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Abstract. We study the image of the natural map from group
cohomology to Galois cohomology by using motivic cohomology of
classifying spaces.

1. Introduction

Let k be a field of ch(k) = 0, which contains a p-th root of unity. Let
G be a split affine algebraic group over k and W a faithful representa-
tion of G. Then G acts also on the function field k(W ). Let k(W )G be
the invariant filed. Then we have the natural quotient map of groups
q : Gal(k̄(W̄ )/k(W )G) → G. This induces the map of cohomologies

q∗ : H∗(G; Z/p) → H∗(k(W )G; Z/p).

The purpose of this paper is to study the image Im(q∗) by using
the motivic cohomology defined by Suslin and Voevodsky [Vo1,3]. The
image Im(q∗) is called the stable cohomology in [Bo], [Bo-Pe-Ts]. The
kernel Ker(q∗) = Ng is called the (geometric) negligible ideal [Pe],[Sa].

Let H∗,∗′(X; Z/p) be the mod(p) motivic cohomology. Let 0 6= τ ∈
H0,1(Spec(k); Z/p) ∼= Z/p. Using affirmative solution of the Bloch-
Kato conjecture by Voevodsky (and hence Beilinson-Lichtenbaum con-
jecture), the map q∗ is decomposed as

q∗ : H∗,∗(BG; Z/p) → H∗,∗(BG; Z/p)/(τ) → H∗,∗(Spec(k(W )G); Z/p).

where H∗,∗(BG; Z/p)/(τ) = H∗,∗(BG; Z/p)/(τH∗,∗−1(BG; Z/p)) and
BG is the classifying space of G defined by Totaro and Voevodsky
([To], [Vo1,4]).

By the Belinson-Lichtenbaum conjecture and the work of Bloch-
Ogus [Bl-Og], we know

H∗,∗(BG; Z/p)/(τ) ⊂ H0
Zar(BG;H∗

Z/p) ⊂ H∗(k(W )G; Z/p).
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Here H∗
Z/p is the Zarisky sheaf induced from the presheaf H∗

et(V ; Z/p)

for open subset V of BG. Therefore we see ([Or-Vi-Vo])

Im(q∗) = H∗(BG; Z/p)/(Ng) ∼= H∗,∗(BG; Z/p)/(τ).

Note that the right hand side ring does not depend on the choice of
W . We also note that the ideal (Ng) coincides the coniveau filtration
N1H∗(BG; Z/p) defined by Grothendieck.

In this paper we compute Im(q∗) when k = C for abelian p-groups,
symmetric group Sn, On, SOn, Spinn, PGLp and exceptional groups.
Extra special p-groups are also studied. For example, we seeH∗(BSpinn; Z/2)/(Ng) ∼=
Z/2 for all n ≥ 6.

Recall that the cohomology invariant Inv∗(G; Z/p) is a ring of nat-
ural maps H1(F ;G) → H∗(F ; Z/p) for finitely generated fields F over
k. This ring is very well studied for example see [Ga-Me-Se]. In par-
ticular, it is very useful to compute the essential dimension ed(G) of
G ([Re], [Br-Re-Vi]). Moreover, Totaro proved that

Inv∗(G; Z/p) ∼= H0
Zar(BG;H∗

Z/p)

in a letter to Serre [Ga-Me-Se]. Hence Im(q∗) ⊂ Inv∗(G; Z/p). We
use these results for some parts of this paper, however we also give
new explanations of Inv∗(G; Z/p) for the case k = C. For example,the
image of (topological) Stiefel-Whitney class wi of the map

H∗(BOn; Z/2) → H∗(BOn; Z/2)/(Ng) ⊂ Inv∗(On; Z/2)

is indeed the Stiefel-Whitney class wi defined by Milnor and Serre as
the natural function from quadratic forms to Milnor K-theories.

All examples stated above are detected by abelian p-subgroups A of
G, i.e., the restriction map

Res : H∗(BG; Z/p)/(Ng) → ΠAH
∗(BA; Z/p)/(Ng)

is injective. (Indeed, most of the above cases are detected by only one
elemenary abelian p-subgroup.)

Of course this detected property does not hold for general G. How-
ever to give examples is not so easy. Indeed, for a p-group G of expo-
nent p, if H2(BG; Z/p)/(Ng) is not detected by any A ∼= Z/p ⊕ Z/p,
then G is a counter example of the Noether’s problem, namely, k(W )G

is not purely transcendental over k. The examples of Saltman and
Bogomolov are essentially of these types [Sa].

For each n > 1, we give an example Gn of a p-group p ≥ 3, such
that H2n(Gn; Z/p) is not detected by abelian p-subgroups, while it
does not implies a counter example of Noether’s problem. Here the
composition Q2n−2...Q0 of Milnor operations is used to see x 6∈ Ng
given x ∈ H2n(BG; Z/p).
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2. motivic cohomology

Let X be a smooth (quasi projective) variety. Let H∗,∗′(X; Z/p) be
the mod(p) motivic cohomology defined by Voevodsky and Suslin.

Recall that the (mod p) B(n, p) condition holds if

Hm,n(X; Z/p) ∼= Hm
et (X;µ⊗n

p ) for all m ≤ n.

It is known that the B(n, p) condition holds for p = 2 or n = 2 by
Voevodsky([Vo1,2]), and Merkurjev-Suslin respectively. Quite recently
M.Rost and V.Voevodsky ([Vo5],[Su-Jo],[Ro]) announced that B(n, p)
condition holds for each p and n. Hence the Bloch-Kato conjecture
also holds. Therefore in this paper, we always assume the B(n, p)-
condition and so the Bloch-Kato conjecture for all n, p.

Moreover we always assume that k contains a primitive p-th root
of unity. For these cases, we see the isomorphism Hm

et (X;µ⊗n
p ) ∼=

Hm
et (X; Z/p). Let τ be a generator of H0,1(Spec(k); Z/p) ∼= Z/p. Hence

colimiτ
iH∗,∗′(X; Z/p) ∼= H∗

et(X; Z/p).

Recall that Z/p(n) ([Vo1,2,3]) is the complex of sheaves in Zarisky
topology such that Hm,n(X; Z/p) ∼= Hm

Zar(X; Z/p(n)). Let α be the
obvious map of sites from etale topology to Zarisky topology so that

Hm
et (X; Z/p) ∼= Hm

et (X;µ⊗n
p ) ∼= Hm

Zar(X,Rα∗α
∗Z/p(n)).

For k ≤ n, let τ≤kRα∗α
∗Z/p(n) be the canonical truncation ofRα∗α

∗Z/p(n)
of level k. Then we have the short exact sequence of sheaves

τ≤n−1Rα∗α
∗Z/p(n) → τ≤nRα∗α

∗Z/p(n) → Hn
Z/p[−n]

where Hn
Z/p is the Zarisky sheaf induced from the presheaf Hn

et(V ; Z/p)

for open subset V of X. The Beilinson and Lichtenbaum conjecture (
hence B(n, p)-condition ) (see [Vo2,5]) implies

Z/p(k) ∼= τ≤kRα∗α
∗Z/p(n).

Hence we have ;

Lemma 2.1. ([Or-Vi-Vo], [Vo5]) There is the long exact sequence

→ Hm,n−1(X; Z/p)
×τ→ Hm,n(X; Z/p)

→ Hm−n
Zar (X;Hn

Z/p) → Hm+1,n−1(X; Z/p) → .
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In particular, we have

Corollary 2.2. The graded ring grHm−n
Zar (X;Hn

Z/p) is isomorphic to

Hm,n(X; Z/p)/(τ) ⊕Ker(τ)|Hm+1,n−1(X; Z/p)

where Hm,n(X; Z/p)/(τ) = Hm,n(X; Z/p)/(τHm,n−1(X; Z/p)).

Note that the above long exact sequence induces the τ -Bockstein
spectral sequence

E(τ)1 = Hm−n
Zar (X;Hn

Z/p) =⇒ colimiτ
iH∗,∗′(X; Z/p) ∼= H∗

et(X; Z/p).

On the other hand, the filtration coniveau is given by

N cHm
et (X; Z/p) = ∪ZKer{Hm

et (X; Z/p) → Hm
et (X − Z; Z/p)}

where Z runs in the set of closed subschemes of X of codim = c.
Grothendieck wrote down the E1-term of the spectral sequence induced
from the above coniveau filtration.

