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ABSTRACT. Izhboldin and Karpenko proved in [IK00, Thm 16.10] that any
quadratic form of dimension 8 with trivial discriminant and Clifford algebra
of index 4 is isometric to the transfer, with respect to some quadratic étale
extension, of a quadratic form similar to a two-fold Pfister form. We give a
new proof of this result, based on a theorem of decomposability for degree 8
and index 4 algebras with orthogonal involution.

Let WF denote the Witt ring of a field F' of characteristic different from 2. As
explained in [Lam05, X.5 and XII.2], one would like to describe those quadratic
forms whose Witt class belongs to the nth power I"F of the fundamental ideal
IF of WF. By the Arason-Pfister Hauptsatz, such a form is hyperbolic if it has
dimension < 2™ and similar to a Pfister form if it has dimension 2". More generally,
Vishik’s Gap Theorem gives the possible dimensions of anisotropic forms in I"™F.

In addition, one may describe explicitly, for some small values of n, low dimen-
sional anisotropic quadratic forms in I™F'. This is the case, in particular, for n = 2,
that is for even-dimensional quadratic forms with trivial discriminant. In dimen-
sion 6, it is well known that such a form is similar to an Albert form, and uniquely
determined up to similarity by its Clifford invariant. In dimension 8, if the index of
the Clifford algebra is < 4, Izhboldin and Karpenko proved in [IK00, Thm 16.10]
that it is isometric to the transfer, with respect to some quadratic étale extension,
of a quadratic form similar to a two-fold Pfister form.

The purpose of this paper is to give a new proof of Izhboldin and Karpenko’s
result. Our proof is in the framework of algebras with involution, and does not
use Rost’s description of 14-dimensional forms in I*F (see [IK00, Rmk 16.11.2]).
More precisely, we use triality [KMRT98, (42.3)] to translate the question into a
question on algebras of degree 8 and index 4 with orthogonal involution. Our main
tool then is a decomposability theorem (Thm. 1.1), proven in § 3. We also use a
refinement of a statement of Arason [Ara75, 4.18] describing the even part of the
Clifford algebra of a transfer (see Prop. 2.1 below).

1. NOTATIONS AND STATEMENT OF THE THEOREM

Throughout the paper, we work over a base field F' of characteristic different
from 2. We refer the reader to [KMRT98] and [Lam05] for background information
on algebras with involution and on quadratic forms. However, we depart from
the notation in [Lam05] by using {a1,...,a,)) to denote the n-fold Pfister form
@5 1(1,—a;). For any quadratic space (V,¢) over F, we let Ady be the algebra
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with involution (Endp(V'),ady), where ad, is the adjoint involution with respect
to ¢, denoted by o, in [KMRT9S].

For any field extension L/F, we denote by GP, (L) the set of quadratic forms
that are similar to n-fold Pfister forms. This notation extends to the quadratic
étale extension F' x F' by GP,(F x F) = GP,(F) x GP,(F). For any quadratic
form ¢ over L, let C(¢) be its full Clifford algebra, with even part Co(¢)). Both
C() and Cy()) are endowed with a canonical involution, which is the identity on
the underlying vector space, denoted by 7 (see [KMRT98, p.89]). If ¢ has even
dimension and trivial discriminant, then its even Clifford algebra splits as a direct
product C4(v) x C_(v), for some isomorphic central simple algebras C4 () and
C_(¢) over F (see [Lam05, V, Thm 2.5]). Those algebras are Brauer-equivalent
to the full Clifford algebra of i and their Brauer class is the Clifford invariant of
1. Assume moreover that dim(¢) = 0 mod 4. As explained in [KMRT98, (8.4)],
the involution ~ then induces an involution on each factor of Cy(v), and one may
easily check that the isomorphism between the two factors described in the proof
of [Lam05, V, Thm 2.5] preserves the involution, so that we actually get a decom-
position (Co(14),7) = (C4 (1), 7+) X (C— (1), 1), with (C (1), 74) = (C— (), 7-).

