QUADRATIC FORMS OF DIMENSION 8 WITH TRIVIAL DISCRIMINANT AND CLIFFORD ALGEBRA OF INDEX 4.

ALEXANDRE MASQUELEIN, ANNE QUÉGUINER-MATHIEU, AND JEAN-PIERRE TIGNOL

ABSTRACT. Izhboldin and Karpenko proved in [IK00, Thm 16.10] that any quadratic form of dimension 8 with trivial discriminant and Clifford algebra of index 4 is isometric to the transfer, with respect to some quadratic étale extension, of a quadratic form similar to a two-fold Pfister form. We give a new proof of this result, based on a theorem of decomposability for degree 8 and index 4 algebras with orthogonal involution.

Let WF denote the Witt ring of a field F of characteristic different from 2. As explained in [Lam05, X.5 and XII.2], one would like to describe those quadratic forms whose Witt class belongs to the *n*th power I^nF of the fundamental ideal IF of WF. By the Arason-Pfister Hauptsatz, such a form is hyperbolic if it has dimension $< 2^n$ and similar to a Pfister form if it has dimension 2^n . More generally, Vishik's Gap Theorem gives the possible dimensions of anisotropic forms in I^nF .

In addition, one may describe explicitly, for some small values of n, low dimensional anisotropic quadratic forms in $I^n F$. This is the case, in particular, for n = 2, that is for even-dimensional quadratic forms with trivial discriminant. In dimension 6, it is well known that such a form is similar to an Albert form, and uniquely determined up to similarity by its Clifford invariant. In dimension 8, if the index of the Clifford algebra is ≤ 4 , Izhboldin and Karpenko proved in [IK00, Thm 16.10] that it is isometric to the transfer, with respect to some quadratic étale extension, of a quadratic form similar to a two-fold Pfister form.

The purpose of this paper is to give a new proof of Izhboldin and Karpenko's result. Our proof is in the framework of algebras with involution, and does not use Rost's description of 14-dimensional forms in I^3F (see [IK00, Rmk 16.11.2]). More precisely, we use triality [KMRT98, (42.3)] to translate the question into a question on algebras of degree 8 and index 4 with orthogonal involution. Our main tool then is a decomposability theorem (Thm. 1.1), proven in § 3. We also use a refinement of a statement of Arason [Ara75, 4.18] describing the even part of the Clifford algebra of a transfer (see Prop. 2.1 below).

1. NOTATIONS AND STATEMENT OF THE THEOREM

Throughout the paper, we work over a base field F of characteristic different from 2. We refer the reader to [KMRT98] and [Lam05] for background information on algebras with involution and on quadratic forms. However, we depart from the notation in [Lam05] by using $\langle \langle a_1, \ldots, a_n \rangle \rangle$ to denote the *n*-fold Pfister form $\otimes_{i=1}^n \langle 1, -a_i \rangle$. For any quadratic space (V, ϕ) over F, we let Ad_{ϕ} be the algebra

Date: February 6, 2009.

The third author is supported in part by the F.R.S.–FNRS (Belgium).

with involution $(\operatorname{End}_F(V), \operatorname{ad}_{\phi})$, where ad_{ϕ} is the adjoint involution with respect to ϕ , denoted by σ_{ϕ} in [KMRT98].

For any field extension L/F, we denote by $GP_n(L)$ the set of quadratic forms that are similar to *n*-fold Pfister forms. This notation extends to the quadratic étale extension $F \times F$ by $GP_n(F \times F) = GP_n(F) \times GP_n(F)$. For any quadratic form ψ over L, let $\mathcal{C}(\psi)$ be its full Clifford algebra, with even part $\mathcal{C}_0(\psi)$. Both $\mathcal{C}(\psi)$ and $\mathcal{C}_0(\psi)$ are endowed with a canonical involution, which is the identity on the underlying vector space, denoted by γ (see [KMRT98, p.89]). If ψ has even dimension and trivial discriminant, then its even Clifford algebra splits as a direct product $\mathcal{C}_+(\psi) \times \mathcal{C}_-(\psi)$, for some isomorphic central simple algebras $\mathcal{C}_+(\psi)$ and $\mathcal{C}_-(\psi)$ over F (see [Lam05, V, Thm 2.5]). Those algebras are Brauer-equivalent to the full Clifford algebra of ψ and their Brauer class is the Clifford invariant of ψ . Assume moreover that dim(ψ) \equiv 0 mod 4. As explained in [KMRT98, (8.4)], the involution γ then induces an involution on each factor of $\mathcal{C}_0(\psi)$, and one may easily check that the isomorphism between the two factors described in the proof of [Lam05, V, Thm 2.5] preserves the involution, so that we actually get a decomposition ($\mathcal{C}_0(\psi), \gamma$) \simeq ($\mathcal{C}_+(\psi), \gamma_+$) \times ($\mathcal{C}_-(\psi), \gamma_-$), with ($\mathcal{C}_+(\psi), \gamma_+$) \simeq ($\mathcal{C}_-(\psi), \gamma_-$).

