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Abstract. Let A be a central division algebra over a field F with indA = n.
For integers 1 ≤ d1 < d2 < · · · < dk ≤ n − 1, let Xd1,d2,...,dk

(A) be the variety
of flags of right ideals I1 ⊂ I2 ⊂ · · · ⊂ Ik of A with Ii of reduced dimension
di. In computing canonical p-dimension of such varieties, for p prime, we can
reduce to the case of generalized Severi-Brauer varieties Xe(A) with indA a power
of p divisible by e. We prove that canonical 2-dimension (and hence canonical
dimension) equals dimension for all Xe(A) with ind A = 2e a power of 2.

1. Canonical p-dimension

We begin by recalling the definitions of canonical p-dimension, p-incompressibility,
and equivalence.

Let X be a scheme over a field F , and let p be a prime or zero. A field extension
K of F is called a splitting field of X (or is said to split X) if X(K) 6= ∅. A splitting
field K is called p-generic if, for any splitting field L of X, there is an F -place
K ⇀ L′ for some finite extension L′/L of degree prime to p. In particular, K is
0-generic if for any splitting field L there is an F -place K ⇀ L.

The canonical p-dimension of a scheme X over F was originally defined [1, 7] as
the minimal transcendence degree of a p-generic splitting field K of X. When X
is a smooth complete variety, the original algebraic definition is equivalent to the
following geometric one [7, 9].

Definition 1.1. Let X be a smooth complete variety over F . The canonical p-
dimension cdimp(X) of X is the minimal dimension of the image of a morphism
X ′ → X, where X ′ is a variety over F admitting a dominant morphism X ′ → X
with F (X ′)/F (X) finite of degree prime to p. The canonical 0-dimension of X is
thus the minimal dimension of the image of a rational morphism X 99K X.

In the case p = 0, we will drop the p and speak simply of generic splitting fields
and canonical dimension cdim(X).

For a third definition of canonical p-dimension as the essential p-dimension of the
detection functor of a scheme X, we refer the reader to Merkurjev’s comprehensive
exposition [9] of essential dimension.

For a smooth complete variety X, the inequalities

cdimp(X) ≤ cdim(X) ≤ dim(X)

are clear from Definition 1.1. Note also that if X has a rational point, then
cdim(X) = 0 (though the converse is not true).

Definition 1.2. When a smooth complete variety X has canonical p-dimension as
large as possible, namely cdimp(X) = dim(X), we say that X is p-incompressible.
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It follows immediately that if X is p-incompressible, it is also incompressible (i.e.
0-incompressible).

When two schemes X and Y over a field F have the same class of splitting fields,
we call them equivalent and write X ∼ Y . In this case

cdimp(X) = cdimp(Y )

for all p. If X and Y are smooth complete varieties, then they are equivalent if and
only if there exist rational maps X 99K Y and Y 99K X.

2. Reductions

Let A be a central division algebra over a field F with ind A = n. We consider
the problem of computing the canonical p-dimension of the following varieties.

Definition 2.1. For integers 1 ≤ d1 < d2 < · · · < dk ≤ n − 1, define Xd1,d2,...,dk
(A)

to be the variety of flags of right ideals I1 ⊂ I2 ⊂ · · · ⊂ Ik of A with Ii of reduced
dimension di. When the algebra A is understood, we write simply Xd1,d2,...,dk

.

When k = 1 we get the generalized Severi-Brauer varieties Xd(A) of A. In par-
ticular, X1(A) is the Severi-Brauer variety of A.

It is known [8, Th. 1.17] that the generalized Severi-Brauer variety Xd1
(A) has a

rational point over an extension field K/F if and only if the index indAK divides
d1. As a consequence, Xd1

(A) ∼ Xd(A), where d := gcd(ind A, d1). We record the
easy generalization of this fact to varieties Xd1,d2,...,dk

(A).

Proposition 2.2. If d := gcd(ind A, d1, d2, . . . , dk), then

Xd1,d2,...,dk
(A) ∼ Xd(A)

and thus, for any p,

cdimp(Xd1,d2,...,dk
(A)) = cdimp(Xd(A)).

Proof. If Xd1,d2,...,dk
(A) has a rational point over an extension field K/F , then by

definition AK has right ideals of reduced dimensions d1, d2, . . . , dk. This is the case
if and only if indAK divides each of the di, or equivalently, indAK divides d (since
ind AK always divides indA).

Reading the argument backwards, indAK dividing d implies the existence of
right ideals I1, I2, . . . , Ik in AK with reduced dimensions d1, d2, . . . , dk. In fact, the
I1, . . . , Ik can be chosen to form a flag. Suppose di = mi ind AK and AK ≃ Mt(D)
for some division algebra D. Then we take Ii to be the set of matrices in Mt(D)
whose t − mi last rows are zero. �

Hence it is enough to compute cdimp(Xd(A)) for d dividing ind A.

If the index of A factors as indA = q1q2 · · · qr with the qj powers of distinct primes
pj , then there exist central division algebras Aj of index qj for j = 1, . . . , r such that

A ≃ A1 ⊗ A2 ⊗ · · · ⊗ Ar.

Proposition 2.3. Given a positive integer 1 ≤ d ≤ indA − 1, with qj as above,

define ej := gcd(d, qj) for j = 1, . . . , r. Then

Xd(A) ∼ Xe1
(A1) × Xe2

(A2) × · · · × Xer(Ar)
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and thus, for any p,

cdimp(Xd(A)) = cdimp(Xe1
(A1) × Xe2

(A2) × · · · × Xer(Ar)).