Let L/F be a quadratic field extension. For any quadratic form v over L, we
let tr, (1)) be the transfer of ¥, associated to the trace map tr : L — F, as defined
in [Lam05, VII.1.2]. This definition extends to the split étale case L = F' x F and
leads to try(¥,9") = 1 + ¢'. On the other hand, for any algebra A over L, we let
Np,r(A) be its norm, as defined in [KMRT98, §3.B]. Recall that the Brauer class
of Ni,/p(A) is the corestriction of the Brauer class of A. Moreover, if A is endowed
with an involution of the first kind o, then the tensor product ¢ ® o restricts to
an involution Ny, p(0) on Ni,p(A). We use the following notation: Ny, /p(A,0) =
(Np/r(A),Nr/p(0)). In the split étale case, we get Npyp/p((4,0),(4A",0")) =
(A,0) ® (A’,0") (see [KMRT98, §15.B]).

Let (A,0) be a degree 8 algebra with orthogonal involution. We assume that
(A,0) is totally decomposable, that is, isomorphic to a tensor product of three
quaternion algebras with involution,

(A’ o) = ®13:1(Qia ;).
If A is split (resp. has index 2), then (A, o) admits a decomposition as above in

which each quaternion algebra (resp. each but one) is split (see [Bec08]). Our main
result is the following theorem:

Theorem 1.1. Let (A4, 0) be a degree 8 totally decomposable algebra with orthogonal
involution. If the index of A is < 4, then there exists X € F* and a biquaternion
algebra with orthogonal involution (D, 0) such that

(A, o) ~ (D, 9) ® Ad«/\» .

The theorem readily follows from Becher’s results mentioned above if A has index
1 or 2; it is proven in § 3 for algebras of index 4. For algebras of index < 2, we may
even assume that (D, §) decomposes as a tensor product of two quaternion algebras
with involution; this is not the case anymore if A has index 4, as was shown by
Sivatski [Siv05, Prop. 5].

Using triality, we easily deduce the following from Theorem 1.1:

Theorem 1.2 (Izhboldin-Karpenko). Let ¢ be an 8-dimensional quadratic form
over F'. The following are equivalent:



QUADRATIC FORMS OF DIMENSION 8 3

(i) ¢ has trivial discriminant and Clifford invariant of index < 4;
(ii) there exists a quadratic étale extension L/F and a form ¢ € GPy(L) such

that ¢ = tr. ().

If ¢ = tr.(¢) for some ¥ € GP(L), it follows from some direct computation
made in [IK0O, §16] that ¢ has trivial discriminant and Clifford invariant of index
<4.

Assume conversely that ¢ has trivial discriminant. By the Arason-Pfister Haupt-
satz, ¢ is in GP3(F) if and only if it has trivial Clifford invariant. More generally,
it is well-known that ¢ decomposes as ¢ = ((a)q for some a € F* and some 4-
dimensional quadratic form g over F' if and only if its Clifford invariant has index
< 2 (see for instance [Kne77, Ex 9.12]). Hence, in both cases, ¢ decomposes as a
sum ¢ = m + my of two forms w1, e € GPy(F). This proves that condition (ii)
holds with L = F x F.

In section 4 below, we finish this proof by treating the index 4 case. This part
of the proof differs from the argument given in [IK00]. In particular, we do not use
Rost’s description of 14-dimensional forms in I3F.