Let L/F be a quadratic field extension. For any quadratic form ψ over L, we let $\operatorname{tr}_{\star}(\psi)$ be the transfer of ψ , associated to the trace map $\operatorname{tr} : L \to F$, as defined in [Lam05, VII.1.2]. This definition extends to the split étale case $L = F \times F$ and leads to $\operatorname{tr}_{\star}(\psi, \psi') = \psi + \psi'$. On the other hand, for any algebra A over L, we let $N_{L/F}(A)$ be its norm, as defined in [KMRT98, §3.B]. Recall that the Brauer class of $N_{L/F}(A)$ is the corestriction of the Brauer class of A. Moreover, if A is endowed with an involution of the first kind σ , then the tensor product $\sigma \otimes \sigma$ restricts to an involution $N_{L/F}(\sigma)$ on $N_{L/F}(A)$. We use the following notation: $N_{L/F}(A, \sigma) = (N_{L/F}(A), N_{L/F}(\sigma))$. In the split étale case, we get $N_{F \times F/F}((A, \sigma), (A', \sigma')) = (A, \sigma) \otimes (A', \sigma')$ (see [KMRT98, §15.B]).

Let (A, σ) be a degree 8 algebra with orthogonal involution. We assume that (A, σ) is *totally decomposable*, that is, isomorphic to a tensor product of three quaternion algebras with involution,

$$(A,\sigma) = \otimes_{i=1}^3 (Q_i,\sigma_i).$$

If A is split (resp. has index 2), then (A, σ) admits a decomposition as above in which each quaternion algebra (resp. each but one) is split (see [Bec08]). Our main result is the following theorem:

Theorem 1.1. Let (A, σ) be a degree 8 totally decomposable algebra with orthogonal involution. If the index of A is ≤ 4 , then there exists $\lambda \in F^{\times}$ and a biquaternion algebra with orthogonal involution (D, θ) such that

$$(A, \sigma) \simeq (D, \theta) \otimes \operatorname{Ad}_{\langle\langle \lambda \rangle\rangle}.$$

The theorem readily follows from Becher's results mentioned above if A has index 1 or 2; it is proven in § 3 for algebras of index 4. For algebras of index ≤ 2 , we may even assume that (D, θ) decomposes as a tensor product of two quaternion algebras with involution; this is not the case anymore if A has index 4, as was shown by Sivatski [Siv05, Prop. 5].

Using triality, we easily deduce the following from Theorem 1.1:

Theorem 1.2 (Izhboldin-Karpenko). Let ϕ be an 8-dimensional quadratic form over F. The following are equivalent:

(i) ϕ has trivial discriminant and Clifford invariant of index ≤ 4 ; (ii) there exists a quadratic étale extension L/F and a form $\psi \in GP_2(L)$ such that $\phi = \operatorname{tr}_*(\psi)$.

If $\phi = \operatorname{tr}_{\star}(\psi)$ for some $\psi \in GP_2(L)$, it follows from some direct computation made in [IK00, §16] that ϕ has trivial discriminant and Clifford invariant of index ≤ 4 .

Assume conversely that ϕ has trivial discriminant. By the Arason-Pfister Hauptsatz, ϕ is in $GP_3(F)$ if and only if it has trivial Clifford invariant. More generally, it is well-known that ϕ decomposes as $\phi = \langle \langle a \rangle \rangle q$ for some $a \in F^{\times}$ and some 4dimensional quadratic form q over F if and only if its Clifford invariant has index ≤ 2 (see for instance [Kne77, Ex 9.12]). Hence, in both cases, ϕ decomposes as a sum $\phi = \pi_1 + \pi_2$ of two forms $\pi_1, \pi_2 \in GP_2(F)$. This proves that condition (ii) holds with $L = F \times F$.

In section 4 below, we finish this proof by treating the index 4 case. This part of the proof differs from the argument given in [IK00]. In particular, we do not use Rost's description of 14-dimensional forms in I^3F .

