gr(K)) : q(gr(F ) · gr(K)0] = |ΓK : ΓF |,
which is not a multiple of char(F ). Now, take any homogenous element b ∈ gr(K), b 6∈ gr(F ),
and let g be the minimal polynomial of b over q(gr(F )). Then g ∈ gr(F )[x], b is a simple root
of g, and g is λ-homogenizable where λ = deg(b), by [HwW1], Prop. 2.2. Take any monic
λ-polynomial f ∈ F [x] with f (λ) = g. Since f (λ) has the simple root b in gr(K) and the
valuation on K is henselian, by Prop. 4.2(iv) there is a ∈ K such that a is a simple root of f
and ã = b. Let L = F (a) ⊆ K. Write f = xn + cn−1x

n−1 + . . .+ c0. Take any t ∈ 1+MF , and
let h = xn + cn−1x

n−1 + . . .+ c1x+ tc0 ∈ F [x]. Then h is a λ-polynomial (because f is) and
h(λ) = f (λ) = g in gr(F )[x]. Since h(λ) has the simple root b in gr(L), h has a simple root d
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in L with d̃ = b = ã by Prop. 4.2(iv). So, da−1 ∈ 1 +ML. The polynomials f and h are irre-
ducible F [x] by Prop. 4.2(i), as g is irreducible in gr(F )[x]. Since f (resp. h), is the minimal
polynomial of a (resp. d) over F , we have NL/F (a) = (−1)nc0 and NL/F (d) = (−1)nc0t. Thus,
NL/F (da−1) = t, showing that NL/F (1 + ML) = 1 + MF . If L = K, we are done. If not, we
have [K : L] < [K : F ], and K is tamely ramified over L. So, by induction on [K : F ], we
have NK/L(1 +MK) = 1 +ML. Hence,

NK/F (1 +MK) = NL/F

(
NK/L(1 +MK)

)
= NL/F (1 +ML) = 1 +MF . �

Corollary 4.7. Let F be a field with henselian valuation v, and let D be an F -central division
algebra which is tame with respect to v. Then, NrdD(1 +MD) = 1 +MF .

Proof. Take any a ∈ 1+MD and any maximal subfield K of D with a ∈ K. Then, K is defect-
less over F , since D is defectless over F . So, a ∈ 1 +MK , and NrdD(a) = NK/F (a) ∈ 1 +MF

by the first part of the proof of Prop. 4.6, which required only defectlessness, not tameness.
Thus, NrdD(1+MD) ⊆ 1+MF . For the reverse inclusion, recall from [HwW2], Prop. 4.3 that
as D is tame over F , it has a maximal subfield L with L tamely ramified over F . Then by
Prop. 4.6,

1 +MF = NL/F (1 +ML) = NrdD(1 +ML) ⊆ NrdD(1 +MD) ⊆ 1 +MF ,

so equality holds throughout. �

We can now prove the main result of this section:

Theorem 4.8. Let F be a field with henselian valuation v and let D be a tame F -central
division algebra. Then SK1(D) ∼= SK1(gr(D)).

Proof. Consider the canonical surjective group homomorphism ρ : D∗ → gr(D)∗ given by
a 7→ ã. Clearly, ker(ρ) = 1 +MD. If a ∈ D(1) ⊆ VD then ã ∈ gr(D)0 and by Cor. 4.4,

Nrdgr(D)(ã) = ˜NrdD(a) = 1.

This shows that ρ(D(1)) ⊆ gr(D)(1). Now consider the diagram

1 // (1 +MD) ∩D′ //

��

D′

��

ρ
// gr(D)′

��

// 1

1 // (1 +MD) ∩D(1) // D(1) // gr(D)(1) // 1

(4.3)

The top row of the above diagram is clearly exact. The Congruence Theorem (see Th. B.1 in
Appendix B), implies that the left vertical map in the diagram is an isomorphism. Once we
prove that ρ(D(1)) = gr(D)(1), we will have the exactness of the second row of diagram (4.3),
and the theorem follows by the exact sequence for cokernels.

To prove the needed surjectivity, take any b ∈ gr(D)∗ with Nrdgr(D)(b) = 1. Thus b ∈ gr(D)0

by Th. 3.3. Choose a ∈ VD such that ã = b. Then we have,

NrdD(a) = ˜NrdD(a) = Nrdgr(D)(b) = 1.
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Thus NrdD(a) ∈ 1 +MF . By Cor. 4.7, since NrdD(1 + MD) = 1 +MF , there is c ∈ 1 + MD

such that NrdD(c) = Nrd(a)−1. Then, ac ∈ D(1) and ρ(ac) = ρ(a) = b. �

Recall from §2 that starting from any graded division algebra E with center T and any
choice of total ordering ≤ on the torsion-free abelian group ΓE , there is an induced valu-
ation v on q(E), see (2.6). Let h(T ) be the henselization of T with respect to v, and let
h(E) = q(E) ⊗q(T ) h(T ). Then, h(E) is a division ring by Morandi’s henselization theorem
([Mor], Th. 2 or see [W2], Th. 2.3), and with respect to the unique extension of the henselian
valuation on h(T ) to h(E), h(E) is an immediate extension q(E), i.e., gr(h(E)) ∼=gr gr(q(E)).
Furthermore, as

[h(E) : h(T )] = [q(E) : q(T )] = [E : T ] = [gr(q(E)) : gr(q(T ))] = [gr(h(E) : gr(h(T ))]

and
Z(gr(h(E))) ∼=gr Z(gr(q(E))) ∼=gr T ∼=gr gr(h(T )) = gr(Z(h(E))),

h(E) is tame (see the characterizations of tameness in §2).

Corollary 4.9. Let E be a graded division algebra. Then SK1(h(E)) ∼= SK1(E).

Proof. Since h(E) is a tame valued division algebra, by Th. 4.8, SK1(h(E)) ∼= SK1(gr(h(E))).
But gr(h(E)) ∼=gr gr(q(E)) ∼=gr E, so the corollary follows. �

Having now established that the reduced Whitehead group of a division algebra coincides
with that of its associated graded division algebra, we can easily deduce stability of SK1 for
unramified valued division algebra, due originally to Platonov (Cor. 3.13 in [P1]), and also a
formula for SK1 for a totally ramified division algebra ([LT], p. 363, see also [E], p. 70), and
also a formula for SK1 in the nicely semiramfied case ([E], p. 69), as natural consequences of
Th. 4.8:

Corollary 4.10. Let F be a field with Henselian valuation, and let D be a tame division
algebra with center F .

(i) If D is unramified then SK1(D) ∼= SK1(D)
(ii) If D is totally ramified then SK1(D) ∼= µn(F )/µe(F ) where n = ind(D) and e is the

exponent of ΓD/ΓF .
(iii) If D is semiramified, let G = Gal(D/F ) ∼= ΓD/ΓF . Then, there is an exact sequence

G ∧G → Ĥ−1(G,D
∗
) → SK1(D) → 1.

(iv) If D is nicely semiramfied, then SK1(D) ∼= Ĥ−1(Gal(D/F ), D
∗
).

Proof. Because D is tame, Z(gr(D)) = gr(F ) and ind(gr(D)) = ind(D). Therefore, for D
in each case (i)–(iv) here, gr(D) is in the corresponding case of Cor. 3.6. (In case (iii), that
D is semiramified means [D : F ] = |ΓD : ΓF | = ind(D) and D is a field. Hence gr(D) is
semiramified. In case (iv), since D is nicely semiramified, by definition (see [JW], p. 149) it
contains maximal subfields K and L, with K unramified over F and L totally ramified over F .
(In fact, by [M1], Th. 2.4, D is nicely semiramified if and only if it has such maximal subfields.)
Then, gr(K) and gr(L) are maximal graded subfields of gr(D) by dimension count and the
graded double centralizer theorem,[HwW2], Prop. 1.5(b), with gr(K) unramified over gr(F )
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and gr(L) totally ramified over gr(F ). So, gr(D) is then in case (iv) of Cor. 3.6.) Thus,
in each case Cor. 4.10 for D follows from Cor. 3.6 for gr(D) together with the isomorphism
SK1(D) ∼= SK1(gr(D)) given by Th. 4.8. �

Recall that the reduced norm residue group of D is defined as SH0(D) = F ∗/NrdD(D∗).
It is known that SH0(D) coincides with the first Galois cohomology group H1(F,D(1)) (see
[KMRT], §29). We now show that for a tame division algebra D over a henselian field, SH0(D)
coincides with SH0 of its associated graded division algebra.

Theorem 4.11. Let F be a field with a henselian valuation v and let D be a tame F -central
division algebra. Then SH0(D) ∼= SH0(gr(D)).

Proof. Consider the diagram with exact rows,

1 // 1 +MD
//

��

D∗

NrdD

��

ρ
// gr(D)∗

Nrdgr(D)

��

// 1

1 // 1 +MF
// F ∗ // gr(F )∗ // 1

(4.4)

where Cor. 4.4 guarantees that the diagram is commutative. By Cor. 4.7, the left vertical
map is an epimorphism. The theorem follows by the exact sequence for cokernels. �

Remark. As with SK1, if D is tame and unramified, then

SH0(D) ∼= SH0(gr(D)) ∼= SH0(gr(D)0) ∼= SH0(D).