2. CLIFFORD ALGEBRA OF THE TRANSFER OF A QUADRATIC FORM

Let L/F be a quadratic field extension. By Arason [Ara75, 4.18], for any qua-
dratic form ¢ € GP2(L), the Clifford invariant of the transfer tr, () coincides with
the corestriction of the Clifford invariant of . In this section, we extend this re-
sult, taking into account the algebras with involution rather than just the Brauer
classes. More precisely, we prove:

Proposition 2.1. Let L = F[X]/(X? — d) be a quadratic étale extension of F.
Consider a quadratic form v over L with dim(v)) = 0 mod 4 and d+(¢) = 1, so
that its even Clifford algebra decomposes as

(CO(w)a’}/) = (C+(w)57+) X (C*(’l/))vfy*)v with (CJr(’l/))v’er) = (C* (1/})57*)

For any A € L™ represented by v, the two components of the even Clifford algebra
of the transfer of 1 are both isomorphic to

(Co(trs(¥)), v4+) = Ady—an,,, p(0)) ONL/P(C(¥),74)-

Proof. In the split étale case L = F x F', the quadratic form ¢ is a couple (¢, ¢’)
of two quadratic forms over F' with

dim(¢) = dim(¢') = 0mod 4 and di(¢) =di(¢))=1¢€ F*/F*2.

Pick A and ) in F' respectively represented by ¢ and ¢’; the norm Npyp/p (X, N)
is AN, So the following lemma proves the proposition in that case:

Lemma 2.2. Let ¢ and ¢' be two quadratic forms over F of the same dimension
n = 0mod 4 and trivial discriminant. For any X\ and X' € F*, respectively repre-
sented by ¢ and @', the components of the even Clifford algebra of the orthogonal
sum ¢ + ¢ are isomorphic to

(Ci(p+ "), 74) 2 Ad_rny O(C(9),74) @ (C+(9'), 7).

Proof of Lemma 2.2. Denote by V and V' the underlying quadratic spaces. The
natural embeddings V — V& V' and V' — V @& V' induce F-algebra homomor-
phisms

C(¢p) = C(¢p+¢') and C(¢') — C(d + ¢').
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One may easily check that the images of the even parts centralize each other, so
that we get an F-algebra homomorphism

(Co(8),7) ® (Co(¢),7) = (Co(e + ¢'),7)-
Pick orthogonal bases (ey,...,e,) of (V,¢) and (e,...,e}) of (V',¢'). The ba-

sis of Co(¢ + ¢') consisting of products of an even number of vectors of the set
{e1,...,en,€l,... e} as described in [Lam05, V, cor 1.9] clearly contains the im-
age of a basis of Cyo(¢) ® Co(¢'), so that the homomorphism above is injective. In
the sequel, we will identify Co(¢) and Co(¢’) with their images in Co(¢ + ¢').

Consider the element z = e1 ... e, € Co(¢). As explained in [Lam05, V, Thm2.2],
for any v € V, one has vz = —zv € C(¢) and z generates the center of Cy(¢). Since
¢ has dimension 0 mod 4 and trivial discriminant, this element z is y-symmetric,
and multiplying e; by a scalar if necessary, we may assume z?> = 1. The two
components of Co(¢) are Cy(¢) = Co(¢)2E= and C_(¢) = Co(¢)25%. Consider
similarly 2’ = e} ...el,, with y(2') = 2’ and assume 2"?> = 1. The product z2’ also
has square 1 and generates the center of Co(¢+ ¢'). We denote by ¢ the idempotent
€= HTZZ/, so that Cy (¢ + ¢') = Co(¢ + ¢')e and C_ (¢ + ¢') = Colop + ¢')(1 — &).

Let us now fix two vectors v € V and v’ € V' such that ¢(v) = X and ¢'(v') = N.
Since 42v~1 = v=11=2 we have vzv~! € C_(¢) for any = € C4(¢). Using this
identification between the two components, we may diagonally embed Ci(¢) in
Co(¢) by considering z € C4(¢) — x + vav~=! € Cy(¢). Similarly, we may embed
Ci(¢) in Co(¢') by 2/ € C4(¢) — 2’ +v'2"v'~! € Cy(¢’). Combining those two
maps with the morphism