2. Clifford Algebra of the transfer of a quadratic form

Let L/F be a quadratic field extension. By Arason [Ara75, 4.18], for any quadratic form $\psi \in GP_2(L)$, the Clifford invariant of the transfer $\operatorname{tr}_{\star}(\psi)$ coincides with the corestriction of the Clifford invariant of ψ . In this section, we extend this result, taking into account the algebras with involution rather than just the Brauer classes. More precisely, we prove:

Proposition 2.1. Let $L = F[X]/(X^2 - d)$ be a quadratic étale extension of F. Consider a quadratic form ψ over L with $\dim(\psi) \equiv 0 \mod 4$ and $d_{\pm}(\psi) = 1$, so that its even Clifford algebra decomposes as

 $(\mathcal{C}_0(\psi),\gamma) \simeq (\mathcal{C}_+(\psi),\gamma_+) \times (\mathcal{C}_-(\psi),\gamma_-), \text{ with } (\mathcal{C}_+(\psi),\gamma_+) \simeq (\mathcal{C}_-(\psi),\gamma_-).$

For any $\lambda \in L^{\times}$ represented by ψ , the two components of the even Clifford algebra of the transfer of ψ are both isomorphic to

$$(\mathcal{C}_+(\operatorname{tr}_{\star}(\psi)),\gamma_+) \simeq \operatorname{Ad}_{\langle\langle -dN_{L/F}(\lambda)\rangle\rangle} \otimes N_{L/F}(\mathcal{C}_+(\psi),\gamma_+).$$

Proof. In the split étale case $L = F \times F$, the quadratic form ψ is a couple (ϕ, ϕ') of two quadratic forms over F with

$$\dim(\phi) = \dim(\phi') \equiv 0 \mod 4$$
 and $d_{\pm}(\phi) = d_{\pm}(\phi') = 1 \in F^*/F^{*2}$.

Pick λ and λ' in F respectively represented by ϕ and ϕ' ; the norm $N_{F \times F/F}(\lambda, \lambda')$ is $\lambda \lambda'$. So the following lemma proves the proposition in that case:

Lemma 2.2. Let ϕ and ϕ' be two quadratic forms over F of the same dimension $n \equiv 0 \mod 4$ and trivial discriminant. For any λ and $\lambda' \in F^{\times}$, respectively represented by ϕ and ϕ' , the components of the even Clifford algebra of the orthogonal sum $\phi + \phi'$ are isomorphic to

$$(\mathcal{C}_+(\phi+\phi'),\gamma_+)\simeq \mathrm{Ad}_{\langle\!\langle -\lambda\lambda'\rangle\!\rangle}\otimes(\mathcal{C}_+(\phi),\gamma_+)\otimes(\mathcal{C}_+(\phi'),\gamma_+).$$

Proof of Lemma 2.2. Denote by V and V' the underlying quadratic spaces. The natural embeddings $V \hookrightarrow V \oplus V'$ and $V' \hookrightarrow V \oplus V'$ induce F-algebra homomorphisms

$$\mathcal{C}(\phi) \to \mathcal{C}(\phi + \phi') \text{ and } \mathcal{C}(\phi') \to \mathcal{C}(\phi + \phi').$$

One may easily check that the images of the even parts centralize each other, so that we get an F-algebra homomorphism

$$(\mathcal{C}_0(\phi),\gamma)\otimes(\mathcal{C}_0(\phi'),\gamma)\to(\mathcal{C}_0(\phi+\phi'),\gamma).$$

Pick orthogonal bases (e_1, \ldots, e_n) of (V, ϕ) and (e'_1, \ldots, e'_n) of (V', ϕ') . The basis of $\mathcal{C}_0(\phi + \phi')$ consisting of products of an even number of vectors of the set $\{e_1, \ldots, e_n, e'_1, \ldots, e'_n\}$ as described in [Lam05, V, cor 1.9] clearly contains the image of a basis of $\mathcal{C}_0(\phi) \otimes \mathcal{C}_0(\phi')$, so that the homomorphism above is injective. In the sequel, we will identify $\mathcal{C}_0(\phi)$ and $\mathcal{C}_0(\phi')$ with their images in $\mathcal{C}_0(\phi + \phi')$.