E(c)c,m−c
1

∼= Πx∈X(c)Hm−c
et (k(x); Z/p) =⇒ Hm

et (X; Z/p)

where X(c) is the set of primes of codimension c and k(x) is the residue
field of x. We can regard ix∗H

m−c
et (k(x); Z/p) as a constant sheaf

Hm−c
et (k(x); Z/p) on ¯{x} and extend it by zero to X. Then the dif-

ferentials of the spectral sequence give us a complex on sheaves on
X

(2.9) 0 → Hq
Z/p → Πx∈X(0)ix∗H

q
et(k(x); Z/p) → Πx∈X(1)ix∗H

q−1
et (k(x); Z/p)

→ ...→ Πx∈X(q)ix∗H
0
et(k(x); Z/p) → 0.

Bloch-Ogus [Bl-Og] proved that the above sequence of sheaves is exact
and the E2-term is given by

E(c)c,m−c
2

∼= Hc
Zar(X,H

m−c
Z/p ).

In particular, we have ;

Corollary 2.3.

H0
Zar(X;Hm

Z/p)
∼= Ker{Hm

et (k(X); Z/p) → Πx∈X(1)Hm−1
et (k(x); Z/p)}.

By Deligne ( foot note (1) in Remark 6.4 in [Bl-Og]) and Paranjape
(Corollary 4.4 in [Pj]), it is proven that there is an isomorphism of the
coniveau spectral sequence with the Leray spectral sequence for the
map α. Hence we have ;

Theorem 2.4. (Deligne, Parajape) There is the isomorphism E(c)c,m−c
r

∼=
E(τ)m,m−c

r−1 of spectral sequences. Hence the filtrations are the same
N cHm

et (X; Z/p) = Fm,m−c
τ where

Fm,m−c
τ = Im(×τ c : Hm.m−c(X; Z/p) → Hm,m(X; Z/p)).
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3. cohomology of groups

Let G be a reductive algebraic group over k acting on an affine
variety W . A point x ∈W is called stable if the orbit Gx is closed and
the stabilizer group Stab(x) is a finite group. Let us write by Xs the
set of stable points in X. Then Xs is an open subset of X and there
is the commutative diagram

W
φ−−−→ W//G

x





open

x





open

W s φs

−−−→ W s/G,

where W//G = Spec(k[W ]G), the geometric quotient of X. We also
note that the invariant field k(W )G is a quotient field of k[W ]G when
Xs 6= ∅.

SupposeXs 6= ∅. ThenH∗,∗′(W//G; Z/p) = H∗,∗′(Spec(k[W ]G); Z/p)
and k(W s/G) = k(W//G) = k(W )G. Hence we have the diagram

H∗,∗′(W//G; Z/p) −−−→ H∗,∗′(Spec(k(W )G); Z/p)




y

=





y

H∗,∗′(W s/G; Z/p)
ψ−−−→ H∗,∗′(Spec(k(W s/G); Z/p)

Restrict W as an affine space W = ⊕k and let ρ : G → W = ⊕k a
faithful representation. Let Un = W−S be an open set of W such that
G act freely U where codimWS = n. (Of course U is an open subset of
W s.) Then the classifying space of G is defined as colimn→∞(Un/G).
Then the mod(p) motivic cohomology (for degree ∗ < 2n) of BG is
given by ([Vo4],[To])

H∗,∗′(BG; Z/p) ∼= limn→∞H
∗,∗′(Un/G; Z/p).

In particular, by BL(p, ∗) condition, we have

H∗,∗(BG; Z/p) ∼= H∗
et(BG; Z/p) = H∗(G; Z/p) ⊗H∗(k; Z/p)

where the last group is the cohomology group of the Galois group G
(when G is finite). Thus from the above diagram, we have the map

ψ : H∗,∗′(BG; Z/p) → H∗,∗′(Spec(k(W )G); Z/p).

This map ψ∗,∗ = ψ∗
et is explains also as follows. Let Γ is the ab-

solute Galois group Γ = Gal( ¯k(W )/k(W )G). Then the group G =
Gal(k(W )/k(W )G) is a quotient group of the absolute Galois group Γ.
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Then the map ψet is the induced map from the quotient q : Γ → G,
i.e.,

ψ∗
et = q∗ : H∗(G; Z/p) → H∗(Γ; Z/p) = H∗(k(W )G; Z/p).

Lemma 3.1.

Im(ψ∗) ∼= H∗,∗(BG; Z/p)/(τ).

Proof. For each field F , by the Bloch-Kato conjecture, H∗(F ; Z/p) is
generated by elements in H1

et(F ; Z/p) ∼= H1,1(Spec(F ); Z/p). So

ψ∗,∗−1 : H∗,∗−1(BG; Z/p) → H∗,∗−1(Spec(k(W )G); Z/p) = 0.

Hence the map ψ∗ is expressed as a composition

H∗,∗(BG; Z/p) → H∗,∗(BG; Z/p)/(τ) → H∗
et(k(W )G; Z/p).

The first map is of course surjective and we only need the injectivity
of the second map. Indeed, from Corollary 2.2 and 2.3, we see

H∗,∗(BG; Z/p)/(τ) ⊂ H0
Zar(BG;H∗

Z/p) ⊂ H∗(k(W )G; Z/p).

�

Recall the coniveau filtration given in §2
N cHm

et (X; Z/p) = ∪ZKer{Hm
et (X; Z/p) → Hm

et (X − Z; Z/p)}
where Z runs in the set of closed subschemes of X of codim = c. From
Theorem 2.4, we see

Corollary 3.2. Im(q∗) ∼= H∗
et(BG; Z/p)/(N1H∗

et(BG; Z/p)).

According to Saltman (and Serre), we say an element x ∈ H∗(G; Z/p)
is geometrically negligible if ψ∗(x) = 0. Let us write Ng = Ng(G) =
Ker(ψ∗). From the above lemma, it is immediate

Ng(G) = N1H∗
et(BG; Z/p)

= Im(×τ |H∗,∗−1(BG; Z/p) → H∗,∗(BG; Z/p))

and we have

Im(ψ∗) = H∗(BG; Z/p)/(Ng) ∼= H∗(BG; Z/p)/(N1) ∼= H∗,∗(BG; Z/p)/(τ).

Lemma 3.3. For each element x in H∗
et(BG; Z/p), the images of co-

homology (Bockstein, reduced) operations β(x), P i(x) for i > 0 are in
Ng(G) (hence xp ∈ Ng(G)). The image of Gysin map g∗(x) are also
in Ng(G).
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Proof. The cohomology operations act as ([Vo2,4])

β : H∗,∗(X; Z/p) → H∗+1,∗(X; Z/p)

P i : H∗,∗(X; Z/p) → H∗+2i(p−1),∗+i(p−1)(X; Z/p).

For an element x ∈ Hm,n(X; Z/p), define the difference degree d(x) =
m − n. Then if d(x) = 0, then d(β(x)) > 0 and d(P i(x)) > 0. Hence
these elements are in Im(τ) as a subset of H∗,∗(X; Z/p).

For the embedding X ⊂ Y of codimension c, the Gysin map is
defined on

g∗ : H∗,∗(X; Z/p) → H∗+2c,∗+c(Y ; Z/p).

By the same reason as the cases of cohomology operations, we get
lemma. �

Here we give a sufficient condition for x 6∈ Ng(G). Voevodsky define
the Milnor operation Qi also in the mod p motivic cohomology

Qi : H∗,∗′(−; Z/p) → H∗+2pn−1,∗′+pn−1(−; Z/p).

Define the weight w(x) = 2 ∗′ −∗ for element (or operation) x ∈
H∗,∗′(X; Z/p), e.g., w(τ) = 2, w(Qi) = −1 and w(P i) = 0.

Lemma 3.4. Let x ∈ Hn
et(BG; Z/p) and Qn−2...Q0(x) 6= 0. Then

0 6= x ∈ Hn
et(BG; Z/p)/(Ng).

Proof. Identify x as an element in Hn,n(BG; Z/2). Suppose that x =
τ x̄. So w(x̄) = n − 2 since w(τ) = 2. Then tC(x̄) = tC(x) = x where
tC : H∗,∗′(X; Z/p) → H∗,∗′(X(C); Z/p) is the realization map.

The operation Qi descends the weight one. Let ψ̄ = Qn−2...Q0(x̄).
Then w(ψ̄) = −1 but tC(ψ̄) = Qn−2...Q0(x) 6= 0. This is a contradic-
tion since w(y) ≥ 0 for each nonzero element y ∈ H∗,∗′(Y ; Z/p) and
for smooth Y . �

We have the Kunneth formula for the etale cohomology of coefficient
Z/p. Since Ng is an ideal, we have the surjection

H∗
et(BG1; Z/p)/(Ng) ⊗H∗(k;Z/p) H

∗
et(BG2; Z/p)/(Ng)

→ H∗
et(B(G1 ×G2); Z/p)/(Ng).