Co(#) ® Co(¢') — Col¢ + &),
and the projection
y €Co(¢+¢') = ye € Ci(d+¢),
we get an algebra homomorphism

Ci(p) ®Ci(d') — Ci(p+ ),

TR = (2 v ) (@ + 'z v e,

One may easily check on generators that this map is not trivial; hence it is
injective. To conclude the proof, it only remains to identify the centralizer of
the image, which by dimension count has degree 2. It clearly contains zgz/s and
vv’e. Moreover, these two elements anticommute, have square ¢ and —ANe, and
are respectively symmetric and skew-symmetric under v. Hence they generate a
split quaternion algebra, with orthogonal involution of discriminant —AX’, which is

isomorphic to Ad_xxry- O

This concludes the proof in the split étale case. Until the end of this section,
we assume L is a quadratic field extension of F', with non-trivial F-automorphism
denoted by ¢. To prove the proposition in this case, we will use the following
description of the transfer of a quadratic form and its Clifford algebra.

Let ¢ be any quadratic form over L, defined on the vector space V. We consider
its conjugate 'V = {*v, v € V'} with the following operations ‘v; + ‘vy = *(v1 + v2)
and A-*v = *(t(N\)-v), for any vy, v2 and v in V and A € L. Clearly, “¢»(‘v) = ¢(v(v))
is a quadratic form on “V. One may easily check from the definition given in [Lam05,
VII §1] that the quadratic form tr(¢) is nothing but the restriction of 1) + “¢ to
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the F-vector space of fixed points (V @ “V)*, where s is the switch semi-linear
automorphism defined on the direct sum V & *V by s(v; + “v2) = vy + ‘vy.

Moreover, s induces a semi-linear automorphism of order 2 of the tensor algebra
T(V @& V) which preserves the ideal generated by the elements

(v1 4 “v2) @ (v1 + “v2) — (Y(v1) + “Y(‘v2)).
Hence, we get a semi-linear automorphism s of order 2 on the Clifford algebra
C(¢ + “¢), which commutes with the canonical involution. The set of fixed points
(C (¥ + ‘w))‘S is an F-algebra; the involution ~ restricts to an F-linear involution
which we denote by . We then have:

Lemma 2.3. The natural embedding (V&'V) — C(¢+"4), restricted to (V+*V)?,
induces an isomorphism of graded algebras

(Cltra()),7) = ((C( + ")), 7s)-
Proof of Lemma 2.3. The natural embedding (V &*V) — C(v + “4)) restricts to an
injective map i : (V 4+ ‘V)® — C(¢ 4+ “¢»)°, which clearly satisfies
i(w)? = (¢ + ) (w) for any w € (V & V).
By the universal property of Clifford algebras, it extends to a non-trivial algebra
homomorphism C(tr,(¢)) — C(¢» 4 “b)*®, which clearly preserves the grading. Since

C(tr.(z)) is simple, and both algebras have the same dimension, it is an isomor-
phism. Clearly, v coincides with v, under this isomorphism. (I

Hence, we want to describe one component of Co(trs(¢)) ~ (Co(¥p + “40))*. We
proceed as in the split étale case. Fix an orthogonal basis eq,...e, of V over L
such that ¥ (e,) = A. The elements ‘eq,...," e, are an orthogonal basis of ‘V and
“(*en) = t(AN). We may moreover assume that z = ey ...e, and ‘z = ‘e;..."
have square 1. Since the idempotent ¢ = 122 € Co(v + ‘) satisfies s(¢) = e,
the semilinear automorphism s preserves each factor C4 (v + “¢b) and C_ (¢ + “4).
Hence, the components of Co(tr, (1)) are

Coltr(¥)) = (C+ (¥ + )" x (C—(¢ + )"
Moreover, by Lemma 2.2, we have
C (v + ") = Ady— .y ®(C+ (1), ) @ (C+(“¥), ),

and it remains to understand the action of the switch automorphism on this tensor
product. First, one may identify C (“¢)) with the algebra ‘C (¢) defined by