Consider the element $z = e_1 \dots e_n \in C_0(\phi)$. As explained in [Lam05, V, Thm2.2], for any $v \in V$, one has $vz = -zv \in C(\phi)$ and z generates the center of $C_0(\phi)$. Since ϕ has dimension 0 mod 4 and trivial discriminant, this element z is γ -symmetric, and multiplying e_1 by a scalar if necessary, we may assume $z^2 = 1$. The two components of $C_0(\phi)$ are $C_+(\phi) = C_0(\phi)\frac{1+z}{2}$ and $C_-(\phi) = C_0(\phi)\frac{1-z}{2}$. Consider similarly $z' = e'_1 \dots e'_n$, with $\gamma(z') = z'$ and assume $z'^2 = 1$. The product zz' also has square 1 and generates the center of $C_0(\phi + \phi')$. We denote by ε the idempotent $\varepsilon = \frac{1+zz'}{2}$, so that $C_+(\phi + \phi') = C_0(\phi + \phi')\varepsilon$ and $C_-(\phi + \phi') = C_0(\phi + \phi')(1 - \varepsilon)$.

 $\varepsilon = \frac{1+zz'}{2}, \text{ so that } \mathcal{C}_+(\phi + \phi') = \mathcal{C}_0(\phi + \phi')\varepsilon \text{ and } \mathcal{C}_-(\phi + \phi') = \mathcal{C}_0(\phi + \phi')(1 - \varepsilon).$ Let us now fix two vectors $v \in V$ and $v' \in V'$ such that $\phi(v) = \lambda$ and $\phi'(v') = \lambda'$. Since $\frac{1+z}{2}v^{-1} = v^{-1}\frac{1-z}{2}$, we have $vxv^{-1} \in \mathcal{C}_-(\phi)$ for any $x \in \mathcal{C}_+(\phi)$. Using this identification between the two components, we may diagonally embed $\mathcal{C}_+(\phi)$ in $\mathcal{C}_0(\phi)$ by considering $x \in \mathcal{C}_+(\phi) \mapsto x + vxv^{-1} \in \mathcal{C}_0(\phi)$. Similarly, we may embed $\mathcal{C}_+(\phi')$ in $\mathcal{C}_0(\phi')$ by $x' \in \mathcal{C}_+(\phi') \mapsto x' + v'x'v'^{-1} \in \mathcal{C}_0(\phi')$. Combining those two maps with the morphism

$$\mathcal{C}_0(\phi) \otimes \mathcal{C}_0(\phi') \to \mathcal{C}_0(\phi + \phi'),$$

and the projection

$$y \in \mathcal{C}_0(\phi + \phi') \mapsto y\varepsilon \in \mathcal{C}_+(\phi + \phi'),$$

we get an algebra homomorphism

$$\begin{array}{rcl} \mathcal{C}_{+}(\phi) \otimes \mathcal{C}_{+}(\phi') & \to & \mathcal{C}_{+}(\phi + \phi'), \\ x \otimes x' & \mapsto & (x + vxv^{-1})(x' + v'x'v'^{-1})\varepsilon. \end{array}$$

One may easily check on generators that this map is not trivial; hence it is injective. To conclude the proof, it only remains to identify the centralizer of the image, which by dimension count has degree 2. It clearly contains $\frac{z+z'}{2}\varepsilon$ and $vv'\varepsilon$. Moreover, these two elements anticommute, have square ε and $-\lambda\lambda'\varepsilon$, and are respectively symmetric and skew-symmetric under γ . Hence they generate a split quaternion algebra, with orthogonal involution of discriminant $-\lambda\lambda'$, which is isomorphic to $\operatorname{Ad}_{\langle\langle-\lambda\lambda'\rangle\rangle}$.

This concludes the proof in the split étale case. Until the end of this section, we assume L is a quadratic field extension of F, with non-trivial F-automorphism denoted by ι . To prove the proposition in this case, we will use the following description of the transfer of a quadratic form and its Clifford algebra.

Let ψ be any quadratic form over L, defined on the vector space V. We consider its conjugate ${}^{\iota}V = \{{}^{\iota}v, v \in V\}$ with the following operations ${}^{\iota}v_1 + {}^{\iota}v_2 = {}^{\iota}(v_1 + v_2)$ and $\lambda \cdot {}^{\iota}v = {}^{\iota}(\iota(\lambda) \cdot v)$, for any v_1, v_2 and v in V and $\lambda \in L$. Clearly, ${}^{\iota}\psi({}^{\iota}v) = \iota(\psi(v))$ is a quadratic form on ${}^{\iota}V$. One may easily check from the definition given in [Lam05, VII §1] that the quadratic form $\operatorname{tr}_{\star}(\psi)$ is nothing but the restriction of $\psi + {}^{\iota}\psi$ to the *F*-vector space of fixed points $(V \oplus {}^{\iota}V)^s$, where *s* is the switch semi-linear automorphism defined on the direct sum $V \oplus {}^{\iota}V$ by $s(v_1 + {}^{\iota}v_2) = v_2 + {}^{\iota}v_1$.