However it does not need isomorphic, because there is the possibility
that x1 ⊗ x2 ∈ Ng(G1 ×G2) but x1 6∈ Ng(G1), x2 6∈ Ng(G2).
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4. cohomology invariant

Recall that H1(k;G) is the first non abelian Galois cohomology set
of G, which represents the set of G-torsors over k. It is very important
to study H1(k;G), for example H1(k;On) is isomorphic to the set of
isomorphism classes of non generate quadratic forms over k of rank n.
(For details, see the excellent book [Ga-Me-Se].)

The cohomology invariant is defined by

Invi(G,Z/p) = Func(H1(F ;G) → H i(F ; Z/p))

where Func means natural functions for each fields F over k. The
cohomology invariant is studied by many authors. The cohomology
invariants Inv∗(G; Z/p) are computed (for example in [Ga-Me-Se]) for
groups elementary abelian 2-groups, On,SOn, G2,... It is also stated in
[Ga-Me-Se] that for many G (but not all) Inv∗(G; Z/p) are detected
by Inv∗(H ; Z/p) for elementary abelian p-subgroups H .

Let x ∈ H0(BG;H i
Z/p). Given a G-torsor E over F , we can construct

x(E) ∈ H i
et(F ; Z/p). Roughly speaking, we can identify E as the

pullback of some map f : Spec(F ) → BG. So we can take x(E) =
f ∗(x) ∈ H0(Spec(F );H i

Z/p) = H i
et(F ; Z/p). Indeed, Totaro proved

[Ga-Me-Se] the following theorem in a letter to Serre.

Theorem 4.1. Inv∗(G; Z/p) ∼= H0(BG;H∗
Z/p).

Therefore we see

Corollary 4.2. Im(ψ∗) ∼= H∗(BG; Z/p)/(Ng) ⊂ Inv∗(G; Z/p).

5. abelian p-groups

Let us write H∗,∗′ = H∗,∗′(Spec(k); Z/p) and H∗ = H∗,∗ = K∗
M(k)/p

so that H∗,∗′ ∼= H∗[τ ]. First consider the case G = Z/pr. The mod(p)
motivic cohomology is computed (as the case Z/p in [Vo])

H∗,∗′(BZ/pr; Z/p) ∼= H∗,∗′ [y(r)] ⊗ Λ(x(r)) |y(r)| = 2, |x(r)| = 1.

(When p = 2 and r = 1, we see by Voevodsky ([Vo2,4])

x(1)2 = τy(1) + ρx(1) with ρ = (−1) ∈ H1 = k∗/(k∗)2.)

For the inclusion i : Z/pr ⊂ Z/ps and quotient map q : Z/ps → Z/pr,
for s ≥ r, we have

i∗(y(s)) = y(r), i∗(x(s)) = 0, q∗(y(r)) = 0, q∗(x(r)) = x(s).

Moreover we still know x(r) ∈ H1,1(BG; Z/p) and y(r) ∈ H2,1(BG; Z/p).
Thus we see ((Ker(τ)|H∗,∗′(BZ/pr; Z/p) = 0).

Inv∗(Z/pr; Z/p) ∼= H∗,∗(Z/pr; Z/p)/(τ) = H∗{1, x(r)}.
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Next consider their product G = Z/pr1 × ...× Z/prs. The cohomol-
ogy H∗,∗′(BZ/pr; Z/p) has the Kunneth formula. Hence the motivic
cohomology is given

H∗,∗′(BG; Z/p) ∼= H∗,∗′[y(r1), ..., y(rs)] ⊗ Λ(x(r1), .., x(rs))

where x(ri) ∈ H1,1(BG; Z/p) and y(ri) ∈ H2,1(BG; Z/p).
Recall that H∗(BG; Z/p)/(Ng) ∼= H∗,∗(BG; Z/p)/(τ) (Lemma 3.1).

Then we get

Lemma 5.1. Let G be an abelian p-group, i.e., G = ⊕iZ/(p
ri). Then

Inv∗(G; Z/p) ∼= H∗(G; Z/p)/(Ng) ∼= H∗ ⊗ Λ(x(r1), ..., x(rs))

when p = 2 ri = 1, x(ri)
2 = ρx(ri).

The elementary 2-groups cases are stated in Theorem 16.4 in [Ga-
Me-Se].

The Qi-operation acts on H∗,∗′(BZ/p; Z/p) by Qi(x) = yp
i

(while
Qi(x(j)) = 0 for all j > 1). We consider Qi action on

H∗,∗′(B(Z/p)s; Z/p) ∼= H∗,∗′[y1, ..., ys] ⊗ Λ(x1, ..., xs).

Each Qi is a derivation, and hence

Q0...Qs−1(x1...xs) =
∑

sgn(j1, ..., js)y
pj1

1 yp
j2

2 ...yp
js

s 6= 0

where (j1, ..., js) are permutations of (0, ..., s − 1). Thus we see that
this case satisfies the sufficient condition of Lemma 3.3 while the other
cases does not), in fact x1...xs 6∈ Ng(G).

Let us say that an element x ∈ H∗(BG; Z/p)/(Ng) is detected by
an elemntary abelian p-subgroup A if Res(x) 6= 0 for

Res : H∗(BG; Z/p)/(Ng) → H∗(BA; Z/p)/(Ng).

The following lemma is immediate from the above arguments.

Lemma 5.2. If x ∈ Hn(BG; Z/p)/(Ng) is detected by elementary
abelian p-subgroups, then Qn−1...Q0(x) 6= 0 in H∗(BG; Z/p).

6. Cases G = On and SOn

Hereafter, in this paper (except for §11), we assume that k = C

otherwise stated.
lt is well known that

H∗(BOn; Z/2) ∼= H∗((BZ/2)×n; Z/p)Sn ∼= Z/2[w1, ..., wn]
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where Sn is the n-th symmetric group, and wi is the Stiefel-Whitney
class representing the i-the elementary symmetric function. we easily
see

Qi−1...Q0(wi) = yp
i−1

1 yp
p−2

2 ...yi+... 6= 0 ∈ Z/2[y1, ..., yn] ⊂ H∗(B(Z/2)n; Z/2)

and hence wi 6∈ Ng(G). Recall the Wu formula

Sqiwk =

i
∑

j

(

k − j − 1
i− j

)

wk+i−jwj (0 ≤ i ≤ k).

Many cases of product of wiwj are in Ng(G), e.g.,w2
i ∈ Ng(G). More

precisely, the motivic cohomology of BOn is computed for k = C (The-
orem 8.1 in [Ya3])

H∗,∗′(BOn; Z/2) ∼= H∗,∗′((BZ/2)×n; Z/p)Sn.

Given x ∈ H∗(BG; Z/p), let us define the weight w(x) as the smallest
weight w(x′) such that tC(x′) = x with x′ ∈ H∗,∗′(BG; Z/p). Indeed,
the weight of the symmetric polynomial

t =
∑

x2i1+1
1 ...x2k+1

k x2j1
k+1...x

2jq
k+q in H∗((BZ/2)×n; Z/2)

(with 0 ≤ i1 ≤ ... ≤ ik, 0 ≤ j1 ≤ ... ≤ jq) is given by w(t) = k. Hence
if t 6∈ Ng, then w(t) = deg(t) and this implies t = x1...xi = wi.

Theorem 6.1.

Inv∗(On; Z/2) ∼= H∗(BOn; Z/2)/(Ng) ∼= Z/2{1, w1, ..., wn}.
In fact, Inv(On; Z/2) is well known (Theorem 17.3 in [Ga-Me-Se])

for general k ;

Inv∗(On; Z/2) ∼= H∗{1, w1, ..., wn}.
We consider the multiplicative structure of Inv∗(On; Z/2). From the

Wu formula, we see

Sq1(w2i) = w2i+1 + w2iw1 ∈ Ng(On).

Hence w2i+1 = w2iw1 in Inv∗(On; Z/2). By Rost and Kahn [Ka], the
divided power operation can be defined in KM

∗ (F )/p compatible with
fields F over k (and hence Inv∗(G; Z/p)) if

√−1 ∈ k. Vial showed [Via]
that the divided power operations are only compatible maps (natural
maps) with field extensions over k. Moreover Becher [Be] showed that
γn(w2) = w2n. (See also Milnor p133 in [Mi].)

Theorem 6.2. (Becher [Be], [Via]) Let
√−1 ∈ k. Then Inv∗(On; Z/2)

is generated by w1 and w2 as an H∗-ring with divided powers by

γi(w2) = w2i, w2i+1 = w2iw1.
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Next consider the case G = SOn. It is well known that

H∗(BSOn; Z/2) ∼= H∗(BOn; Z/2)/(w1) ∼= Z/2[w2, ..., wn].

Let n = 2m+ 1 = odd. For this case, there is the isomorphism

O2m+1
∼= SO2m+1 × Z/2.