We conclude this section by establishing a similar result for the CK1 functor of (3.8) above.
Note that here, unlike the situation with SK1 (Th. 4.8) or with SH0 (Th. 4.11), we need to
assume strong tameness here.

Theorem 4.12. Let F be a field with henselian valuation v and let D be a strongly tame
F -central division algebra. Then CK1(D) ∼= CK1(gr(D)).

Proof. Consider the canonical epimorphism ρ : D∗ → gr(D)∗ given by a 7→ ã, with ker-
nel 1 + MD. Since ρ maps D′ onto gr(D)′ and F ∗ onto gr(F )∗, it induces an isomor-
phism D∗

/(
F ∗D′(1 + MD)

)
∼= gr(D)∗

/(
gr(F )∗gr(D)′

)
. We have gr(F ) = Z(gr(D)) and

by Lemma 2.1 in [H3], as D is strongly tame, 1+MD = (1+MF )[D∗, 1+MD] ⊆ F ∗D′. Thus,
CK1(D) ∼= CK1(gr(D)). �

5. Stability of the reduced Whitehead group

The goal of this section is to prove that if E is a graded division ring (with ΓE a torsion-
free abelian group), then SK1(E) ∼= SK1(q(E)), where q(E) is the quotient division ring of E.
When ΓE

∼= Z, this was essentially proved by Platonov and Yanchevskĭı in [PY], Th. 1 (see
the Introduction). Their argument was based on properties of twisted polynomial rings, and
our argument is based on their approach. So, we will first look at twisted polynomial rings.
For these, an excellent reference is Ch. 1 in [J].
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Let D be a division ring finite dimensional over its center Z(D). Let σ be an automorphism
of D whose restriction to Z(D) has finite order, say ℓ. Let T = D[x, σ] be the twisted
polynomial ring, with multiplication given by xd = σ(d)x, for all d ∈ D. By Skolem-Noether,
there is w ∈ D∗ with σℓ = int(w−1) (= conjugation by w−1); moreover, w can be chosen so
that σ(w) = w (by a Hilbert 90 argument, see [J], Th. 1.1.22(iii) or [PY], Lemma 1). Then
Z(T ) = K[y] (a commutative polynomial ring), where K = Z(D)σ, the fixed field of Z(D)
under the action of σ, and y = wxℓ. Let Q = q(T ) = D(x, σ), the division ring of quotients
of T . Note that Z(Q) = q(Z(T )) = K(y), and ind(Q) = ℓ ind(D). Observe that within Q
we have the twisted Laurent polynomial ring T [x−1] = D[x, x−1, σ] which is a graded division
ring, graded by degree in x, and T ⊆ T [x−1] ⊆ q(T ), so that q(T [x−1]) = Q. Recall that, since
we have left and right division algorithms for T , T is a principal left (and right) ideal domain.

Let S denote the set of isomorphism classes [S] of simple left T -modules S, and set

Div(T ) =
⊕

[S]∈S

Z[S],

the free abelian group with base S. For any T -module M satisfying both ACC and DCC, the
Jordan-Hölder Theorem yields a well-defined element jh(M) ∈ Div(T ), given by

jh(M) =
∑

[S]∈S

n[S](M)[S],

where n[S](M) is the number of appearances of simple factor modules isomorphic to S in any
composition series of M . Note that for any f ∈ T \ {0}, the division algorithm shows that
dimD(T/Tf) = deg(f) <∞. Hence, T/Tf has ACC and DCC as a T -module. Therefore, we
can define a divisor function

δ : T \ {0} → Div(T ), given by δ(f) = jh(T/Tf).

Remark 5.1. Note the following properties of δ:

(i) For any f, g ∈ T \ {0}, δ(fg) = δ(f) + δ(g). This follows from the isomorphism
Tg/Tfg ∼= T/Tf (as T has no zero divisors).

(ii) We can extend δ to a map δ : Q∗ → Div(T ), where Q = q(T ), by δ(fh−1) = δ(f)−δ(h)
for any f ∈ T \ {0}, h ∈ Z(T ) \ {0}. It follows from (i) that δ is well-defined and is
a group homomorphism on Q∗. Clearly, δ is surjective, as every simple T -module is
cyclic.

(iii) For all q, s ∈ Q∗, δ(sqs−1) = δ(q). This is clear, as δ is a homomorphism into an
abelian group.

(iv) For all q ∈ Q∗, δ(NrdQ(q)) = n δ(q), where n = ind(Q). This follows from (iii), since
Wedderburn’s factorization theorem applied to the minimal polynomial of q over Z(Q)
shows that NrdQ(q) =

∏n
i=1 siqsi

−1 for some si ∈ Q∗.
(v) If NrdQ(q) = 1, then δ(q) = 0. This is immediate from (iv), as Div(T ) is torsion-free.

Lemma 5.2. Take any f, g ∈ T \{0} with T/Tf ∼= T/Tg, so deg(f) = deg(g). If deg(f) ≥ 1,
there exist s, t ∈ T \ {0} with deg(s) = deg(t) < deg(f) such that fs = tg.

Proof. (cf. [J], Prop. 1.2.8) We have deg(f) = dimD(T/Tf) = dimD(T/Tg) = deg(g). Let
α : T/Tf → T/Tg be a T -module isomorphism, and let α(1 + Tf) = s+ Tg. By the division
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algorithm, s can be chosen with deg(s) < deg(g). We have

fs+ Tg = f(s+ Tg) = fα(1 + Tf) = α(f + Tf) = α(0) = 0 in T/Tg.

Hence, fs = tg for some t ∈ T . Since deg(f) = deg(g), we have

deg(t) = deg(s) < deg(g) = deg(f). �

Proposition 5.3. Consider the group homomorphism δ : Q∗ → Div(T ) defined in Remark 5.1(ii)
above. Then ker(δ) = D∗Q′.

Proof. (cf. [PY], proof of Lemma 5) Clearly, D∗ ⊆ ker(δ) and Q′ ⊆ ker(δ), so D∗Q′ ⊆ ker(δ).
For the reverse inclusion take h ∈ ker(δ) and write h = f/g with f, g ∈ T \ {0}. Since
δ(f/g) = 0, we have δ(f) = δ(g), so deg(f) = deg(g). If deg(f) = 0, then h ∈ D∗, and
we’re done. So, assume deg(f) > 1. Write f = pf1 with p irreducible. Then, T/Tp is one of
the simple composition factors of T/Tf . If g = q1q2 . . . qk with each qi irreducible, then the
composition factors of T/Tg are (up to isomorphism) T/Tq1, . . . , T/Tqk. Because δ(f) = δ(g),
i.e. jh(T/Tf) = jh(T/Tg), we must have T/Tp ∼= T/Tqj for some j. Write g = g1qg2 where
q = qj . By Lemma 5.2, there exist s, t ∈ T \ {0} with deg(s) = deg(t) < deg(p) = deg(q) and
ps = tq. Then, working modulo Q′, we have

h = fg−1 = (pf1)(g1qg2)
−1 ≡ f1(pq

−1)(g1g2)
−1 ≡ f1(ts

−1)(g1g2)
−1 ≡ (f1t)(g1g2s)

−1.

Let h′ = (f1t)(g1g2s)
−1. Since h′ ≡ h (mod Q′), we have δ(h′) = δ(h) = 0, while

deg(f1t) < deg(f). By iterating this process we can repeatedly lower the degree of numerator
and denominator to obtain h′′ ∈ D∗ with h′′ ≡ h′ ≡ h (mod Q′). Hence, h ∈ D∗Q′, as
desired. �

Remark. Since K1(Q) = Q∗/Q′, Prop. 5.3 can be stated as saying that there is an exact
sequence

K1(D) −→ K1(Q)
δ

−→ Div(T ) −→ 0. (5.1)

This can be viewed as part of an exact localization sequence in K-Theory. We prefer the
explicit description of Div(T ) and δ given here, as it helps to understand the maps associated
with Div(T ).

Let R = Z(T ) = K[y]. So, q(R) = Z(Q). We define Div(R) just as we defined Div(T )
above. Note that this Div(R) coincides canonically with the usual divisor group of fractional
ideals of the PID R, since for a ∈ R \ {0}, the simple composition factors of R/Ra are the
simple modules R/P as P ranges over the prime ideal factors of the ideal Ra.
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Proposition 5.4. For R = Z(T ) = K[Y ], there is a map Nrd : Div(T ) → Div(R) such that
the following diagram commutes:

D∗ //

NrdD

��

Q∗

NrdQ

��

δT
// Div(T )

Nrd

��

Z(D)∗

NZ(D)/K

��

K∗ // q(R)∗
δR

// Div(R)

(5.2)

Moreover, Nrd is injective.

Proof. Let E = T [x−1] = D[x, x−1, σ], which with its grading by degree in x is a graded
division ring with E0 = D and q(E) = Q. Since ind(Q) = ind(D) [Z(D) : K], by (3.2),
for d ∈ D∗ = E∗

0 , NrdQ(d) = NZ(D)/K(NrdD(d)). This gives the commutativity of the left
rectangle in the diagram.