Moreover, s induces a semi-linear automorphism of order 2 of the tensor algebra $T(V \oplus {}^{\iota}V)$ which preserves the ideal generated by the elements

$$(v_1 + {}^{\iota}v_2) \otimes (v_1 + {}^{\iota}v_2) - (\psi(v_1) + {}^{\iota}\psi({}^{\iota}v_2)).$$

Hence, we get a semi-linear automorphism s of order 2 on the Clifford algebra $\mathcal{C}(\psi + {}^{\iota}\psi)$, which commutes with the canonical involution. The set of fixed points $(\mathcal{C}(\psi + {}^{\iota}\psi))^s$ is an F-algebra; the involution γ restricts to an F-linear involution which we denote by γ_s . We then have:

Lemma 2.3. The natural embedding $(V \oplus^{\iota} V) \hookrightarrow C(\psi + {}^{\iota}\psi)$, restricted to $(V + {}^{\iota}V)^s$, induces an isomorphism of graded algebras

$$(\mathcal{C}(\mathrm{tr}_{\star}(\psi)),\gamma) \tilde{\rightarrow} ((\mathcal{C}(\psi + {}^{\iota}\psi))^{s},\gamma_{s}).$$

Proof of Lemma 2.3. The natural embedding $(V \oplus {}^{\iota}V) \hookrightarrow \mathcal{C}(\psi + {}^{\iota}\psi)$ restricts to an injective map $i : (V + {}^{\iota}V)^s \hookrightarrow \mathcal{C}(\psi + {}^{\iota}\psi)^s$, which clearly satisfies

 $i(w)^2 = (\psi + {}^{\iota}\psi)(w)$ for any $w \in (V \oplus {}^{\iota}V)^s$.

By the universal property of Clifford algebras, it extends to a non-trivial algebra homomorphism $\mathcal{C}(\operatorname{tr}_{\star}(\psi)) \mapsto \mathcal{C}(\psi + {}^{\iota}\psi)^{s}$, which clearly preserves the grading. Since $\mathcal{C}(\operatorname{tr}_{\star}(\psi))$ is simple, and both algebras have the same dimension, it is an isomorphism. Clearly, γ coincides with γ_{s} under this isomorphism. \Box

Hence, we want to describe one component of $\mathcal{C}_0(\operatorname{tr}_*(\psi)) \simeq (\mathcal{C}_0(\psi + {}^{\iota}\psi))^s$. We proceed as in the split étale case. Fix an orthogonal basis $e_1, \ldots e_n$ of V over Lsuch that $\psi(e_n) = \lambda$. The elements ${}^{\iota}e_1, \ldots, {}^{\iota}e_n$ are an orthogonal basis of ${}^{\iota}V$ and ${}^{\iota}\psi({}^{\iota}e_n) = \iota(\lambda)$. We may moreover assume that $z = e_1 \ldots e_n$ and ${}^{\iota}z = {}^{\iota}e_1 \ldots {}^{\iota}e_n$ have square 1. Since the idempotent $\varepsilon = \frac{1+z{}^{\iota}z}{2} \in C_0(\psi + {}^{\iota}\psi)$ satisfies $s(\varepsilon) = \varepsilon$, the semilinear automorphism s preserves each factor $\mathcal{C}_+(\psi + {}^{\iota}\psi)$ and $\mathcal{C}_-(\psi + {}^{\iota}\psi)$. Hence, the components of $\mathcal{C}_0(\operatorname{tr}_*(\psi))$ are

$$\mathcal{C}_0(\mathrm{tr}_{\star}(\psi)) = (\mathcal{C}_+(\psi + {}^{\iota}\psi))^s \times (\mathcal{C}_-(\psi + {}^{\iota}\psi))^s.$$