Let p : On → SOn is the projection and i : SOn → On the inclusion.
We consider the induced map p∗ and i∗ on the mod 2 motivic cohomol-
ogy of their classifying spaces. Since p∗(w1) = 0, we see w2i+1 ∈ Ng(G)
from the above theorem (in fact, Sq1(w2i) = w2i+1 in H∗(BSOn; Z/2)).
Moreover i∗w2i = w2i mod(Ng(G)). Thus we have

Theorem 6.3. For G = SO2m+1, we have

Inv∗(G; Z/2) ∼= H∗(BG; Z/2)/(Ng) ∼= Z/2{1, w2, ..., w2m}.
Moreover Inv∗(SO2m+1; Z/2) is still computed (Theorem 19.1 in

[Ga-Me-Se]) for general k ;

Inv∗(SO2m+1; Z/2) ∼= H∗{1, w2, ..., w2m}.
Now consider the case n = 2m = even. This case the mod 2 motivic

cohomology is not computed even k = C for n > 4. However we
compute H∗,∗(BSOn; Z/2)/(τ) easily. Consider the inclusion

SO2m−1
i1→ SO2m

i2→ SO2m+1.

Since the restriction map for i < m

i∗1(w2i) 6= 0 ∈ H∗,∗(BSO2m−1; Z/2),

we see w2i 6∈ Ng(SO2m). Moreover we know that w(wn) = n − 2 in
Lemma 9.2 in [Ya3]. On the other hand, the monomial wI of not w2i

are all in Ng(SO2m+1) and so i∗2(wI) ∈ Ng(SO2m).
Thus we have

Theorem 6.4. H∗(BSO2m; Z/2)/(Ng) ∼= Z/2{1, w2, ..., w2m−2}.
Next we study Inv∗(SO2m; Z/2). There is an element (Lemma 9.3

in [Ya3]) in the motivic cohomology

um−1 ∈ Hn,n−2(BSOn; Z/2) with τum−1 = 0.

So there is the nonzero element

u ∈ Ker(τ |Hn,n−2(BG; Z/2)) ⊂ H0(BG;Hn−1
Z/2 ).

On the other hand in [Ga-Me-Su], it is proved (Theorem 20.6) for
general k

Inv∗(SO2m; Z/2) ∼= H∗{1, w2, ..., wn−2} ⊕ (Im(Iδ)).
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Here when k = C, Im(Iδ) ∼= Z/2{u} with deg(u) = n− 1 from Propo-
sition 20.1 in [Ga-Me-Se]. Thus we see

Theorem 6.5. Let G = SO2mand m ≥ 2. Then for deg(u) = 2m− 1,

Inv∗(G; Z/2) ∼= H∗(BG; Z/2)/(Ng) ⊕ Z/2{u}.
From 22.10 in [Ga-Me-Se], it is known that

Res : Inv∗(G; Z/p) → Inv∗(H ; Z/p)

is injective for p = 2, G = SOn and H = (Z/2)n−1. Hence for

Res : H0(BSOn;H
∗
Z/2) → H0(B(Z/2)n−1;H∗

Z/2)

we have Res(u) = x1...xn−1. Of course u 6∈ H∗,∗(BSOn; Z/2)/(τ) but
x1...xn−1 ∈ H∗,∗(B(Z/2)n−1; Z/2)/(τ).

Recall that in Corollary 2.2 grH0(BG;H∗
Z/p) is defined by the filtra-

tion H∗,∗(BG; Z/p)/(τ) ⊂ H0(BG;H∗
Z/p). So note that

Res : grH0(BSOn;H
∗
Z/2) → grH0(B(Z/2)n−1;H∗

Z/2)

is not injective (in Corollary 2.2).

7. Spinn and exceptional groups

The mod(2) cohomology of BSpinn is computed by Quillen

H∗(BSpinn; Z/2) ∼= Z/2[w2h(∆)] ⊗ Z/2[w2, ..., wn]/(Qiw2|0 ≤ i ≤ h)

where wi(∆) (resp. wi) is the Stiefel-Whitney class of a spin repre-
sentation ∆ (resp. usual representation Spinn → SOn), and 2h is the
the Radon-Hurwitz number (See [Qu] p.210). By the result of Becher
(Theorem 6.2), we have

Theorem 7.1. H∗(BSpinn; Z/2)/(Ng) = Z/2 for n > 4.

Proof. Let us write representations j : Spinn → SOn and ∆ : Spinn →
SON . We consider the induced map in Galois cohomolgy

j∗ : H∗
et(k(W )SOn; Z/2) → H∗

et(k(W )Spinn; Z/2).

By the Quillen’s result, we see j∗(w2) = 0. By Rost and Kahn [Ka], the
divided powers naturally act on KM

∗ (F )/p for field F over k. Hence
from Becher theorem (Theorem 6.2),we get

j∗(w2i) = j∗(γi(w2)) = γi(j
∗(w2)) = 0.

Similarly w2(∆) = 0 implies w2h(∆) = 0 if n > 4. �

Corollary 7.2. For ∗ > 0, there is the isomorphism

Inv∗(Spinn; Z/2) ∼= Ker(τ)|H∗+1,∗−1(BSpinn; Z/2).
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Themod(2) motivic cohomology ofBSpin7 is computed in (Theorem
9.6 in [Ya3]). We can easily see the above theorem also from the
concrete computation. Moreover there are τ -torsion elements

y2 ∈ H4,2(Spin7; Z/2), y′2 ∈ H5,3(Bspin7; Z/2).

Therefore we can take u ∈ H0(BSpin7, H
3
Z/2), v ∈ H0(BSpin7, H

4
Z/2).

Theorem 7.3.

Inv∗(BSpin7; Z/2) ∼= Z/2{1, u, v} |u| = 3, |v| = 4.

We consider exceptional Lie group types G2, F4 and split E6. In
[Ga-Me-Su], it is proved (Teorem 18.1, Theorem 22.5)

Inv∗(G2; Z/2) ∼= Inv∗(E6; Z/2) ∼= H∗{1, u},
Inv∗(F4; Z/2) ∼= H∗{1, u, f5}.

(Unfortunately, we can not reexplain f5 by using H∗,∗′(BF4; Z/2),
which is not computed yet.)

Moreover restriction image for elementary abelin 2-subgroup of rank
3 (resp. rank 5) is injective for G2, E6 (resp. for F4), see 22.10 in [Ga-
Me-Se].

Theorem 7.4. Let G = G2, F4. Then H∗(BG; Z/2)/(Ng) = Z/2.

Proof. It is known that the inclusion i : G2 → Spin7 induces the
epimorphism i∗ : H∗(BSpin7; Z/2) → H∗(BG2; Z/2). Hence the result
for G = G2 follows from H∗(BSpin7; Z/2)/(Ng) = Z/2.

It is also known that the inclusion i′ : Spin9 → F4 induces the injec-
tion i′∗ : H∗(BF4; Z/2) → H∗(BSpin9; Z/2). The groups Spin9 and F4

has the same maximal abelin 2-group H (of rank 5). We consider the
restriction to this H . The fact Res(H∗(BSpin9; Z/2)/(Ng)) = Z/2
implies the results for F4, because the restriction is injective from [Ga-
Me-Se]. �

Here we give an example. The mod(2) cohomology is well known

H∗(BG2; Z/2) ∼= Z/2[w4, w6, w7].

The motivic cohomology is given in Theorem 7.5 in [Ya3]. In particular,
c4, c6, c7 are the Chern classes (in H2∗,∗(BG2; Z/2)) so that τ ici = w2

i .
Let us write simply by Q(n) the exterior algebra Λ(Q0, ..., Qn).

Theorem 7.5. The motivic cohomology H∗,∗′(BG2; Z/2) is isomorphic
to

Z/2[c6, c4]⊗(Z/2{y2}⊕Z/2[τ ]⊗(Z/2{1}⊕(Z/2[c7]Q(2)−Z/2{1}){a})
where deg(y) = (4, 2), and a is a virtual element with deg(a) = (3, 3)
so that c7a = w6w7w4, Q0a = w4, Q1a = w6 and Q2a = w6w4.
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Let us write Qi1 ...Qis(a) by Qi1...is and wi1 ...wis by wi1...is. Then
(Z/2[c7]Q(2) − Z/2{1}){a} is written as

Z/2[c7]{c7a = w467, Q0 = w4, Q1 = w6, Q01 = w7,

Q2 = w46, Q02 = w47, Q12 = w67, Q012 = c7}.
Note that all wi1...is (which are generators of the Z/2[c4, c6, c7]-module
H∗(G2; Z/2)) appeared indeed in the above. Moreover it is imme-
diate that all elements except for 1 and a are in Ng(G2), and y ∈
Ker(τ)|H4,2(BG2; Z/2).