For the right vertical map in diagram (5.2), note that there is a canonical map, call it
N : Div(T ) → Div(R) given by taking a T -module M (with ACC and DCC) and viewing it as
an R-module; that is N(jhT (M)) = jhR(M). But, this is not the map Nrd : Div(T ) → Div(R)
we need here! (Consider N a norm map, while our Nrd is a reduced norm map.) Note that
as T is integral over R and R is integrally closed, NrdQ maps T into R. Define a function

ψ : T \ {0} → Div(R) by ψ(f) = δR(NrdQ(f)) = jhR

(
R
/
RNrdQ(f)

)
.

Since NrdQ is multiplicative and δR is a group homomorphism, we have

ψ(fg) = ψ(f) + ψ(g) for all f, g ∈ T \ {0}. (5.3)

We then extend ψ to Q∗ by defining ψ(fr−1) = ψ(f) − ψ(r) for all f ∈ T \ {0}, r ∈ R \ {0}.
Equation (5.3) shows that ψ is well-defined on Q∗ and is a group homomorphism. Since
NrdQ(D∗) ⊆ K∗ ⊆ R∗ by (3.2), D∗ ⊆ ker(ψ). Also, Q′ ⊆ ker(ψ) as Div(R) is abelian. Thus,
by Prop. 5.3, ker(δT ) ⊆ ker(ψ), so there is an induced homomorphism Nrd : Div(T ) → Div(R)
such that Nrd ◦ δT = ψ on Q∗. This is the map we need. Since for every f ∈ T \ {0},
Nrd(δT (f)) = ψ(f) = δR(NrdQ(f)), the right rectangle in (5.2) is commutative.

We have a scalar extension map from R-modules to T -modules given by M → T ⊗R M .
This induces a map ρ : Div(R) → Div(T ) given by ρ(jhR(M)) = jhT (T ⊗R M). For any
r ∈ R, we have T ⊗R (R/Rr) ∼= T/Tr. Thus for any g ∈ T \ {0},

ρ(Nrd(δT (g))) = ρ(δR(NrdQ(g))) = ρ(jhR(R/RNrdQ(g)))

= jhT (T/TNrdQ(g)) = δT (NrdQ(g)) = n δT (g),

using Remark 5.1(iv). This shows that ρ◦Nrd : Div(T ) → Div(T ) is multiplication by n, which
is an injection, as Div(T ) is a torsion-free abelian group. Hence Nrd must be injective. �

Remark. Here is a description of how the maps Nrd : Div(T ) → Div(R) and N : Div(T ) →
Div(R) and ρ : Div(R) → Div(T ) are related, and a formula for Nrd on generators of Div(T ).
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Proofs are omitted. We have
ρ ◦ Nrd = n idDiv(T ); (5.4)

and
N = n · Nrd. (5.5)

Let S be any simple left T -module, and [S] the corresponding basic generator of Div(T ). Let
M = annT (S), and let P = annR(S), which is a maximal ideal of R. Let k = matrix of size
of T/M = dim∆(S), where ∆ = EndT (S), so T/M ∼= Mk(∆). Then,

Nrd([S]) = nS[R/P ], where nS = 1
nk

dimR/P (T/M) = ind(T/M). (5.6)

We now consider an arbitrary graded division ring E. As usual, we assume throughout
that ΓE is a torsion-free abelian group and [E : Z(E)] <∞.

Lemma 5.5. Let E be a graded division ring, and let Q = q(E). Then, the canonical map
SK1(E) → SK1(Q) is injective.

Proof. Recall from Prop. 3.2(i) that NrdE(a) = NrdQ(a) for all a ∈ E, so the inclusion

E∗ →֒ Q∗ yields a map SK1(E) = E(1)/E′ → Q(1)/Q′ = SK1(Q). Also recall the homomor-

phism λ : Q∗ → E∗ of (2.6), which maps Q′ to E ′. Since the composition E∗ →֒ Q∗ λ
→ E∗ is the

identity map, for any a ∈ E(1)∩Q′, we have a = λ(a) ∈ E ′. Thus, the map SK1(E) → SK1(Q)
is injective. �

Proposition 5.6. Let E be a graded division ring, and let Q = q(E). Then,

Q(1) = (Q(1) ∩ E0)Q
′.

Once this proposition is proved, it will quickly yield the main theorem of this section:

Theorem 5.7. Let E be a graded division ring. Then, SK1(E) ∼= SK1(q(E)).

Proof. Set Q = q(E). Since the reduced norm respects scalar extensions, Q(1)∩E0 ⊆ E(1). The
image of the map ξ : SK1(E) → SK1(Q) is E(1)Q′/Q′, which thus contains (Q(1)∩E0)Q

′/Q′ =
Q(1)/Q′ = SK1(Q) (using Prop. 5.6). Thus ξ is surjective, as well as being injective by
Lemma 5.5, proving the theorem. �

Proof of Prop. 5.6. We first treat the case where ΓE is finitely generated.

Case I. Suppose ΓE = Zn for some n ∈ N.

Let F = Z(E), a graded field, and let εi = (0, . . . , 0, 1, 0, . . . , 0) (1 in the i-th position), so
ΓE = Zε1 ⊕ . . . ⊕ Zεn. For 1 ≤ i ≤ n, let ∆i = Zε1 ⊕ . . . ⊕ Zεi ⊆ ΓE ; and let Si = E∆i

=⊕
γ∈∆i

Eγ , which is a graded sub-division ring of E. Let Qi = Q(Si), the quotient division

ring of Si; so Qn = Q as Sn = E. Set R0 = Q0 = E0. Note that [Si : (Si ∩ F )] < ∞, so
Qi is obtainable from Si by inverting the nonzero elements of Si ∩F . This makes it clear that
Qi ⊆ Qi+1, for each i.

For each j, 1 ≤ j ≤ n, choose and fix a nonzero element xj ∈ Eεj
. Let ϕj = int(xj) ∈ Aut(E)

(i.e., ϕj is conjugation by xj). Since ϕj is a degree-preserving automorphism of E, ϕj maps
each Si to itself. Hence, ϕj extends uniquely to an automorphism to Qi, also denoted ϕj .
Since each ΓE/ΓF is a torsion abelian group, there is ℓj ∈ N such that ℓjεj ∈ ΓF . Then, if we
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choose any nonzero zj ∈ Fℓjεj
, we have x

ℓj

j ∈ Eℓjεj
= E0zj . So, x

ℓj

j = cjzj for some cj ∈ E∗
0 ,

and zj ∈ F = Z(E). Then ϕ
ℓj

j = int(xj
lj ) = int(cjzj) = int(cj). Thus, ϕ

ℓj

j |Si
is an inner

automorphism of Si for each i, as cj ∈ E∗
0 ⊆ Si.

Now, fix i with 1 ≤ i ≤ n. We will prove:

Q∗
i ∩Q

(1) ⊆ (Q∗
i−1 ∩Q

(1))[Q∗
i , Q

∗]. (5.7)

We have Si = Si−1[xi, x
−1
i ] ∼= Si−1[xi, x

−1
i , ϕi] (twisted Laurent polynomial ring). Like-

wise, within Qi we have Qi−1[xi] ∼= Qi−1[xi, ϕi] (twisted polynomial ring), with ϕℓi
i an inner

automorphism of Qi−1. In order to invoke Prop. 5.4, let

T = Qi−1[xi] ∼= Qi−1[xi, ϕi] and let R = Z(T ).

Since Si−1[xi] ⊆ T ⊆ Qi = q(Si−1[xi]), we have q(T ) = Qi. Let G ⊆ Aut(Qi) be the subgroup
of automorphisms ofQi generated by ϕi+1, . . . , ϕn, and let G = G/(G∩Inn(Qi)), where Inn(Qi)
is the group of inner automorphisms of Qi. Since Skolem-Noether shows that Inn(Qi) is the
kernel of the restriction map Aut(Qi) → Aut(Z(Qi)), this G maps injectively into Aut(Z(Qi)).
For σ ∈ G, we write σ|Z(Qi) for the automorphism of Z(Qi) determined by σ. Note that
G is a finite abelian group, since the images of the ϕi have finite order in G and commute
pairwise. (For, we have xjxk = cjkxkxj for some cjk ∈ E∗

0 . Hence ϕjϕk = int(cjk)ϕkϕj and
int(cjk) ∈ Inn(Qi), as cjk ∈ E∗

0 ⊆ Q∗
i ). Every element of G is an automorphism of Si−1[xi]

preseerving degree in xi, so an automorphism of T , since this is true of each ϕj. Therefore we
have a group action of G on T by ring automorphisms, and an induced action of G on Div(T ).
Note that as any ψ ∈ G permutes the maximal left ideals of T , the action of ψ on Div(T )
arises from an action on the base of Div(T ) consisting of isomorphism classes of simple T -
modules. That is, Div(T ) is a permutation G-module. G also acts on R = Z(T ) by ring
automorphisms, and on Div(R), and all the maps in the commutative diagram below (see
Prop. 5.4) are G-module homomorphisms.