Moreover, by Lemma 2.2, we have

$$\mathcal{C}_{+}(\psi + {}^{\iota}\psi) \simeq \operatorname{Ad}_{\langle\langle -\lambda\iota(\lambda)\rangle\rangle} \otimes (\mathcal{C}_{+}(\psi), \gamma) \otimes (\mathcal{C}_{+}({}^{\iota}\psi), \gamma)$$

and it remains to understand the action of the switch automorphism on this tensor product. First, one may identify $\mathcal{C}_+({}^{\iota}\psi)$ with the algebra ${}^{\iota}\mathcal{C}_+(\psi)$ defined by

$${}^{\iota}\mathcal{C}_{+}(\psi) = \{{}^{\iota}x, \ x \in \mathcal{C}_{+}(\psi)\},\$$

with the operations

$${}^{\iota}x + {}^{\iota}y = {}^{\iota}(x+y), \quad {}^{\iota}x{}^{\iota}y = {}^{\iota}(xy) \text{ and } {}^{\iota}(\lambda x) = {}^{\iota}(\lambda){}^{\iota}x,$$

for all $x, y \in \mathcal{C}_+(\psi)$ and $\lambda \in L$. Clearly, the switch automorphism acts on the tensor product

$$\mathcal{C}_+(\psi) \otimes \mathcal{C}_+({}^{\iota}\psi) \simeq \mathcal{C}_+(\psi) \otimes {}^{\iota}\mathcal{C}_+(\psi),$$

by

$$s(x \otimes {}^{\iota} y) = y \otimes {}^{\iota} x,$$

and by definition of the corestriction (see [KMRT98, 3.B]), the *F*-subalgebra of fixed points is

$$\left(\left(\mathcal{C}_{+}(\psi),\gamma\right)\otimes\left({}^{\iota}\mathcal{C}_{+}(\psi),\gamma\right)\right)^{\circ}=N_{L/F}(\mathcal{C}_{+}(\psi),\gamma).$$

It remains to understand the action of the switch on the centralizer, which is the split quaternion algebra over L generated by $x = \frac{z+\iota_z}{2}\varepsilon$ and $y = e_n{\iota}e_n\varepsilon$. The element x clearly is s-symmetric, while y satisfies s(y) = -y. Let δ be a generator of the quadratic extension L/F, so that $\iota(\delta) = -\delta$ and $\delta^2 = d$. Since the switch map sis L/F semi-linear, we may replace y by δy which now satisfies $s(\delta y) = \delta y$. Hence, the set of fixed points under s is the split quaternion algebra over F generated by x and δy . Since $(\delta y)^2 = -dN_{L/F}(\lambda)$, it is isomorphic to $\operatorname{Ad}_{\langle\langle -dN_{L/F}(\lambda)\rangle\rangle}$.

3. Proof of the decomposability theorem

In this section, we finish the proof of Theorem 1.1. Let $(A, \sigma) = \bigotimes_{i=1}^{3} (Q_i, \sigma_i)$ be a product of three quaternion algebras with orthogonal involution. We assume that A has index 4, so that it is Brauer-equivalent to a biquaternion division algebra D. We have to prove that (A, σ) is isomorphic to $(D, \theta) \otimes \operatorname{Ad}_{\langle\langle \lambda \rangle\rangle}$ for a well chosen involution θ on D and some $\lambda \in F^{\times}$.

The algebra D is endowed with an orthogonal involution τ , and we may represent

$$(A, \sigma) = (\operatorname{End}_D(M), \operatorname{ad}_h),$$

for some 2-dimensional hermitian module (M, h) over (D, τ) . Let us consider a diagonalisation $\langle a_1, a_2 \rangle$ of h, and define

$$\theta = \operatorname{Int}(a_1^{-1}) \circ \tau.$$

With respect to this new involution, we get another representation

 $(A, \sigma) = (\operatorname{End}_D(M), \operatorname{ad}_{h'}),$

where h' is a hermitian form over (D, θ) which diagonalises as $h' = \langle 1, -a \rangle$ for some θ -symmetric element $a \in D^{\times}$. The theorem now follows from the following lemma:

Lemma 3.1. The involutions θ and $\theta' = \text{Int}(a^{-1}) \circ \theta$ of the biquaternion algebra D are conjugate.

Indeed, assume there exists $u \in A^{\times}$ such that $\theta = \operatorname{Int}(u) \circ \theta' \circ \operatorname{Int}(u^{-1})$. We then have $\theta = \operatorname{Int}(ua^{-1}) \circ \theta \circ \operatorname{Int}(u^{-1}) = \theta \circ \operatorname{Int}(\theta(u)^{-1}au^{-1})$. Hence, there exists $\lambda \in F^{\times}$ such that $\theta(u)^{-1}au^{-1} = \lambda$, that is $a = \lambda \theta(u)u$. This implies that the hermitian form $h' = \langle 1, -a \rangle$ over (D, θ) is isometric to $\langle 1, -\lambda \rangle$. Since $\lambda \in F^{\times}$, we get $(A, \sigma) = (\operatorname{End}_D(M), \operatorname{ad}_{\langle 1, -\lambda \rangle}) = (D, \theta) \otimes \operatorname{Ad}_{\langle \langle \lambda \rangle \rangle}$, and it only remains to prove the lemma.