Next we consider odd prime case. In 22.10 in [Ga-Me-Se] it is stated
that the restriction image of Inv∗(G; Z/p) to some (maximal) elemen-
tary abelian p-group H is injective for (G, p) = (F4, 3), (E6, 3), (E7, 3)
or (E8, 5).

In these cases, each exceptional Lie group has two conjugacy classes
of maximal elementary abelian p-groups. One is the subgroup of a
maximal torus and the other is a nontoral A. Let us write iA : A→ G
and iT : T → B be the inclusions. Tezuka and Kameko proves ([Ka],
[Ka-Ya]) that the following map is injective

i∗A × i∗T : H∗(BG; Z/p) → H∗(BA; Z/p) ×H∗(BT ; Z/p),

namely, H∗(BG; Z/p) is detected by A and T . Since H∗(BT ; Z/p) is
non-nilpotent, the above group H must be A.

Theorem 7.6. Let (G, p) = (F4, 3), (E6, 3), (E7, 3) or (E8, 5). Then
H∗(BG; Z/p)/(Ng) = Z/p.

Proof. The restriciton image to A is studied in [Ka-Ya]. Images are
generated as a ring by Chern classes and

QI(x1..xs) ∈ H∗(BA; Z/p) ∼= Z/p[y1, ..., ys] ⊗ Λ(x1, ..., xs)

where QI = Qi1 ...Qis for some I 6= ∅. (Note x1...xs 6∈ Im(i∗A).) Hence
i∗A(H+(BG; Z/p)) ∈ Ng(A). �

Here we give an example. The mod 3 cohomology of BF4 is com-
pletely determined by Toda.

Theorem 7.7. ([Toda]) The cohomology H∗(BF4; Z/3) is isomorphic
to

Z/3[x36, x48]⊗(Z/3[x4, x8]⊗{1, x20, x
2
20}+Z/3[x26]⊗Λ(x9)⊗{1, x20, x21, x25})

where the above two terms have the intersection {1, x20}.
Indeed, we see that x26|A = Q0Q1Q2(u3), x36|A = c3,1, x48|A =

c3,2, x4|A = Q0(u3), x8|A = Q1(u3), x20|A = Q2(u3), x9|A = Q0Q1(u3),
x21|A = Q0Q2(u3), x25|A = Q1Q2(u3). Here u3 = x1x2x3 and x36 and
x48 are represented by Chern classes.
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8. GLn(Fℓ) and PGLp

Of course, there is the isomorphism

H∗,∗′(BGLn; Z/p) ∼= H∗,∗′[c1, ..., cn]

where ci is the Chern class. Hence Inv∗(GLn; Z/p) ∼= Z/p (for k = C).
Let G be a finite group such that

(8.1) H∗(BG; Z/p) ∼= Z/p[ci1 , ..., cin] ⊗ Λ(ei1 , ..., ein)

where βjs(eis) = cis where βjs is the higher Bockstein operation, and
cis is a Chern class of some representation of G, e.g., G = GLn(Fℓ)
where ℓ is prime to p.

Theorem 8.1. Let G be a finite group given as (8.1) so that i1 ≥ 2.
Then H∗(BG; Z/p)/(Ng) ∼= Z/p.

Proof. First note that H∗(BG; Z/p)/(Ng) is a quotient Λ(ei1, ..., ein).
Since the motivic cohomology has the transfer map, we know that each
element x in H∗,∗′(BG; Z) has the exponent dividing |G|. Hence there
is e′s ∈ H∗,∗−1(BG; Z/p) such that

βs′(e
′
s) = τ is−2cis.

From Lemma 2.1, we know that τ : H∗,∗−1(X; Z/p) → H∗,∗(X; Z/p) is
injective. Hence τe′s 6= 0. This means βs′′(τe

′
s) = τ is−1cis for s′′ ≤ s′.

So s′′ = is and we can take τe′s = eis mod(Ideal(ei1 , ..., eis−1)). By
induction on s, we can prove all eis ∈ Ng. �

Let p be an odd prime and denote by PGLp the projective group
which is the quotient of the general linear group GLp by the center
Gm. Its ordinary mod(p) cohomology and the Chow ring are known
by Vistoli [Vi] and Kameko-Yagita [Ka-Ya].

To state the cohomology H∗(BPGLp; Z/p), we recall the Dickson
algebra. Let A ∼= (Z/p)n be an elementary abelian p-group of rank n,
and H∗(BA) ∼= Z/p[y1, ..., yn] ⊗ Λ(x1, ..., xn). The Dickson algebra is

Dn = Z/p[y1, ..., yn]
GLn(Fp) ∼= Z/p[cn,0, ..., cn,n−1]

with |cn,i| = 2(pn−pi). The invariant ring under SLn(Fp) is also given

SDn = Z/p[y1, ..., yn]
SLn(Fp) ∼= Dn{1, en, ..., ep−2

n } with ep−1
n = cn,0.

We also recall the Mui’s result by using Qi according to Kameko and
Mimura [Ka-Mi]

grH∗(BA)SLn(Fp) ∼= SDn/(en) ⊕ SDn ⊗Q(n− 1){un}
where un = x1...xn and en = Q0...Qn−1un. (Here note

SDn/(en) ∼= Dn/(cn,0) ∼= Z/p[cn,1, ..., cn,n−1].)



16 M.TEZUKA AND N.YAGITA

Theorem 8.2. ([Vi],[Ka-Ya]) There is the isomorphism

H∗(BPGLp; Z/p) ∼= M ⊕N

where M ∼= Z/p[x4, x6, · · · , x2p] as modules (but not rings) and

N ∼= SD2 ⊗Q(1){u2} ∼= Z/p[e2, c2,1] ⊗Q(1){u2}.
Theorem 8.3. ([Vi],[Ka-Ya]) There is the additive isomorphism

CH∗(BPGLp)/p ∼= M ⊕ SD2{Q0Q1u2}.
It is also proved that Ker(τ)|H∗,∗′(BPGLp; Z/p) = 0 in Theorem

10.4 in [Ya3].

Theorem 8.4.

Inv∗(PGLp; Z/p) ∼= H∗(G; Z/p)/(Ng) ∼= Z/2{1, u} |u| = 2.

This fact is also shown in [Ga-Me-Se].

9. Symmetric group Sn

Let Sn be the Symmetric group generated by permutations of n-
letters. The permutations induce the natural representation Sn → On.
Let us write by wi its Stiefel-Whitney class. Then it is proved for
example in [Ga-Me-Se] that for general k

Theorem 9.1. Inv∗(Sn; Z/2) ∼= H∗{1, w1, ..., w[n/2]}.
Let A be a subgroup of Sn generated by the transpositions (2i−1, 2j)

for 1 ≤ j ≤ [n/2] so that A ∼= ⊕[n/2]Z/2. Then Inv∗(Sn; Z/2) is
detected by the group A.

In this section, by using the cohomology H∗(BSn; Z/2), we will re-
explain above facts (for H∗(BSn; Z/2)) but when k = C and n = 2m.
(We assume k = C.)

V.Voevodsky showed (for the definition of the reduced power oper-
ation)

H∗,∗′(BSp; Z/p) ∼= H∗,∗′(BZ/p; Z/p)Sp ∼= Z/p[Y ] ⊗ Λ(X)

where Y = yp−1 andX = yp−2x inH∗,∗′(BZ/p; Z/p) ∼= Z/p[τ, y]⊗Λ(x).
Hence H∗(BSp; Z/p)/(Ng) = Z/p for p 6= 2 butH∗(BS2; Z/2)/(Ng) ∼=
Λ(x).

Now we restrict p = 2 and let n = 2m. Consider the natural embed-
ding

gm : Vm = ⊕mZ/2 → Z/2 ≀ ... ≀ Z/2 → S2m

where − ≀ − is the wreath product. Then it is known (Theorem 3.23
in [Ma-Mi]) that H∗(BS2m ; Z/2) is detected by S2m−1 ×S2m−1 and Vm.



GALOIS COHOMOLOGY 17

Let fm : Vm
gm→ Sn → On. The the total Whitney class is written as

w(fm) = 1 + w(m− 1) + w(m− 2) + ... + w(0)

where w(i) = w2m−2i(fm). Moreover Sq2i

(w(i+1)) = w(i). In fact the
image of g∗m is just the Dickson algebra

Im(g∗m) = Z/2[x1, ..., xm]GL2(F2) = Z/2[w(m− 1), ...., w(0)].

( Here w(i)2 corresponds to cm,i for odd prime cases stated in the
preceding section.)