Q∗
i

δT
//

NrdQi

��

Div(T )

Nrd
��

Z(Qi)
∗

δR
// Div(R)

(5.8)

Since inner automorphisms of Qi act trivially on Div(T ) (see Remark 5.1(iii)), and on Z(Qi)
and Div(R), these G-modules are actually G-modules. Let

N = Nrd(Div(T )) ⊆ Div(R).

Because Nrd : Div(T ) → Div(R) is injective (see Prop. 5.4), N is a G-module isomorphic to
Div(T ), so N is a permutation G-module. In N we have two distinguished G-submodules,

N0 = ker(NG),where NG : N → N is the norm, given by NG(b) =
∑

σ∈G σ(b); and

IG(N) =
〈
{β − σ(β) | β ∈ N, σ ∈ G}

〉
⊆ N0.
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By definition, Ĥ−1(G,N) = N0/IG(N). But, because N is a permutation G-module,

Ĥ−1(G,N) = 0. (This is well known, and is an easy calculation, as N is a direct sum of
G-modules of the form Z[G/H ] for subgroups H of G.) That is, N0 = IG(N).

Take any generator β − σ(β) of IG(N), where σ ∈ G and β ∈ N, say β = Nrd(η), where
η ∈ Div(T ). Take any b ∈ Q∗

i with δT (b) = η, and choose u ∈ E∗ which is some product of
the ϕj (i+1 ≤ j ≤ n), such that int(u)|Z(Qi) = σ|Z(Qi). Then, δR(NrdQi

(b)) = Nrd(δT (b)) = β
(see (5.8)). Also, because int(u)|Qi

is an automorphism of Qi, we have NrdQi
(ub−1u−1) =

uNrdQi
(b−1)u−1. Thus, bub−1u−1 ∈ [Q∗

i , Q
∗] ∩Qi and

NrdQi
(bub−1u−1) = NrdQi

(b) NrdQi
(ub−1u−1)

= NrdQi
(b) uNrdQi

(b−1)u−1 = NrdQi
(b)
/
σ(NrdQi

(b)).

Hence, in Div(R),

δR
(
NrdQi

(bub−1u−1)
)

= δR
(
NrdQi

(b)/σNrdQi
(b)
)

= β − σ(β).

Since such β−σ(β) generate IG(N), it follows that for any γ ∈ IG(N), there is c ∈ [Q∗
i , Q

∗]∩Qi,
with γ = δR(NrdQi

(c)) = Nrd(δT (c)) (see(5.8)).

To prove (5.7), we need a formula for NrdQ for an element of Qi. For this, note that

E = Si[xi+1, x
−1
i+1, . . . , xn, x

−1
n ] which can be considered a graded ring over Si. Now, let

C = Qi[xi+1, x
−1
i+1, . . . , xn, x

−1
n ] ⊆ Q. This C is a graded division ring with C0 = Qi and

ΓC = Zεi+1 ⊕ . . .⊕ Zεn. Since E ⊆ C ⊆ Q = q(E), we have q(C) = Q. For the graded field
Z(C) we have Z(C)0 consists of those elements of Z(C0) = Z(Qi) centralized by xi+1, . . . , xn,
i.e., Z(C)0 is the fixed field Z(Qi)

G = Z(Qi)
G. Since, as noted earlier G injects into Aut(Z(Qi),

we have G ∼= Gal(Z(Qi)/Z(C)0). Thus, for any q ∈ Qi = C0, by Prop. 3.2(i) and (iv),

NrdQ(q) = Nrdq(C)(q) = NrdC(q) = NZ(C0)/Z(C0)G(NrdC0
(q))m

= NZ(Qi)/Z(Qi)G(NrdQi
(q))m,

where m = ind(Q)/ ind(Qi)[Z(Qi) : Z(Qi)
G].

To verify (5.7), take any a ∈ Q∗
i ∩Q

(1). Thus,

1 = NrdQ(a) = NZ(Qi)/Z(Qi)G(NrdQi
(a))m.

Hence, for α = δT (a) ∈ Div(T ), using the identification of G with Gal(Z(Qi)/Z(C)0) and
commutative diagram (5.8),

0 = δR(NrdQ(a)) = δR
(
NZ(Qi)/Z(Qi)G(NrdQi

(a))m
)

=
∑
σ∈G

σ
(
δR(NrdQi

(a)m)
)

= NG

(
δR(NrdQi

(a))m
)

= mNG(Nrd(δT (a))) = mNG(Nrd(α)).

Since Div(R) is torsion-free, we have NG(Nrd(α)) = 0, i.e., Nrd(α) ∈ ker(NG) = N0 = IG(N).
Therefore, as we saw above, there is c ∈ [Q∗

i , Q
∗] ∩ Q∗

i with Nrd(α) = Nrd(δT (c)). Let
a′ = a/c ∈ Q∗

i . Then,

Nrd(δT (a′)) = Nrd(δT (a)) − Nrd(δT (c)) = Nrd(α) − Nrd(α) = 0.

Because Nrd : Div(T ) → Div(R) is injective (see Prop. 5.4), it follows that δT (a′) = 0
in Div(T ). Therefore, as T = Qi−1[x,ϕi] and q(T ) = Qi, by Prop. 5.3 there is a′′ ∈ Qi−1
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with a′′ ≡ a′ (mod Q′
i). So, a′′ ≡ a (mod [Q∗

i , Q
∗]), and hence NrdQ(a′′) = NrdQ(a) = 1, i.e.,

a′′ ∈ Q∗
i−1 ∩Q

(1). Thus, a ∈ (Q∗
i−1 ∩Q

(1))[Q∗
i , Q

∗], proving (5.7).

The inclusion (5.7) shows that for any i, 1 ≤ i ≤ n and any a ∈ Q(1) ∩ Qi there is
b ∈ Q(1) ∩Qi−1 with b ≡ a (mod Q′). Hence, by downward induction on i, for any q ∈ Q(1) =
Q(1) ∩ Qn there is d ∈ Q0 ∩ Q

(1) = E0 ∩ Q
(1) with d ≡ q mod Q′). So, Q(1) ⊆ (Q(1) ∩ E0)Q

′.
The reverse inclusion is clear, completing the proof of Case I.

Case II. Suppose ΓE is not a finitely generated abelian group.

The basic point is that E is a direct limit of sub-graded division algebras with finitely
generated grade group, so we can reduce to Case I. But we need to be careful about the choice
of the sub-division algebras to assure that they have the same index as E, so that the reduced
norms are compatible.

Let F = Z(E). Since |ΓE/ΓF | < ∞, there is a finite subset, say {γ1, . . . , γk} of ΓE whose
images in ΓE/ΓF generate this group. Let ∆0 be any finitely generated subgroup of ΓE , and let
∆ be the subgroup of ΓE generated by ∆0 and γ1, . . . , γk. Then, ∆ is also a finitely generated
subgroup of ΓE , but with the added property that ∆ + ΓF = ΓE. Let

E∆ =
⊕
δ∈∆

Eδ,

which is a graded sub-division ring of E, with E∆,0 = E0 and ΓE∆
= ∆. Since ∆ + ΓF = ΓE ,

we have E∆F = E. (For, take any γ ∈ ΓE and write γ = δ + η with δ ∈ ∆ and η ∈ ΓF , and
any nonzero d ∈ E∆,δ and c ∈ Fη. Then, Eγ = dcE0 ⊆ E∆F .) Because E∆F = E, we have
Z(E∆) = F ∩ E∆ = F∆∩ΓF

. Note that

[E∆ : Z(E∆)] = [E∆,0 : F∆∩ΓF ,0] |Γ∆ : (Γ∆ ∩ ΓF )| = [E0 : F0] |(Γ∆ + ΓF ) : ΓF |

= [E0 : F0] |ΓE : ΓF | = [E : F ].

The graded homomorphism E∆ ⊗Z(E∆) F → E is onto as E∆F = E, and is then also injective
by dimension count (or by the graded simplicity of E∆ ⊗Z(E∆) F ). Thus, E∆ ⊗Z(E∆) F ∼= E.
It follows that q(E∆) ⊗q(Z(E∆)) q(F ) ∼= q(E). Specifically,

q(E∆) ⊗q(Z(E∆)) q(F ) ∼= (E∆ ⊗Z(E∆) q(Z(E∆))) ⊗q(Z(E∆)) q(F ) ∼= E∆ ⊗Z(E∆) q(F )
∼= (E∆ ⊗Z(E∆) F ) ⊗F q(F ) ∼= E ⊗F q(F ) ∼= q(E).

Therefore, for any a ∈ q(E∆), Nrdq(E∆)(a) = Nrdq(E)(a).