‘Ci() ={"z, v €Ci(¥)},

€n

with the operations
‘rtty="(z+y), ‘a'y="(zy) and ‘(A\z) = ¢(N)'z,

forall z,y € C4(¢) and A € L. Clearly, the switch automorphism acts on the tensor
product
C+(¥) ® C+("Y) = C4(v) @ “Co(¥),
by
s(r®‘'y) =y ‘e,
and by definition of the corestriction (see [KMRT98, 3.B]), the F-subalgebra of
fixed points is

((C+(1),7) ® (“C+(1),7))" = Nr,r(C4(¥), 7).
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It remains to understand the action of the switch on the centralizer, which is
the split quaternion algebra over L generated by x = %5 and y = ep‘ene. The
element x clearly is s-symmetric, while y satisfies s(y) = —y. Let d be a generator of
the quadratic extension L/F, so that ¢(§) = —§ and 62 = d. Since the switch map s
is L/F semi-linear, we may replace y by dy which now satisfies s(dy) = dy. Hence,
the set of fixed points under s is the split quaternion algebra over F' generated by

x and dy. Since (dy)? = —dNp/p()), it is isomorphic to Ady—any, m(0)- O

3. PROOF OF THE DECOMPOSABILITY THEOREM

In this section, we finish the proof of Theorem 1.1. Let (A4,0) = ®3_,(Q;, 0:) be
a product of three quaternion algebras with orthogonal involution. We assume that
A has index 4, so that it is Brauer-equivalent to a biquaternion division algebra
D. We have to prove that (A, o) is isomorphic to (D, 0) ® Adyy for a well chosen
involution 6 on D and some A\ € F'*.

The algebra D is endowed with an orthogonal involution 7, and we may represent

(A,0) = (Endp (M), ady),

for some 2-dimensional hermitian module (M, h) over (D, 7). Let us consider a
diagonalisation (a1, as) of h, and define

0 = Int(a; ') oT.
With respect to this new involution, we get another representation
(4,0) = (Endp (M), adn),

where k' is a hermitian form over (D, #) which diagonalises as b’ = (1, —a) for some
f-symmetric element a € D*. The theorem now follows from the following lemma:

Lemma 3.1. The involutions 6 and §' = Int(a=') o @ of the biquaternion algebra
D are conjugate.

Indeed, assume there exists u € A* such that § = Int(u) o 6 o Int(u~1). We
then have 0§ = Int(ua=') o § o Int(u~1) = 6 o Int(f(u) "tau~'). Hence, there exists
A € F* such that 0(u)"tau™' = X, that is @ = A(u)u. This implies that the
hermitian form A’ = (1, —a) over (D, 0) is isometric to (1,—\). Since A € F*, we
get (A,0) = (Endp(M),ad;,_xy) = (D,0) ® Ady, and it only remains to prove
the lemma.

Proof of Lemma 3.1. We want to compare the orthogonal involutions 6 and 6" of
the biquaternion algebra D. By [LT99, Prop. 2], they are conjugate if and only if
their Clifford algebras C and C’ are isomorphic as F-algebras. This can be proven
as follows.

Since (4, o) is a product of three quaternion algebras with involution, we know
from [KMRT98, (42.11)] that the discriminant of o is 1 and its Clifford algebra has
one split component.