By induction on m, we assume

H∗(BS2m−1 ; Z/2)/(Ng) ∼= Z/2{1, w1, ..., w2m−2}.
Then considering the restriction

H∗(BSn; Z/2)/(Ng) → H∗(BSn−1; Z/2)/(Ng)⊗H∗(BSn−1; Z/2)/(Ng),

we see

H∗(BSn; Z/2)/(Ng) ⊃ Z/2{1, w1, ..., w2m−2 , ..., w2m−1}.
Note by construction of maps gm, fm, we see g∗mw2m−1 = w(m − 1).
Hence

w(j)′ = Sq2j

...Sq2m−2

w2m−1 ∈ Ng(Sn)

with g∗m(w(j)′) = w(j). Thus we have

Proposition 9.2. H∗(BSn; Z/2)/(Ng) ∼= Z/2{1, w1, ..., w2m−1}.
In [Ga-Me-Se], it is also shown Inv∗(Sn; Z/p) = Z/p for odd prime

p. Let n = pm. The symmetric group Sn has a subgroup isomorphic
to

S(m) = Z/p ≀ Spm−1
∼= (Spm−1)p ⊲ Z/p

of the index prime to p. Hence H∗(BSn; Z/p) ⊂ H∗(BS(m); Z/p).
We consider the Hochshild-Serre spectral sequence

E∗,∗′

2 = H∗(Z/p;H∗((BSpm−1)p; Z/p)) =⇒ H∗(BS(m); Z/p).

Let us write by σ the generator of the cyclic group Z/p. Let T =
(1−σ) and N = (1+σ+...+σp−1). For a Z/p-moduleM , the homology
is written

H∗(Z/p;M) =











Ker(T ) = MZ/p ∗ = 0

Ker(T )/Im(N) ∗ = even > 0

Ker(N)/Im(T ) ∗ = odd.

Let {xi} be a Z/p basis of H∗(BSpm−1 ; Z/p). Then the basis of

S = H∗((BSpm−1)p; Z/p) ∼= Z/p{xi1 ⊗ xi2 ⊗ ....xip}.
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decomposes as I ∪ F with I = {xi ⊗ ...⊗ xi} and

F = {xi1 ⊗ ...⊗ xis |ik 6= iℓ for some k 6= ℓ}.

The generator σ acts on F freely but invariants on I. Then cohomology
is computed

H∗(Z/p; Z/p{I}) ∼= Z/p[y] ⊗ Λ(x) ⊗ Z/p{I} |x| = 1, |y| = 2

H∗(Z/p; Z/p{F}) ∼= Z/p{F}Z/p.

Since SZ/p = Z/p{F}Z/p ⊕ Z/p{I}, we have the isomorphism

E∗,∗′

2
∼= SZ/p ⊕ Z/p{I} ⊗ Z/p[y]{x, y}.

It is well known that SZ/p ⊂ H∗(BG; Z/p) by Nakaoka (also Totaro
[To])). Hence this spectral sequence collapses from the E2-term. Thus
we have the well known result ;

Theorem 9.3. (Nakaoka)

H∗(BS(m); Z/p) ∼= E∗,∗′

2
∼= SZ/p ⊕H∗(BSpm−1 ; Z/p)[p] ⊗ Z/p[y]{x, y}

where A[p] is the graded algebra whose degree is given by p-times of
degree of A.

By induction on m, we may assume H∗(BSpm−1 ; Z/p)/(Ng) = Z/p.
Hence Z/p{I}/(Ng) = Z/p. Therefore there is the surjection

Z/p{1, x} → H∗(BS; Z/p)/(Ng).

But H2(BSn; Z/p) = 0. Hence H+(BSn; Z/p)/(Ng) = 0.

Proposition 9.4. H∗(BSpm; Z/p)/(Ng) = Z/p.

We note here about the restriction image for gm : Vm = Z/p → Sn.
The restriction image is contained in the Dickson algebra as stated in
the preceding section

grH∗(BA)GLn(Fp) ∼= Dn/(cn,0) ⊕Dn ⊗Q(n− 1){ep−2
n un}

where un = x1...xn and en = Q0...Qn−1un. (Here note Dn/(cn,0) =
Z/p[cn,1, ..., cn,n−1].) We know Dn is in the image of g∗m. However it is
known that ep−2

n un 6∈ g∗m for n ≥ 3 (p.196 in [Ad-Mi]).
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10. extraspecial p-groups

We assume that p is an odd prime. The extraspecial p-group En =
p1+2n

+ is the group such that exponent is p, its center is C ∼= Z/p and
there is the extension

0 −−−→ C
i−−−→ En

π−−−→ V −−−→ 0

with V = ⊕2nZ/p. (For details of the cohomology of En see [Te-Ya].)
We can take generators a1, ..., a2n, c ∈ En such that π(a1), .., π(a2n)
(resp. c ) make a base of V (resp. C) such that

[a2i−1, a2i] = c and [a2i−1, aj ] = 1 if j 6= 2i.

We note that En is also the central product of the n-copies of E1

En ∼= E1 · · · E1 = E1 ×〈c〉 E1...×〈c〉 E1.

Take cohomologies

H∗(BC; Z/p) ∼= Z/p[u] ⊗ Λ(z), βz = u,

H∗(BV ; Z/p) ∼= Z/p[y1, ..., y2n] ⊗ Λ(x1, ...x2n), βxi = yi,

identifying the dual of ai (resp.c) with xi (resp. z). That means

H1(En; Z/p) ∼= Hom(En; Z/p) ∋ xi : aj 7→ δij .

The central extension is expressed by

f =

n
∑

i=1

x2i−1x2i ∈ H2(BV ; Z/p).

Hence π∗f = 0 in H2(BEn; Z/p). We consider the Hochshild-Serre
spectral sequence

E∗,∗′

2
∼= H∗(BV ; Z/p) ⊗H∗(BC; Z/p) =⇒ H∗(BEn; Z/p).

Hence the first nonzero differential is d2(z) = f and the next differential
is

d3(u) = d3(Q0(z)) = Q0(f) =
∑

y2i−1x2i − y2ix2i−1.

In particular

E0,∗
4

∼= Z/p[y1, ..., y2n] ⊗ Λ(x1, ...x2n)/(f,Q0(f)).

Lemma 10.1. We have the inclusion

Λ(x1, ..., x2n)/(f) ⊂ H∗(BEn; Z/p).
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Proof. We consider similar group E ′
n such that its center is C ∼= Z/p

and there is the extension

0 −−−→ C
i−−−→ E ′

n
π−−−→ V ′ −−−→ 0

but V ′ = ⊕2nZp such that there is the quotient map q : E ′
n → En. We

also consider the spectral sequence

E∗,∗′

2
∼= H∗(BV ′; Z/p) ⊗H∗(BC; Z/p) =⇒ H∗(BE ′

n; Z/p).

Here H∗(BV ′; Z/p) ∼= Λ(x1, ...x2n). The first nonzero differential is
d2(z) = f but the second differential is

d3(u) =
∑

y2i−1x2i − y2ix2i−1 = 0.

Hence we have

H∗(BE ′
n; Z/p)

∼= Z/p[u] ⊗ Λ(x1, ..., x2n)/(f).

From the map q∗ : H∗(BEn; Z/p) → H∗(BE ′
n; Z/p), we get the result.

�

However H∗(BEn; Z/p)/(Ng) 6∼= Λ(x1, ..., x2n)/(f), infact, when n =
1, from Theorem 3.3 in [Ya3] we see

Proposition 10.2.

H∗(Bp1+2
+ ; Z/p)/(Ng) ∼= Z/p{1, x1, x2, a

′
1, a

′
2} deg(a′i) = 2.

When p = 2, the situation becomes well. The extraspecial 2-group
D(n) = 21+2n

+ in the n-th central extension of the dihedral group D8

of order 8. It has the central extension

0 → Z/2 → D(n) → V → 0

with V = ⊕2nZ/2. Hence H∗(BV ; Z/2) ∼= Z/2[x1, ..., x2n]. Then using
the Hochschild-Serre spectral sequence, Quillen proved [Qu]

H∗(BD(n); Z/2) ∼= Z/2[x1, ..., x2n]/(f,Q0(f), ..., Qn−2(f))⊗Z[w2n(∆)].

(In fact when n is the real case (i.e., n = −1, 0, 1 mod(8)), the co-
homology H∗(BSpinn; Z/2) injects into H∗(BD(n); Z/2).) Here wi
(resp. w2n(∆)) is the Stiefel-Whitney class of usual representation
from the above extension (resp. 2n-dimensional representation which
restrict nonzero on the center). Moreover Quillen proves following two
theorems (Theorem 5.10-11 in [Qu])

Theorem 10.3. ([Qu]) H∗(BD(n); Z/2) is detected by the product of
cohomoloogy of maximal elementary abeian groups.