Now, if we take any a ∈ Q(1) where Q = q(E), there is a subgroup ∆ ⊆ ΓE with ∆ finitely
generated and ∆ + ΓF = ΓE and a ∈ E∆. Since Nrdq(E∆)(a) = NrdQ(a) = 1, we have, by

Case I applied to E∆, a ∈
(
q(E∆)(1) ∩ E0

)
q(E∆)′ ⊆ (Q(1) ∩ E0)Q

′, completing the proof for
Case II. �

Remark. (i) Prop. 5.6 for those E with ΓE
∼= Z was proved in [PY], and our proof of this

is essentially the same as theirs, expressed in a somewhat different language. Platonov and
Yanchevskĭı also in effect assert Prop. 5.6 for E with ΓE finitely generated, expressed as a
result for iterated quotient division rings of twisted polynomial rings. (See [PY], Lemma 8.)
By way of proof of [PY], Lemma 8, the authors say nothing more than that it follows by
induction from the rank 1 case. It is not clear whether the proof given here coincides with
their unstated proof, since the transition from rank 1 to finite rank is not transparent.
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(ii) So far the functor CK1 has manifested properties similar to SK1. However, the similarity
does not hold here, since the functor CK1 is not (homotopy) stable. In fact, for a division
algebra D over its center F of index n, one has the following split exact sequence,

1 → CK1(D) → CK1(D(x)) →
⊕
p

Z/(n/np)Z → 1

where p runs over irreducible monic polynomials of F [x] and np is the index of central simple
algebra D⊗F

(
F [x]/(p)

)
(see Th. 2.10 in [H1]). This is provable by mapping the exact sequence

(5.1) with T = F [x] to the sequence for T = D[x] and taking cokernels.

Example 5.8. Let E be a semiramified graded division ring with ΓE
∼= Zn, and let T = Z(E).

Since ΓE/ΓT is a torsion group, there are a base {γ1, . . . , γn} of the free abelian group ΓE and
some r1, . . . , rn ∈ N such that {r1γ1, . . . , rnγn} is a base of ΓT . Choose any nonzero zi ∈ Eγi

and xi ∈ Triγi
, 1 ≤ i ≤ n. Let F = T0 andM = E0, and letG = Gal(M/F ). Because E is semi-

ramified, M is Galois over F with [M : F ] = |ΓE : ΓT | = ind(E) = r1 . . . rn, and G ∼= ΓE/ΓT .
Since zri

i ∈ Eriγi
= E0xi, there is bi ∈ M with zri

i = bixi. Let uij = zizjz
−1
i z−1

j ∈M .
Let σi ∈ G be the automorphism of M determined by conjugation by zi. From the iso-
morphism G ∼= ΓE/ΓT , each σi has order ri in G and G ∼= 〈σ1〉 × . . . × 〈σn〉. Clearly,
T = F [x1, x

−1
1 , . . . xn, x

−1
n ], an iterated Laurent polynomial ring, andE = M [z1, z

−1
1 , . . . , zn, z

−1
n ],

an iterated twisted Laurent polynomial ring whose multiplication is completely determined
by the bi ∈M , the uij ∈M , and the action of the σi on M .

Let D = q(E), which is a division ring with center q(T ) = F (x1, . . . , xn), a rational function
field over F . Then, D is the generic abelian crossed product determined by M/F , the base
{σ1, . . . , σn} of G, the bi and the uij, as defined in [AS]. As was pointed out in [BM], all generic
abelian crossed products arise this way as rings of quotients of semiramified graded division
algebras. Generic abelian crossed products were used in [AS] to give the first examples of
noncyclic p-algebras, and in [S1] to prove the existence of noncrossed product p-algebras. It
is known by [T], Prop. 2.1 that D is determined up to F -isomorphism by M and the uij. By
Cor. 3.6(iii) and Th. 5.7, there is an exact sequence

G ∧G → Ĥ−1(G,M∗) → SK1(D) → 1, (5.9)

where the left map is determined by sending σi ∧ σj to uij mod IG(M∗). An important
condition introduced by Amitsur and Saltman in [AS] was nondegeneracy of {uij}. This
condition was essential for the noncyclicity results in [AS], and is also key to the results
on noncyclicity and indecomposability of generic abelian crossed products in recent work of
McKinnie in [Mc1], [Mc2] and Mounirh [M2]. The original definition of nondegeneracy in [AS]
was somewhat mysterious. A cogent characterization was given recently in [Mc3], Lemma 5.1:
A family {uij} in M∗ (meeting the conditions to appear in a generic abelian crossed product) is

nondegenerate iff for every rank 2 subgroup H of G, the map H∧H → Ĥ−1(H,M∗) appearing
in the complex (5.9) for the generic abelian crossed product CD(MH) is nonzero. In the first
nontrivial case, where G ∼= Zp ×Zp with p a prime number, we have {uij} is nondegenerate iff

the map G∧G→ Ĥ−1(G,M∗) is nonzero, iff the epimorphism Ĥ−1(G,M∗) → SK1(D) is not
injective. Thus, the nondegeneracy is encoded in SK1(D), and it occurs just when SK1(D) is
not “as large as possible.”
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Appendix A. The Wedderburn factorization theorem

In a division ring, additive and multiplicative commutators play important roles and there
are extensive results in the literature known as commutativity theorems. The main theme
in these results is that, additive and multiplicative commutators are “dense” in a division
ring. For example, if an element commutes with all additive commutators, then it is already a
central element. It seems that this trend continues for the additive commutators for a graded
division ring. However the multiplicative commutators are too “isolated” to determine the
structure of a graded division ring.

Let E be a graded division ring with graded center T . A homogeneous additive commutator
of E is an element of the form ab−ba where a, b ∈ Eh. We will use the notation [a, b]ad = ab−ba
for a, b ∈ Eh and let [H,K]ad be the additive group generated by {dk− kd : d ∈ Hh, k ∈ Kh}
where H and K are graded subrings of E. Parallel to the theory of division rings, one can
show that if all the homogenous additive commutators of graded division ring E are central,
then E is a graded field. To observe this, one can carry over the non-graded proof, mutatis-
mutandis, to the graded setting, see, e.g., [L], Prop. 13.4. Alternatively, let y ∈ Eh be an
element which commutes with homogeneous additive commutators of E. Then y commutes
with all (non-homogeneous) commutators of E. Consider [x1, x2]ad where x1, x2 ∈ q(E). Since
q(E) = E⊗T q(T ), it follows that y[x1, x2]ad = [x1, x2]ady. So y commutes with all commutators
of q(E), a division ring, thus y ∈ q(T ). But Eh ∩ q(T ) ⊆ T h, proving that y ∈ T h. Thus, E is
commutative. Again parallel to the theory of division rings, one can prove that if K ⊆ E are
graded division rings, with [E,K]ad ⊆ K and char(K) 6= 2, then K ⊆ Z(E). However, for
this one it seems there is no shortcut, and one needs to carry out a proof similar to the one
for ungraded division rings, as in ([L], Prop. 3.7).

The paragraph above shows some similar behavior between the Lie algebra structure of
division rings and that of graded division rings. However, this analogy often fails for the mul-
tiplicative structure of graded division algebras. For example, the Cartan-Brauer-Hua theorem
(the multiplicative analogue of the statement above that if K ⊆ E are graded division rings,
with [E,K]ad ⊆ K and char(K) 6= 2, then K ⊆ Z(E)) is not valid in the graded setting. Also,
the multiplicative group E∗ of a totally ramified graded division algebra E is nilpotent (since
E ′ ⊆ E∗

0 = T ∗
0 ⊆ Z(E∗)), while the multiplicative group of a noncommutative division ring is

not even solvable, cf. [St]. Furthermore, a totally ramified graded division algebra E∗ is radical
over its center T (since E∗ exp(ΓE/ΓT ) ⊆ T ∗), but this is not the case for any non-commutative
division ring ([L], Th. 15.15). Nonetheless, one significant theorem involving conjugates that
can be extended to the graded setting is the Wedderburn factorization theorem. (This is used
in proving Th. 3.3.)

Theorem A.1 (Wedderburn Factorization Theorem). Let E be a graded division ring with
center T (with ΓE torsion-free abelian). Let a be a homogenous element of E which is algebraic
over T with minimal polynomial ha ∈ T [x]. Then, ha splits completely in E. Furthermore,
there exist n conjugates a1, . . . , an of a such that ha = (x− an)(x− an−1) . . . (x− a1) in E[x].

Proof. The proof is similar to Wedderburn’s original proof for a division ring ([We], see also [L]
for a nice account of the proof). We sketch the proof for the convenience of the reader. For
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f =
∑
cix

i ∈ E[x] and a ∈ E, our convention is that f(a) means
∑
cia

i. Since ΓE is
torsion-free, we have E∗ = Eh \ {0}.

I: Let f ∈ E[x] with factorization f = gk in E[x]. If a ∈ E such that k(a) ∈ T · E∗,
then f(a) = g(a′)k(a), for some conjugate a′ of a. (Here E could be any ring with
T ⊆ Z(E).)

Proof. Let g =
∑
bix

i. Then, f =
∑
bikx

i, so f(a) =
∑
bik(a)a

i. But, k(a) = te, where t ∈ T
and e ∈ E∗. Thus, f(a) =

∑
bitea

i =
∑
biea

ie−1te =
∑
bi(eae

−1)ite = g(eae−1)k(a). �

II: Let f ∈ E[x] be a non-zero polynomial (here E could be, in fact, any ring). Then
r ∈ E is a root of f if and only if x− r is a right divisor of f in E[x]. (Here E could
be any ring.)