On the other hand, the representation (4, 0) = (Endp (M), ad(1,_,)) tells us that
(A, 0) is an orthogonal sum, as in [Dej95], of (D, #) and (D, 0"). Hence its invariants
can be computed in terms of those of (D,0) and (D, ¢"). By [Dej95, Prop. 2.3.3],
the discriminant of o is the product of the discriminants of 6 and ¢’. So 6 and
0" have the same discriminant, and we may identify the centers Z and Z’ of their
Clifford algebras in two different ways. We are in the situation described in [LT99,
p. 265], where the Clifford algebra of such an orthogonal sum is computed. In
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particular, since one component of the Clifford algebra of (4, o) is split, it follows
from [LT99, Lem 1] that

c~( or C~'C,

depending on the chosen identification between Z and Z’. In both cases, C and C’
are isomorphic as F-algebras, and this concludes the proof. ([

4. A NEW PROOF OF IZHBOLDIN AND KARPENKO’S THEOREM

Let ¢ be an 8-dimensional quadratic form over F with trivial discriminant and
Clifford invariant of index 4. We denote by (A4, o) one component of its even Clifford
algebra, so that

(CO(¢)a7) = (A70> X (A70>a
where A is an index 4 central simple algebra over F', with orthogonal involution o.
By triality [KMRT98, (42.3)], the involution ¢ has trivial discriminant and its
Clifford algebra is
C(A,0) = Ady x(4,0).

In particular, it has a split component, so that the algebra with involution (A4, o)
is isomorphic to a tensor product of three quaternion algebras with involution (see
[KMRT98, (42.11)]). Hence we can apply our decomposability theorem 1.1, and
write (A,0) = (D,0) ® Adyy for some biquaternion division algebra with orthog-
onal involution (D, #) and some A € F*.

Let us denote by d the discriminant of 6, and let L = F[X]/(X? — d) be the
corresponding quadratic étale extension. Consider the image 6 of X in L. By Tao’s
computation of the Clifford algebra of a tensor product [Tao95, Thm. 4.12], the
components of C(A, o) are Brauer-equivalent to the quaternion algebra (d, \) over
F and the tensor product (d, \) ® A. Since A has index 4, the split component has
to be (d, A), so that A is a norm of L/F, say A = Ny ,p(p).

Consider now the Clifford algebra of (D,#). It is a quaternion algebra @ over
L, endowed with its canonical (symplectic) involution 5. Denote by ng the norm
form of Q, that is ng = (o, 8)) if Q@ = (o, B)r. It is a 2-fold Pfister form and for
any £ € L*, (C+({)ng),v+) ~ (Q,7). Moreover, by the equivalence of categories
A? = Dy described in [KMRT98, (15.7)], the algebra with involution (D,6) is
canonically isomorphic to Np,,p(Q,7).

Hence we get that (A,0) = Np,p(Q,7) ® Ady—an, ,p(su)y- By Proposition 2.1,
this implies that

(A, 0) x (A,0) ~ (Coltr(¥)),7),
where ¢ = (du)ng. Applying again triality [KMRT9S8, (42.3)], we get that the split
component Adg of the Clifford algebra of (A, o) also is isomorphic to Ady,, (), so

that the quadratic forms ¢ and tr,(¢) are similar. This concludes the proof since
1 belongs to GP(L).

Remark. Let ¢ and (A,0) be as above, and let L = F[X]/(X? — d) be a fixed
quadratic étale extension of F'. It follows from the proof that the quadratic form
¢ is isometric to the transfer of a form ¢ € GP,(L) if and only if (A, 0) admits
a decomposition (A,0) = Adyy ®(D,0), with d+(0) = d. In particular, the qua-
dratic form ¢ is a sum of two forms similar to 2-fold Pfister forms exactly when the
algebra with involution (4, o) admits a decomposition as (D, ) ® Adyy with 6 of



8 A. MASQUELEIN, A. QUEGUINER-MATHIEU, AND J.-P. TIGNOL

discriminant 1, that is when it decomposes as a tensor product of three quaternion
algebras with involution, with one split factor.

Such a decomposition does not always exist, as was shown by Sivatski [Siv05,
Prop 5]. This reflects the fact that 8-dimensional quadratic forms ¢ with trivial
discriminant and Clifford algebra of index < 4 do not always decompose as a sum of
two forms similar to two-fold Pfister forms (see [IK00, §16] and [HT98] for explicit
examples).
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