Proof of Lemma 3.1. We want to compare the orthogonal involutions θ and θ' of the biquaternion algebra D. By [LT99, Prop. 2], they are conjugate if and only if their Clifford algebras C and C' are isomorphic as F-algebras. This can be proven as follows.

Since (A, σ) is a product of three quaternion algebras with involution, we know from [KMRT98, (42.11)] that the discriminant of σ is 1 and its Clifford algebra has one split component.

On the other hand, the representation $(A, \sigma) = (\operatorname{End}_D(M), \operatorname{ad}_{\langle 1, -a \rangle})$ tells us that (A, σ) is an orthogonal sum, as in [Dej95], of (D, θ) and (D, θ') . Hence its invariants can be computed in terms of those of (D, θ) and (D, θ') . By [Dej95, Prop. 2.3.3], the discriminant of σ is the product of the discriminants of θ and θ' . So θ and θ' have the same discriminant, and we may identify the centers Z and Z' of their Clifford algebras in two different ways. We are in the situation described in [LT99, p. 265], where the Clifford algebra of such an orthogonal sum is computed. In

particular, since one component of the Clifford algebra of (A, σ) is split, it follows from [LT99, Lem 1] that

$$\mathcal{C}\simeq\mathcal{C}' \qquad ext{or} \qquad \mathcal{C}\simeq{}^\iota\mathcal{C}',$$

depending on the chosen identification between Z and Z'. In both cases, C and C' are isomorphic as F-algebras, and this concludes the proof.

4. A NEW PROOF OF IZHBOLDIN AND KARPENKO'S THEOREM

Let ϕ be an 8-dimensional quadratic form over F with trivial discriminant and Clifford invariant of index 4. We denote by (A, σ) one component of its even Clifford algebra, so that

$$(\mathcal{C}_0(\phi), \gamma) \simeq (A, \sigma) \times (A, \sigma)$$

where A is an index 4 central simple algebra over F, with orthogonal involution σ .

By triality [KMRT98, (42.3)], the involution σ has trivial discriminant and its Clifford algebra is

$$\mathcal{C}(A,\sigma) = \mathrm{Ad}_{\phi} \times (A,\sigma).$$

In particular, it has a split component, so that the algebra with involution (A, σ) is isomorphic to a tensor product of three quaternion algebras with involution (see [KMRT98, (42.11)]). Hence we can apply our decomposability theorem 1.1, and write $(A, \sigma) = (D, \theta) \otimes \operatorname{Ad}_{\langle\langle \lambda \rangle\rangle}$ for some biquaternion division algebra with orthogonal involution (D, θ) and some $\lambda \in F^{\times}$.

Let us denote by d the discriminant of θ , and let $L = F[X]/(X^2 - d)$ be the corresponding quadratic étale extension. Consider the image δ of X in L. By Tao's computation of the Clifford algebra of a tensor product [Tao95, Thm. 4.12], the components of $\mathcal{C}(A, \sigma)$ are Brauer-equivalent to the quaternion algebra (d, λ) over F and the tensor product $(d, \lambda) \otimes A$. Since A has index 4, the split component has to be (d, λ) , so that λ is a norm of L/F, say $\lambda = N_{L/F}(\mu)$.

Consider now the Clifford algebra of (D, θ) . It is a quaternion algebra Q over L, endowed with its canonical (symplectic) involution γ . Denote by n_Q the norm form of Q, that is $n_Q = \langle\!\langle \alpha, \beta \rangle\!\rangle$ if $Q = (\alpha, \beta)_L$. It is a 2-fold Pfister form and for any $\ell \in L^*$, $(\mathcal{C}_+(\langle \ell \rangle n_Q), \gamma_+) \simeq (Q, \gamma)$. Moreover, by the equivalence of categories $A_1^2 \equiv D_2$ described in [KMRT98, (15.7)], the algebra with involution (D, θ) is canonically isomorphic to $N_{L/F}(Q, \gamma)$.