Proof. We have xi − ri = (xi−1 + xi−2r + . . .+ ri−1)(x− r) for any i ≥ 1. Hence,

f − f(r) = g · (x− r) (A.1)

for some g ∈ E[x]. So, if f(r) = 0, then f = g · (x− r). Conversely, if x− r is a right divisor
of f , then equation (A.1) shows that x− r is a right divisor of the constant f(r). Since x− r
is monic, this implies that f(r) = 0. �

III: If a non-zero monic polynomial f ∈ E[x] vanishes identically on the conjugacy class
A of a (i.e., h(b) = 0 for all b ∈ A),then deg(f) ≥ deg(ha).

Proof. Consider f = xm +d1x
m−1 + . . .+dm ∈ E[x] such that f(A) = 0 and m < deg(ha) with

m as small as possible. Suppose a ∈ Eγ, so A ⊆ Eγ , as the units of E are all homogeneous.
Since the Emγ-component of f(b) is 0 for each b ∈ A, we may assume that each di ∈ Eiγ .
Because f /∈ T [x], some di /∈ T . Choose j minimal with dj /∈ T , and some e ∈ E∗ such that
edj 6= dje. For any c ∈ E, write c′ := ece−1. Thus d′j 6= dj but d′ℓ = dℓ for ℓ < j. Let
f ′ = xm + d′1x

m−1 + . . . + d′m ∈ E[x]. Now, for all b ∈ A, we have f ′(b′) = [f(b)]′ = 0′ = 0.
Since, eAe−1 = A, this shows that f ′(A) = 0. Let g = f − f ′, which has degree j < m with
leading coefficient dj −d′j . Then, g(A) = 0. But, dj −d′j ∈ Ejγ \ {0} ⊆ E∗. Thus, (dj −d′j)

−1g
is monic of degree j < m in E[x], and it vanishes on A. This contradicts the choice of f ;
hence, m ≥ deg(ha). �

We now prove the theorem. Since ha(a) = 0, by (II), ha ∈ E[x]·(x−a). Take a factorization

ha = g · (x− ar) . . . (x− a1)

where g ∈ E[x], a1, . . . , ar ∈ A and r is as large as possible. Let k = (x−ar) . . . (x−a1) ∈ E[x].
We claim that k(A) = 0, where A is the conjugacy class of a. For, suppose there exists b ∈ A
such that k(b) 6= 0. Since k(b) is homogenous, we have k(b) ∈ E∗. But, ha = gk, and
ha(b) = 0, as b ∈ A; hence, (I) implies that g(b′) = 0 for some conjugate b′ of b. We can then
write g = g1 · (x− b′), by (II). So ha has a right factor (x− b′)k = (x− b′)(x− ar) . . . (x− a1),
contradicting our choice of r. Thus k(A) = 0, and using (III), we have r ≥ deg(ha), which
says that ha = (x− ar) . . . (x− a1). �
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Remark (Dickson Theorem). One can also see that, with the same assumptions as in Th. A.1,
if a, b ∈ E have the same minimal polynomial h ∈ T [x], then a and b are conjugates. For,
h = (x − b)k where k ∈ T [b][x]. But then by (III), there exists a conjugate of a, say a′, such
that k(a′) 6= 0. Since h(a′) = 0, by (I) some conjugate of a′ is a root of x − b. (This is also
deducible using the graded version of the Skolem-Noether theorem, see [HwW2], Prop. 1.6.)

Appendix B. The Congruence theorem for tame division algebras

For a valued division algebra D, the congruence theorem provides a bridge for relating the
reduced Whitehead group of D to the reduced Whitehead group of its residue division algebra.
This was used by Platonov [P1] to produce non-trivial examples of SK1(D), by carefully
choosing D with a suitable residue division algebra. Keeping the notations of Section 2,
Platonov’s congruence theorem states that for a division algebra D with a complete discrete
valuation of rank 1, such that Z(D) is separable over F , (1 +MD) ∩D(1) ⊆ D′. This crucial
theorem was established with a lengthy and rather complicated proof in [P1]. In [E], Ershov
states that the “same” proof will go through for tame valued division algebras over henselian
fields. However, this seems highly problematical, as Platonov’s original proof used properties
of maximal orders over discrete valuation rings which have no satisfactory analogues for more
general valuation rings. For the case of strongly tame division algebras, i.e., char(F ) ∤ [D : F ],
a short proof of the congruence theorem was given in [H2] and another (in the case of discrete
rank 1 valuations) in [Sus]. In this appendix, we provide a complete proof for the general
situation of a tame valued division algebra.

Theorem B.1 (Congruence Theorem). Let F be a field with a henselian valuation v, and
let D be a tame F -cental division algebra. Then (1 +MD) ∩D(1) ⊆ D′.

Tameness is meant here, as in the main body of the article, in the weaker sense used in
[JW] and [E]. Among the several characterizations of tameness mentioned in §2, the ones we
use here are that D is tame if and only if D is split by the maximal tamely ramified extension
of F , if and only if char(F ) = 0 or char(F ) = p 6= 0 and the p- primary component of D is
inertially split, i.e., split by the maximal unramified extension of F .

The proof of the theorem will use the following well-known lemma:

Lemma B.2. Let D be a division ring with center F and let L be a field extension of F with
[L : F ] = ℓ. If a ∈ D and a⊗ 1 ∈ (D ⊗F L)′, then aℓ ∈ D′.

Proof. The regular representation L→Mℓ(F ) yields a ring monomorphism D⊗F L→Mℓ(D).
Therefore, we have a composition of group homomorphisms

(D ⊗F L)∗ → GLℓ(D) → D∗/D′, a 7→

(
a 0 ... 0
0 a ... 0
...
...
...

...
0 0 ... a

)

ℓ×ℓ

7→ aℓD′,

where the second map is the Dieudonné determinant. (See [D], §20 for properties of the
Dieudonné determinant.) The lemma follows at once, since the image of the composition is
abelian, so its kernel contains (D ⊗F L)′. �
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Note that in the preceding lemma, there is no valuation present, and D could be of infinite
dimension over F .

Proof of Theorem B.1. The proof is carried out in four steps.

Step 1. We prove the theorem if D is inertially split of prime power degree over F . This is
a direct adaptation of Platonov’s argument in [P1] for discrete (rank 1) valuations. (When v
is discrete, every tame division algebra is inertially split.)

Suppose ind(D) = pk, p prime and D is inertially split. Then, D has a maximal sub-
field K which is unramified over F (cf. [JW], Lemma 5.1, or [W2], Th. 3.4) Take any
a ∈ (1 +MD) ∩D(1). We first push a into K. Since K is separable over F , there is y ∈ K
with K = F (y). Choose any z ∈ VK with z = y. So K = F (z), by dimension count,

as F (z) ⊇ F (y). Note that az = z in D. If f is the minimal polynomial of az over F ,
then f ∈ VF [x] as az ∈ VD, and z = az is a root of the image f of f in F [x]. We have
deg(f) = deg(f) = [F (az) : F ] ≤ [K : F ] = [F (z) : F ]. Hence, f is the minimal polynomial
of z over F , so z is a simple root of f . By Hensel’s lemma applied over K, K contains a
root b of f with b = z. Since b and az have the same minimal polynomial f over F , by
Skolem–Noether there is t ∈ D∗ with b = tazt−1. So az = t−1bt. Then,

a = t−1btz−1 = (t−1btb−1)(bz−1).

We have bz−1 ∈ K, as b, z ∈ K, and bz−1 ≡ a (mod D′); so, NrdD(bz−1) = NrdD(a) = 1, and
bz−1 ∈ 1 +MD, as b = z. Therefore, we may replace a by bz−1, so we may assume a ∈ K.

Let N be the normal closure of K over F , and let G = Gal(N/F ). Since K is unramified
over F and the maximal unramified extension Fnr of F is Galois over F (cf. [EP], Th. 5.2.7,
Th. 5.2.9, pp. 124–126), N ⊆ Fnr; so N is also unramified over F . Let P be a p-Sylow
subgroup of G and let L = NP , the fixed field of P . Thus, [L : F ] = |G : P |, which is prime to
p, and N is Galois over L with Gal(N/L) = P . Since gcd

(
[L : F ], ind(D)

)
= 1, D1 = L⊗F D

is a division ring and K1 = L ⊗F K is a field with K1
∼= L · K ⊆ N . So, K1 is unramified

over F and hence over L. We have NrdD1
(1 ⊗ a) = NrdD(a) = 1 and 1 ⊗ a ∈ 1 + MD, so if

we knew the result for D1, we would have 1 ⊗ a ∈ D′
1. But then by Lemma B.2, a[L:F ] ∈ D′.

But we also have aind(D) ∈ D′, since SK1(D) is ind(D)-torsion (by [D], p. 157, Lemma 2 or
Lemma B.2 above with L a maximal subfield of D). Since gcd

(
[L : F ], ind(D)

)
= 1, it would

follow that a ∈ D′, as desired. Thus, it suffices to prove the result for D1.