Theorem 10.4. ([Qu]) The nonzero Stiefel-Whitney wi(∆) are those
of degrees 2n and 2n − 2i for 0 ≤ i < n.
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In fact wi(∆) generates the Dickson algebra in the cohomology of
the maximal elementary abelian 2-group as stated in the preceding
section.

Proposition 10.5. When n > 2, there is the surjection

Λ(x1, ..., x2n)/(f) → H∗(BD(n); Z/2)/(Ng).

Proof. By the same arguments with p = odd, we see

Λ = Λ(x1, ..., x2n)/(f) ⊂ H∗(BD(n); Z/2).

The fact w2(∆) = 0 follows from the above second Quillen’s theorem.
Hence we have w2n(∆) ∈ Ng from Becher’s theorem (Theorem 6.2).
Thus we get the theorem. �

Let 0 6= x ∈ Λ. Then by the Quillen’s theorem, i∗A(x) 6= 0 for

i∗A : H∗(BD(n); Z/2) → H∗(BA; Z/2)

with A ∼= Z/2 ⊕ ... ⊕ Z/2. Let H∗(BA; Z/2)/(Ng) ∼= Λ(x′1, ..., x
′
m).

Then i∗A(xi) ∈ Z/2{x′1, ..., x′m} and hence the map is restricted

i∗A : Λ(x1, ..., x2n)/(f) → Λ(x′1, ..., x
′
m).

However this map is not need injective. In fact there is a possibility of
i∗A(x) ∈ Ng(A), e.g., i∗A(x1x2) = (x′1)

2 ∈ Ng(A).

11. unramified theory

In this section, we assume that k is an algebraic closed field of
ch(k) = 0.

Let K be a function field of k, that is finitely generated as a field
over k. Here we recall the definition of unramifed cohomology of
H∗(K; Z/p) according to Saltman, Peyre and Colliot-Thelene. We
denote by P (K/k) the set of discrete valuation rings A of rank one
such that k ⊂ A ⊂ K and that the fraction field Fr(A) of A is K. If
A belongs to P (K/k), then for the residue field κA, we can define the
residue map ∂A : H∗(K; Z/p) → H∗−1(κA; Z/p) as follows.

Let K̂A be the completion, K̂nr
A the maximal unramified extension

of KA and K̄A is an algebraic closure of KA. Put IA = Gal(K̄A/K̂
nr
A )

and GA = Gal(K̄A/K̂A).

K̄A

IA−− K̂A

GA/IA−− K̂A −− K.

Then ∂A is defined as the composition of maps

∂ : H∗(K; Z/p) → H∗(K̂A; Z/p)

proj.→ H∗−1(GA/IA) ⊗H1(IA; Z/p) ∼= H∗−1(κA; Z/p).
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Here we used that K̂A
∼= IA ⊕ (GA/IA) ( [Sa]) and IA ∼= Ẑ. Moreover

H∗(Ẑ; Z/p) ∼= Z/p if ∗ = 0, 1 and ∼= 0 otherwise.
Then we can define the unramified cohomology

H∗
nr(K; Z/p) = ∩A∈P (K/k)Ker(H

∗(K; Z/p)
∂A→ H∗−1(κA; Z/p)).

Namely, when X is complete, the residue map is the same as the
differential d1 of the coniveau spectral sequence given in §2, and hence
the unramified cohomology is just the E2-term H0

Zar(X;Hm
Z/p) of the

coniveau spectral sequence.

Corollary 11.1. When X is complete, there is the isomorphism

H∗
nr(k(X); Z/p) ∼= H∗,∗(X; Z/p)/(τ) ⊕Ker(τ)|H∗+1,∗−1(X; Z/p).

Now we consider the case X = BG ; non complete cases. Let W//G
be the scheme which has the coordinate ring k[W ]G. Then it is known
that W//G contains Un/G as an open set. Here Un is the open set
given in §3, where G acts freely. Hence we have for ∗ < n

H0
Zar(W//G;H∗

Z/p) ⊂ H0
Zar(Un/G;H∗

Z/p).

Since G is reductive, it is also known that the fraction field of k[W ]G

is k(W )G, that is k(W//G) = k(W )G. Thus we get

Lemma 11.2. For ∗ < n, we have

H∗
nr(K(W )G; Z/p) = H0

Zar(W//G;H∗
Z/p)

⊂ H0(Un/G;H∗
Z/p) = H0(BG;H∗

Z/p)).

According to Peyre [Pe], we define a subringH∗
nr(G; Z/p) ofH∗

et(BG; Z/p)
as follows. Let P (G) be the set of elements g ∈ G such that I = 〈g〉 ∼=
Z/ps for some s ≥ 1 but g 6= hp for any h ∈ G. Then the centralizer is
written as

ZG(I) ∼= I ⊕H with H = ZG(I)/I.

Let us write by ∂g the composition map

∂g : H∗(BG; Z/p) → H∗(BZG(I); Z/p)

∼= H∗−∗′(BH ; Z/p) ⊗H∗′(BI; Z/p)
proj.→ H∗−1(BH ; Z/p)

using H1(BI; Z/p) ∼= Z/p. Then define the unramified cohomology by

H∗
nr(G; Z/p) =

⋂

g∈P (G)

Ker(H∗(BG; Z/p)
∂g→ H∗−1(BH ; Z/p)).

Remark. The restriction map H1(B〈g〉; Z/p) → H1(B〈gp〉; Z/p) is
always zero. Hence we need not consider the case I = 〈gp〉.
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Theorem 11.3. (Peyre [Pe]) Let W be a faithful representaion of G.
Let q is the quotient map q : Gal( ¯k(W )/k(W )G) → Gal(k(W )/k(W )G) =
G. Then

q∗(H∗
nr(G; Z/p)) ⊂ H∗

nr(k(W )G; Z/p).

Proof. Arguments of pages 203 to 206 in the proof of Proposition 3 in
[Pe] work exchanging H3(−; Q/Z(−)) to H∗(−; Z/p). Indeed we have
the commutative diagram ((12) in [Pe])

H∗(G; Z/p)
∂D,g−−−→ H∗−1(D; Z/p)





y





y

H∗(k(W )G; Z/p)
∂A−−−→ H∗−1(κA; Z/p)

where D is the decomposition subgroup of G. If x ∈ H∗
nr(G; Z/p), then

∂D,g(x) = 0 and hence ∂A(ρ∗(x)) = 0. �

It is well known (Theorem 4.1.5 in [Co-Te]) that if K is purely tran-
scendental over k (i.e., K ∼= k(x1, ..., xn) for indeterminate xi), then

H∗(k; Z/p) ∼= H∗
nr(K; Z/p) for ∗ > 0.

When k is algebraic closed field, it is immediate H+(k; Z/p) = 0.

Corollary 11.4. Suppose that

0 6= x ∈ H∗(BG; Z/p)/(Ng) and x ∈ H∗
nr(G; Z/p).

Then q∗(x) 6= 0 in H∗
nr(k(W )G; Z/p). Hence k(W )G/k is not purely

trascendental.

Proof. From the preceding theorem, we have

q∗(x) ∈ H∗
nr(k(W )G; Z/p) ⊂ H∗(k(W )G; Z/p).

It is nonzero since

H∗(BG; Z/p)/(Ng) ⊂ H0
Zar(BG;H∗

Z/p) ⊂ H∗(k(W )G; Z/p).

�

Corollary 11.5. Let G be a p−group of exponent p. If H2(BG; Z/p)/(Ng)
is not detected by Z/p×Z/p, then k(W )G is not purely transcendental.

Proof. Suppose that x 6∈ H2
un(G; Z/p). Then we can take x =

∑

x1x2

such that x1|H1(BI; Z/p) 6= 0 with I ∼= Z/p and for H = ZG(I)/I,
x2|H1(BH ; Z/p) 6= 0. Here

H1(BH ; Z/p)/(Ng) = H1(BH ; Z/p) ∼= Hom(H,Z/p).

Hence x2 defines subgroup J ∼= Z/p of H such that x2|H1(BJ ; Z/p) 6=
0 (since H is exponent p). Thus the element x is detected by the
subgroup I ⊕ J ∼= Z/p⊕ Z/p. �
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12. Saltman’s example

Let G be the group defined by

0 → 〈c3, c4〉 → G→ E2 = p1+4
+ → 0

with [a1, a3] = c3, and [a1, a4] = c4.

Saltman and Bogomolov showed that H2
nr(k(W )G; Q/Z) 6= 0 for this

group. We will see the Z/p-coefficient case.

Lemma 12.1. The 3-dimensional cohomology H3(BG; Z/p) contains
the Z/p-module

A = Z/p{yixj |1 ≤ i, j ≤ 4}/(Q0(f), Q0(x1x3), Q0(x1x4)).