Hence we get that $(A, \sigma) = N_{L/F}(Q, \gamma) \otimes \operatorname{Ad}_{\langle\langle -dN_{L/F}(\delta\mu)\rangle\rangle}$. By Proposition 2.1, this implies that

$$(A, \sigma) \times (A, \sigma) \simeq (\mathcal{C}_0(\operatorname{tr}_{\star}(\psi)), \gamma),$$

where $\psi = \langle \delta \mu \rangle n_Q$. Applying again triality [KMRT98, (42.3)], we get that the split component Ad_{ϕ} of the Clifford algebra of (A, σ) also is isomorphic to $\operatorname{Ad}_{\operatorname{tr}_{\star}(\psi)}$, so that the quadratic forms ϕ and $\operatorname{tr}_{\star}(\psi)$ are similar. This concludes the proof since ψ belongs to $GP_2(L)$.

Remark. Let ϕ and (A, σ) be as above, and let $L = F[X]/(X^2 - d)$ be a fixed quadratic étale extension of F. It follows from the proof that the quadratic form ϕ is isometric to the transfer of a form $\psi \in GP_2(L)$ if and only if (A, σ) admits a decomposition $(A, \sigma) = \operatorname{Ad}_{\langle\langle \lambda \rangle\rangle} \otimes (D, \theta)$, with $d_{\pm}(\theta) = d$. In particular, the quadratic form ϕ is a sum of two forms similar to 2-fold Pfister forms exactly when the algebra with involution (A, σ) admits a decomposition as $(D, \theta) \otimes \operatorname{Ad}_{\langle\langle \lambda \rangle\rangle}$ with θ of discriminant 1, that is when it decomposes as a tensor product of three quaternion algebras with involution, with one split factor.

Such a decomposition does not always exist, as was shown by Sivatski [Siv05, Prop 5]. This reflects the fact that 8-dimensional quadratic forms ϕ with trivial discriminant and Clifford algebra of index ≤ 4 do not always decompose as a sum of two forms similar to two-fold Pfister forms (see [IK00, §16] and [HT98] for explicit examples).

References

- [Ara75] J. K. ARASON "Cohomologische Invarianten quadratischer Formen", J. Alg. 36 (1975), p. 448–491.
- [Bec08] K. J. BECHER "A proof of the Pfister factor conjecture", Invent. Math. 173 (2008), no. 1, p. 1–6.
- [Dej95] I. DEJAIFFE "Somme orthogonale d'algèbres à involution et algèbre de Clifford", Comm. Algebra 26(5) (1995), p. 1589–1612.
- [HT98] D. W. HOFFMANN et J.-P. TIGNOL "On 14-dimensional quadratic forms in I^3 , 8-dimensional forms in I^2 , and the common value property", *Doc. Math.* **3** (1998), p. 189–214 (electronic).
- [IK00] O. T. IZHBOLDIN et N. A. KARPENKO "Some new examples in the theory of quadratic forms", Math. Z. 234 (2000), no. 4, p. 647–695.
- [KMRT98] M.-A. KNUS, S. MERKURJEV, M. ROST et J.-P. TIGNOL The book of involutions, Colloquium Publ., vol. 44, Amer. Math. Soc., Providence, RI, 1998.
- [Kne77] M. KNEBUSCH "Generic splitting of quadratic forms. II", Proc. London Math. Soc. (3) 34 (1977), no. 1, p. 1–31.
- [Lam05] T.-Y. LAM Introduction to quadratic forms over fields, Grad. Studies in Math., vol. 67, Amer. Math. Soc., 2005.
- [LT99] D. W. LEWIS et J.-P. TIGNOL "Classification theorems for central simple algebras with involution", *Manuscripta Math.* **100** (1999), no. 3, p. 259–276, With an appendix by R. Parimala.
- [Siv05] A. S. SIVATSKI "Applications of Clifford algebras to involutions and quadratic forms", Comm. Algebra 33 (2005), no. 3, p. 937–951.
- [Tao95] D. TAO "The generalized even Clifford algebra", J. Algebra 172 (1995), no. 1, p. 184–204.

Département de Mathématiques, Université catholique de Louvain, Chemin du cyclotron, 2, B1348 Louvain-la-Neuve, Belgique

E-mail address: Alexandre.Masquelein@uclouvain.be

UNIVERSITÉ PARIS 13 (LAGA), CNRS (UMR 7539), UNIVERSITÉ PARIS 12 (IUFM), 93430 VILLETANEUSE, FRANCE

E-mail address: queguin@math.univ-paris13.fr *URL*: http://www-math.univ-paris13.fr/~queguin/

Département de Mathématiques, Université catholique de Louvain, Chemin du cyclotron, 2, B1348 Louvain-la-Neuve, Belgique

E-mail address: jean-pierre.tignol@uclouvain.be *URL*: http://www.math.ucl.ac.be/membres/tignol