To simplify notation, replace D1 by D, K1 by K, 1 ⊗ a by a, and L by F . Because
F ⊆ K ⊆ N with N Galois over F any subfield T of K minimal over F corresponds to
a maximal subgroup of Gal(N/F ) containing Gal(N/K). Since [N : F ] is a power of p, by
p-group theory such a maximal subgroup is normal in Gal(N/F ) and of index p. Thus, T is
Galois over F and [T : F ] = p. So Gal(T/F ) is a cyclic group , say Gal(T/F ) = 〈σ〉. Let
E = CD(T ), so F ⊆ T ⊆ K ⊆ E ⊆ D. Note that K is a maximal subfield of E, since it is a
maximal subfield of D.

Let c = NK/T (a) = NrdE(a). Because K is unramified over T and a ∈ VK , we have c ∈ VT

and c = NK/T (a) = NK/T (1) = 1, so c ∈ 1 + MT . We have NT/F (c) = NT/F (NK/T (a)) =

NK/F (a) = NrdD(a) = 1. By Hilbert 90, c = b/σ(b) for some b ∈ T . This equation still holds
if we replace b in it by any F ∗-multiple of b. Thus, as ΓT = ΓF since T is unramified over F ,
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we may assume that v(b) = 0. But further, since T is unramified and cyclic Galois over F ,
its residue field T is cyclic Galois of degree p over F , with Gal(T/F ) = 〈σ〉 where σ is the

automorphism of T induced by σ on T . In T we have b/σ(b) = b/σ(b) = c = 1. Therefore,
b lies in the fixed field of σ in T , which is F . Hence, there is η ∈ VF with η = b in T . By
replacing b by bη−1, we can assume b = 1, i.e., b ∈ 1 +MT .

Since K is unramified and hence tame over T , Prop. 4.6 shows NK/T (1 +MK) = 1 +MT .
So, there is s ∈ 1 + MK with NK/F (s) = b. Now, by Skolem–Noether, there is an inner
automorphism ϕ of D such that ϕ(T ) = T and ϕ|T = σ. Since E = CD(T ), we have ϕ is a
(non-inner) automorphism of E, and ϕ(K) is a maximal subfield of E (since K is a maximal
subfield of E). We have NrdE(ϕ(s)) = Nϕ(K)/ϕ(T )(ϕ(s)) = ϕ

(
NK/T (s)

)
= σ(b). Thus,

NrdE(s/ϕ(s)) = b/σ(b) = c.

Now, as ϕ is inner, there is u ∈ D∗ with ϕ(s) = usu−1. So, ϕ(s) ∈ 1 + MD. Let
a′ = a/(s/ϕ(s)) = a

/
(sus−1u−1) ∈ E. So a′ ≡ a (mod D′). But further, a′ ∈ E ∩ (1 +MD) =

1 +ME (as a, s, ϕ(s) ∈ (1 +MD) ∩ E ). Also,

NrdE(a′) = NrdE(a)
/

NrdE(s/ϕ(s)) = NK/T (a)/c = 1.

Since [E : T ] < [D : F ] and E is inertially split over T (since it is split by its maximal
subfield K which is unramified over T ), by induction on index the theorem holds for T over E.
Hence, a′ ∈ E ′. Since a ≡ a′ (mod D′), we thus have a ∈ D′, as desired. This completes the
proof of Step 1.

Step 2. The theorem is true if D is strongly tame over F , i.e., char(F ) ∤ [D : F ]. This has
a short proof given in [H2] and another (in the case of discrete valuation of rank 1) in [Sus],
Lemma 1.6. For the convenience of the reader, we recall the argument from [H2]:

Let n = ind(D), so char(F ) ∤ n. Take any s ∈ D∗, and let f = xk+ck−1x
k−1+. . .+c0 ∈ F [x]

be the minimal polynomial of s over F . By applying the Wedderburn factorization theorem
to f (see [L], (16.9), pp. 251–252, or Appendix A above), we see that there exist d1, . . . , dk ∈ D∗

with (−1)kc0 = (d1sd
−1
1 ) . . . (dksd

−1
k ). Hence, as D∗/D′ is abelian,

NrdD(s) = [(−1)kc0]
n/k ≡

[
sk(d1sd

−1
1 s−1) . . . (dksd

−1
k s−1)

]n/k
≡ sn (mod D′). (B.1)

Now, take any a ∈ 1+MD with NrdD(a) = 1. Since char(F ) ∤ n, Hensel’s Lemma applied over
F (a) shows that there is s ∈ 1+MF (a) ⊆ 1+MD with sn = a. Then, NrdD(s) = 1+m ∈ 1+MF

by Cor. 4.7. But,
(1 +m)n = NrdD(an) = NrdD(s) = 1.

If m 6= 0, then we have 1 = (1+m)n = 1+nm+r with v(r) ≥ 2v(m), which would imply that
v(nm) = v(r) > v(m). This cannot occur since char(F ) ∤ n; hence, m = 0. Thus, by (B.1)

a = sn ≡ NrdD(s) = 1 +m = 1 (mod D′),

i.e., a ∈ D′. This completes Step 2.

Step 3. Suppose D = P ⊗F Q, where gcd(ind(P ), ind(Q)) = 1, and suppose the theorem
is true for PL and QL for any subfield L of D, L ⊇ F , where PL (resp. QL) is the division
algebra Brauer equivalent to L ⊗F P (resp. L ⊗F Q). Then we show using Prop. B.3 below
that the theorem is true for D.
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Let L be a maximal subfield of P , and let C = CD(L). Then, C ∼= CL(P )⊗F Q = L⊗F Q;
since C is a division ring, QL

∼= C. Also,

L⊗F D ∼= (L⊗F P ) ⊗L (L⊗F Q) ∼= Mℓ(L) ⊗L C ∼= Mℓ(C),

where ℓ = [L : F ] = ind(P ). Take any a ∈ (1 + MD) ∩ D(1). For 1 ⊗ a ∈ L ⊗ D = Mℓ(C),
Prop. B.3 shows that there is c ∈ 1 +MC with ddet(a) ≡ c (mod C ′), where ddet denotes the
Dieudonné determinant. Then,

1 = NrdD(a) = NrdMℓ(C)(1 ⊗ a) = NrdC(ddet(1 ⊗ a)) = NrdC(c).

Hence, c ∈ (1+MC)∩C(1) which lies in C ′ by hypothesis as C = QL. That is, ddet(1 ⊗ a) = 1 ∈ C∗/C ′.
Hence, 1 ⊗ a ∈ ker(ddet) = (L⊗F D)′. Therefore, by Lemma B.2, aℓ ∈ D′. Likewise, we can
take a maximal subfield K of Q, and by looking at 1⊗ a ∈ K ⊗F D, we obtain ak ∈ D′ where
k = [K : F ] = ind(Q). Since gcd(ℓ, k) = 1, it follows that a ∈ D′, completing Step 3.

Step 4. We now prove the theorem in full. Let F be a henselian field, and let D be a tame
F -central division algebra. If char(F ) = 0, then D is strongly tame over F , so the theorem
holds for D by Step 2. If char(F ) = p 6= 0 we have D ∼= P ⊗F Q where P is the p-primary
component of D and Q is the tensor product of all the other primary components of D. So,
gcd(ind(P ), ind(Q)) = 1. For any subfield L of F , QL is tame over L with ind(QL)| ind(Q),
which is prime to p. So, QL is strongly tame over L, and the theorem holds for QL by Step 2.
On the other hand, PL is tame over L and ind(PL) is a power of p; hence, PL is inertially split.
Hence, by Step 1 the theorem holds for PL. Thus, by Step 3 the theorem holds for D. �

The following proposition will complete the proof of the Congruence Theorem.

Proposition B.3. Let F be a henselian valued field, and let D be an F -central division
algebra which is defectless over F . Let L be a field, F ⊆ L ⊆ D, and let C = CD(L), so
L⊗F D ∼= Mℓ(C) where ℓ = [L : F ]. Take any a ∈ 1+MD. Then for 1⊗a ∈ L⊗F D ∼= Mℓ(C),

ddet(1 ⊗ a) ∈ 1 +MC (mod C ′),

where ddet denotes the Dieudonné determinant.

Proof. D is an L-D bimodule via multiplication in D. Hence (as L is commutative) D is a
right L ⊗F D-module, with module action given by a(

∑
ℓi ⊗ di) =

∑
ℓiadi. D is a simple

right L ⊗F D-module, since it is already a simple right D-module. Hence, by Wedderburn’s
Theorem, L⊗F D ∼= End∆(D), where ∆ = EndL⊗F D(D) (acting on D on the left). Since (for
D acting on D on the right) EndD(D) ∼= D (elements of D acting on D by left multiplication)
EndL⊗F D(D) consists of left multiplication by elements of D which commute with the left
action of L on D, i.e., ∆ ∼= CD(L) = C. So, L⊗F D ∼= End∆(D) ∼= EndC(D) ∼= Mℓ(C) where
ℓ = [D : C] = [L : F ]. The last isomorphism is obtained by choosing a base {b1, . . . , bℓ} of
D as a left C-vector space (D = Cb1 ⊕ . . . ⊕ Cbℓ) and writing the matrix for an element of
L⊗F D acting C-linearly on D (on the right) relative to this base, with matrix entries in C.