Proof. Consider the central extension

0 → 〈c, c3, c4〉 → G→ V = ⊕4Z/p→ 0

and induced spectral sequence

E∗,∗′

2
∼= Z/p[y1, ..., y4, u, u3, u4] ⊗ Λ(x1, ..., x4, z, z3, z4)

converging to H∗(BG; Z/p). The first differential is

d2(z) = f, d2(z3) = x1x3, d2(z4) = x1x4.

The second nonzero differential is

d3(u) = Q0(f), d3(u3) = Q0(x1x3), d3(u4) = Q0(x1x4).

Thus we see
A ∼= E3,0

4
∼= E3,0

∞ ⊂ H3(BG; Z/p).

�

Theorem 12.2. ( Saltman [Sa]) We have

0 6= x1x2 ∈ H2
nr(G; Z/p) ∩H2,2(BG; Z/p)/(τ).

Hence k(W )G is not purely transcendental.

Proof. From the preceding lemma, we seeQ0(x1x2) 6= 0 inH3(BG; Z/p).
Hence we see x1x2 6∈ Ng(G) from Lemma 3.4.

Next we will show x1x2 ∈ Hnr(G; Z/p). Suppose this is not the
case. By the definition, this means that there is an element g and
h ∈ ZG(〈g〉) such that

xi|〈g〉 6= 0, xj |〈h〉 6= 0 for {i, j} = {1, 2}.
Let us write

aΛ = aλ1
1 ...a

λ4
4 for Λ = (λ1, ..., λ4),

aM = aµ1 ...a
µ4

4 for M = (µ1, ..., µ4).
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Note that xi|〈aΛ〉 = λi. The commutator is given by the definition

[aΛ, aM ] = cdcd33 c
d4
4 where d = λ1µ2 − λ2µ1 + λ3µ4 − λ4µ3,

d3 = λ1µ3 − λ1µ3, d4 = λ1µ4 − λ4µ1.

Take g = aΛ. Exchanging x1 7→ x1 + λx2 or x1 7→ x2 (if necessary),
we can take

λ1 = 1, λ2 = 0 Λ = (1, 0, λ3, λ4).

(Hence x1〈g〉 = 1 and x2|〈g〉 = 0.) Then we can take h = aM so that
x2|〈h〉 = 1 and h 6∈ 〈g〉, that means

µ1 = 0, µ2 = 1 M = (0, 1, µ3, µ4).

From d3 = 0 and d4 = 0, we see

µ3 = λ3µ1 = 0 and µ4 = λ4µ1 = 0

(and hence M = (0, 1, 0, 0)). Therefore d = 1× 1− 0+0− 0 = 1. This
is a contradiction. Hence we have proved x1x2 ∈ Hnr(G; Z/p). �

13. non detected examples

We consider groupG′
m and element ξm ∈ H∗(BG′

m; Z/p)/(Ng) which
is not detected by elementary abelina p-groups, while it is not in
Hnr(G

′
m; Z/p).

Let G′ be the group defined by

0 → 〈c3, c4〉 → G′ → E2 = p1+4
+ → 0

with [a1, a3] = c3, and [a2, a4] = c4.

Difference of the definitions of G and G′ is just [a2, a4] = c4. However
note G′ has the rank 2 elementary abeilan p-subgroup

〈a1a
−1
3 , a2a

−1
4 〉 ∼= Z/p⊕ Z/p

while G does not.
Let G′

m be the central product of m− 1-th copies of G′ and one G

G′
m = G ·G′ · ... ·G′ = G×〈c〉 G

′ ×〈c〉 ...×〈c〉 G
′

which is generated by a1, ..., a4m, c, c3, c4, c7, ..., c4m−1, c4m. The comu-
tators are given for 1 ≤ i ≤ m

[a4i−3, a4i−2] = [a4i−1, a4i] = c,

[a4i−3, a4i−1] = c4i−1, and [a4i−2, a4i] = c4i for i 6= 1,

but [a1, a4] = c4.

Let us write aΛ = aλ1
1 ...a

λ4m

4m and Λ = (λ1, ..., λ4m). Note also
xi|〈aΛ〉 = λi. The commutator is given by the definition

[aΛ, aM ] = cdcd33 c
d4
4 ....c

d4m

4m



26 M.TEZUKA AND N.YAGITA

where d =
∑

i

λ4i−3µ4i−2 − λ4i−2µ4i−3 + λ4i−1µ4i − λ4iµ4i−1,

d4i−1 = λ4i−3µ4i−1 − λ4i−1µ4i−3, d4i = λ4i−2µ4i − λ4iµ4i−2 (i 6= 1),

and d4 = λ1µ4 − λ4µ1.

Lemma 13.1. Let ξm = x1x2x5x6....x4m−3x4m−2 ∈ H∗(BG′
m; Z/p).

Then ξm ∈ H∗(BG′
n; Z/p)/(Ng) is not detected by elementary abelian

p− groups.

Proof. Suppose that ξm is detected by

〈g1, g2, ..., g2m〉 ∼= Z/p⊕ ...⊕ Z/p

such that ξm|〈g1, ..., g2m〉 6= 0, and xi|〈gi〉 6= 0 for some i. Take gener-
ators adequately, let gi = aΛi such that

Λ1 = (1, 0, ∗, ∗|0, 0, ∗, ∗|....|0, 0, ∗, ∗),
Λ2 = (0, 1, ∗, ∗|0, 0, ∗, ∗|....|0, 0, ∗, ∗),
Λ5 = (0, 0, ∗, ∗|1, 0, ∗, ∗|....|0, 0, ∗, ∗),
Λ6 = (0, 0, ∗, ∗|0, 1, ∗, ∗|....|0, 0, ∗, ∗),

.......

Λ4m−3 = (0, 0, ∗, ∗|0, 0, ∗, ∗|....|1, 0, ∗, ∗),
Λ4m−2 = (0, 0, ∗, ∗|0, 0, ∗, ∗|....|0, 1, ∗, ∗).

Let i > 1. Consider the commutativity of L = Λ4i−3 and M = Λ1.
Since d4i−1 = λ4i−3µ4i−1 − λ4i−1µ4i−3 = 0, we see

µ4i−1 = 0 from µ4i−3 = 0 and λ4i−3 = 1.

Similarly we have µ4i = 0 from the commutativity of Λ4i−2 and Λ1.
Thus we see

Λ1 = (1, 0, ∗, ∗|0, 0, 0, 0|....|0, 0, 0, 0).

We also have Λ2 = (0, 1, ∗, ∗|0, 0, 0, 0|....|0, 0, 0, 0). Let Λ = Λ1 and
M = Λ2. By the commutativity and facts d3 = d4 = 0, we see µ3 =
µ4 = 0, that is,

Λ2 = (0, 1, 0, 0|0, 0, 0, 0|....|0, 0, 0, 0).

However this is a contradiction, indeed,

d =
∑

i

λ4i−3µ4i−2 − λ4i−2µ4i−3 + λ4i−1µ4i − λ4iµ4i−1 = 1 6= 0.

�

Lemma 13.2. Q0...Q2m−2(ξm) 6= 0 in H∗(BGm; Z/p).
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Proof. We recall that G′
m is the central product of G and copies of G′,

that means

0 → ⊕mZ/p→ G×G′ × ...×G′ pr.→ G′
m → 0.

The map induces the map of cohomologies

pr.∗ : H∗(BG′
m; Z/p) → H∗(BG; Z/p) ⊗H∗(BG′; Z/p)⊗n.

The operation Qi is derivative, we have

Q0...Q2m−2(ξm) =

Q0(x1x2)Q1Q2(x5x6)...Q2m−3Q2m−2(x4m−3x4m−2) + .....

Here from Lemma 12.1,

Q1(x1x2) = y1x2 − y2x1 6= 0 in H∗(BG; Z/p).

For i > 1, we see

Q2i−3Q2i−2(x4i−3x4i−2) = yp
2i−2

4i−3 y
p2i−3

4i−2 − yp
2i−3

4i−3 y
p2i−2

4i−2 .

This is nonzero in H∗(BG′; Z/p) because it is nonzero in the restriction
image

H∗(BG′; Z/p) → H∗(B〈a1a
−1
3 , a2a

−1
4 〉; Z/p) ∼= Z/p[y′1, y

′
2] ⊗ Λ(x′1, x

′
2)

where y4i−3, y4i−1 7→ y′1 and y4i−2,−y4i 7→ y′2. �

Corollary 13.3. Elements in H2m(BG′
m; Z/p)/(Ng) is not detected

by abelian subgroups, namely, the restriction map

Res : H2m(BG′
m; Z/p)/(Ng) → ΠA;abelianH

2m(BA; Z/p)/(Ng)

is not injective.
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