Because D is defectless over F , D is also defectless over C, i.e., [D : C] = [gr(D) : gr(C)];
thus, the valuation w on D extending v on F is a w|C-norm by [RTW], Cor. 2.3. This means
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that we can choose our base {b1, . . . , bℓ} to be a splitting base for w over w|C, i.e., satisfying,
for all c1, . . . , cℓ ∈ C,

w
( ℓ∑

i=1

cibi
)

= min
1≤i≤ℓ

(
w(ci) + w(bi)

)
. (B.2)

Let γi = w(bi) for 1 ≤ i ≤ ℓ.

Let

R = {A = (aij) ∈Mℓ(C) : w(aij) ≥ γi − γj for all i, j};

J = {A = (aij) ∈Mℓ(C) : w(aij) > γi − γj for all i, j};

1 + J = {Iℓ + A : A ∈ J}, where Iℓ ∈Mℓ(c) is the identity matrix.

Because w is a valuation, it is easy to check that R is a subring of Mℓ(C) and J is an ideal
of R. Therefore, 1 + J is closed under multiplication. Take any f ∈ EndC(D) (which acts
on D on the right), and let A = (aij) be the matrix of f relative to the C-base {b1, . . . bℓ}

of D, i.e., bif =
∑ℓ

j=1 aijbj for all i. So,

w(bif) = w
( ℓ∑

j=1

aijbj
)

= min
1≤j≤ℓ

(
w(aij) + γj

)
.

Thus, w(bif) ≥ w(bi) = γi iff w(aij) ≥ γi − γj for 1 ≤ j ≤ ℓ. From this it is clear that
A = (aij) ∈ R iff w(bif) ≥ w(bi) for all i. Analogously, A ∈ J iff w(bif) > w(bi) for all i.

Now, take any u ∈ 1 + MD, say u = 1 + m with m ∈ MD. Then, 1 ⊗ m ∈ L ⊗F D
corresponds to ρm ∈ EndC(D), where dρm = dm for all d ∈ D. Let S ∈Mℓ(C) be the matrix
for ρm. Since w(m) > 0, we have

w(biρm) = w(bim) = w(bi) + w(m) > w(bi) for all i.

Hence, S ∈ J , as we saw above.

Claim. For any matrix T ∈ 1 + J , we have ddet(T ) ∈ 1 +MC (mod C ′).

The Proposition follows at once from this claim, since the matrix for 1 ⊗ (1 + m) is
Iℓ + S ∈ 1 + J .

Proof of Claim. Take T ∈ 1 + J . The idea is that the process of bringing T to upper
triangular form by row operations is carried out entirely within 1 + J . Write T = Iℓ +Z with
Z = (zij) ∈ J . So, w(zii) > γi − γi = 0 for all i, i.e., zii ∈MC . Thus, for all i, j, we have

tii = 1 + zii ∈ 1 +MC and tij = zij, so w(tij) > γi − γj when i 6= j.

Fix k with 1 ≤ k ≤ ℓ−1. Since tkk ∈ 1+MC , w(tkk) = 0, so tkk 6= 0. Let Y = (yij) ∈Mℓ(C)
be the matrix for the row operations to bring 0’s to all entries in the k-th column of T below the
main diagonal, i.e., the i-th row of Y T is: (the i-th row of T ) − (tikt

−1
kk · the k-th row of T )

for k < i ≤ ℓ (with the first k rows unchanged). So, yii = 1 for all i; yik = −tikt
−1
kk for our

fixed k and all i with k < i ≤ ℓ; and yij = 0 otherwise. For i > k,we have

w(yik) = w(tik) − w(tkk) > γi − γk.

Hence, Y ∈ 1 + J and Y is a unipotent lower triangular matrix. Since 1 + J is closed under
multiplication, we have Y T ∈ 1 + J . To bring T to upper triangular form we apply the
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row operations successively for columns 1 to ℓ − 1. We end up with an upper triangular
matrix T ′ = Yℓ−1Yℓ−2 . . . Y2Y1T ∈ 1 + J , where each Yk ∈ 1 + J is the matrix for zeroing the
k-th column as described above, but applied to the matrix Yk−1 . . . Y1T ∈ 1 + J (not to T ).
Say T ′ = (t′ij). Each Yk is unipotent and lower triangular, so ddet(Yk) = 1 ∈ C∗/C ′, So,
ddet(T ′) = ddet(Yk−1) . . .ddet(Y1) ddet(T ) = ddet(T ) in C∗/C ′. Since T ′ is upper triangular
with each t′ii ∈ 1 +MC , we have

ddet(T ) = ddet(T ′) = t′11 . . . t
′
ℓℓ ∈ 1 +MC (equality modulo C ′),

proving the Claim. �
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available at: http://www.dma.ens.fr/∼gille/ . 2

[H1] R. Hazrat, SK1-like functors for division algebras, J. Algebra, 239 (2001), 573–588. 12, 25

[H2] R. Hazrat, Wedderburn’s factorization theorem, application to reduced K-theory, Proc. Amer. Math.
Soc., 130 (2002), 311–314. 28, 30

[H3] R. Hazrat, On central series of the multiplicative group of division rings, Algebra Colloq., 9 (2002),
99–106. 17

[H4] R. Hazrat, SK1 of Azumaya algebras over Hensel pairs, to appear in Math. Z.; preprint available
(No. 282) at: http://www.math.uni-bielefeld.de/LAG/ . 2

[HW] R. Hazrat, A. R Wadsworth, On maximal subgroups of the multiplicative group of a division algebra,
to appear in J. Algebra; preprint available (No. 260) at: http://www.math.uni-bielefeld.de/LAG/ .
12

[HwW1] Y.-S. Hwang, A. R. Wadsworth, Algebraic extensions of graded and valued fields, Comm. Algebra,
27 (1999), 821–840. 2, 4, 8, 14

[HwW2] Y.-S. Hwang, A. R. Wadsworth, Correspondences between valued division algebras and graded division
algebras, J. Algebra, 220 (1999), 73–114. 1, 2, 4, 6, 7, 10, 11, 15, 16, 28



34 R. HAZRAT AND A. R. WADSWORTH

[JW] B. Jacob, A. Wadsworth, Division algebras over Henselian fields., J. Algebra, 128 (1990), 126–179. 5,
16, 28, 29

[J] N. Jacobson, Finite-Dimensional Division Algebras over Fields, Springer-Verlag, Berlin, 1996. 17, 18

[K] M. -A. Knus, Quadratic and Hermitian Forms over Rings, Springer-Verlag, Berlin, 1991. 7

[KMRT] M. -A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The Book of Involutions, AMS Coll. Pub., 44,
1998. 17

[L] T.-Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-
Verlag, New York, 1991. 26, 30

[LT] D. W. Lewis, J.-P. Tignol, Square class groups and Witt rings of central simple algebras, J. Algebra,
154 (1993), 360–376. 16

[Mc1] K. McKinnie, Prime to p extensions of the generic abelian crossed product, J. Algebra, 317 (2007),
813–832. 25

[Mc2] K. McKinnie, Indecomposable p-algebras and Galois subfields in generic abelian crossed products, J. Al-
gebra, 320 (2008), 1887–1907. 25

[Mc3] K. McKinnie, Degeneracy and decomposability in abelian crossed products, preprint, arXiv: 0809.1395.
25

[Mer] A. S. Merkurjev, K-theory of simple algebras, pp. 65–83 in K-theory and Algebraic Geometry: connec-
tions with quadratic forms and division algebras, eds. B. Jacob and A. Rosenberg, Proc. Sympos. Pure
Math., 58, Part 1, Amer. Math. Soc., Providence, RI, (1995), 65–83. 2

[Mor] P. Morandi, The Henselization of a valued division algebra, J. Algebra, 122 (1989), 232–243. 6, 16

[M1] K. Mounirh, Nicely semiramified division algebras over Henselian fields, Int. J. Math. Math. Sci., 2005

(2005), 571–577. 16

[M2] K. Mounirh, Nondegenerate semiramified valued and graded division algebras, to appear in Comm.
Algebra; an earlier version is part of preprint No. 256 at: http://www.math.uni-bielefeld.de/LAG/ .
25

[MW] K. Mounirh, A. R. Wadsworth, Subfields of nondegenerate tame semiramified division algebras, preprint
in preparation. 12, 13

[PS] I. A. Panin, A. A. Suslin, On a conjecture of Grothendieck concerning Azumaya algebras, St. Petersburg
Math. J., 9 (1998), 851–858. 2

[P1] V. P. Platonov, The Tannaka-Artin problem and reduced K-theory, Izv. Akad. Nauk SSSR Ser. Mat.,
40 (1976), 227–261 (in Russian); English trans., Math. USSR-Izv., 10 (1976), 211–243. 2, 8, 16, 28, 29

[P2] V. P. Platonov, Algebraic groups and reduced K-theory, pp. 311–317 in Proceedings of the ICM (Helsinki
1978), ed. O. Lehto, Acad. Sci. Fennica, Helsinki. 2
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