Proof. The variety Xd(A) has a rational point over an extension field K/F if and
only if ind AK divides d. Because

indAK = (ind(A1)K) · · · (ind(Ar)K),

this condition is equivalent to ind(Aj)K dividing d for all j, or to ind(Aj)K dividing
ej for all j (since ind(Aj)K always divides indAj = qj). This holds if and only if
each Xej

(Aj) has a rational point over K, which is equivalent to the product of the
Xej

(Aj) having a rational point over K. �

The proposition gives the following upper bound on canonical p-dimension:

(1) cdimp(Xd(A)) ≤ dim

r
∏

j=1

Xej
(Aj) =

r
∑

j=1

dim Xej
(Aj) =

r
∑

j=1

ej(qj − ej).

If p is prime, then there exists a finite, p-coprime extension K of F which splits
the algebras Aj for all j with pj 6= p. Since canonical p-dimension does not change
under such an extension [9, Prop. 1.5 (2)], cdimp(Xd(A)) = 0 unless some ps = p,
in which case

cdimp(Xd(A)) = cdimp(Xes(As)).

We see that it is enough, when p is prime, to compute the canonical p-dimension

of varieties of the form Xe(A) with ind A a prime power divisible by e. When p = 0,
it is enough to compute the canonical dimension of products of such varieties.

3. Known results for Severi-Brauer varieties

We now recall what is already known about the canonical p-dimension of Severi-
Brauer varieties X1(A), the d = 1 case.

For any p, if d = 1 in (1) above, then all of the ej = 1, and the upper bound
becomes

(2) cdimp(X1(A)) ≤
r

∑

j=1

(qj − 1).

In the special case r=1 and p = p1, it is shown in [1, Th. 11.4], based on Karpenko’s
[6, Th. 2.1], that the inequality (2) is actually an equality. Thus, for general A, we
have

cdimpj
(X1(A)) = cdimpj

(X1(Aj)) = qj − 1

for j = 1, 2, . . . , r, while cdimp(X1(A)) = 0 for all other primes p [7, Ex. 5.10].
Now let p = 0, d = 1. When r = 1, we again have equality in (2), since canonical

dimension is bounded below by canonical p-dimension for every prime p. In [4, Th.
1.3], (2) is proven also to be an equality in the case indA = 6 (i.e. r = 2, q1 = 2,
q2 = 3) provided that charF = 0. The authors of [4] suggest that equality may
indeed hold for any A when p = 0, d = 1.



4 BRYANT MATHEWS

4. 2-Incompressibility of Xe(A) for indA = 2e a power of 2

If A is a central division algebra with ind A = 4, the variety X2(A) is known to
be 2-incompressible. Indeed, if the exponent of A is 2, then X2(A) is isomorphic to
a 4-dimensional projective quadric hypersurface called the Albert quadric of A [10,
§5.2]. Such a quadric has first Witt index 1 [13, p. 93], hence is 2-incompressible
by [5, Th. 90.2]. If the exponent of A is 4, we can reduce to the exponent 2 case by
extending to the function field of the Severi-Brauer variety of A ⊗ A.

In what follows, we show 2-incompressibility for an infinite family of varieties
which includes the varieties of the form X2(A) (with ind A = 4) mentioned above.

Theorem 4.1. Let e = 2a, a ≥ 1. For a central division algebra A with indA = 2e,
the variety Xe := Xe(A) is 2-incompressible. Thus

cdim2(Xe) = cdim(Xe) = dim(Xe) = e(2e − e) = e2 = 4a.

We briefly recall some terminology from [5, §62 and §75]. Let X and Y be schemes
with dim X = e. A correspondence of degree zero δ : X  Y from X to Y is just a
cycle δ ∈ CHe(X × Y ). The multiplicity mult(δ) of such a δ is the integer satisfying
mult(δ) · [X] = p∗(δ), where p∗ is the push-forward homomorphism

p∗ : CHe(X × Y ) → CHe(X) = Z · [X].

The exchange isomorphism X × Y → Y × X induces an isomorphism

CHe(X × Y ) → CHe(Y × X)

sending a cycle δ to its transpose δt.
To prove that a variety X is 2-incompressible, it suffices to show that for any

correspondence δ : X  X of degree zero,

(3) mult(δ) ≡ mult(δt) (mod 2).

Indeed, suppose we have f : X ′ → X and a dominant g : X ′ → X with F (X ′)/F (X)
finite of odd degree. Let δ ∈ CH(X ×X) be the pushforward of the class [X ′] along
the induced morphism (g, f) : X ′ → X × X. By assumption, mult(δ) is odd, so by
(3) we have that mult(δt) is odd. It follows that f∗([X

′]) is an odd multiple of [X]
and in particular is nonzero, so f is dominant.

We will check that the condition (3) holds for the variety Xe. A correspondence
of degree zero δ : Xe  Xe is just an element of CHe2(Xe ×Xe). Using the method
of Chernousov and Merkurjev described in [2], we can decompose the Chow motive
of Xe × Xe as follows. See also [3] for examples of similar computations.

We first realize Xe as a projective homogeneous variety. Let n := indA = 2e =
2a+1. Let G denote the group PGL1(A), and let Π be a set of simple roots for the
root system Σ of G. If ε1, . . . , εn are the standard basis vectors of R

n, we may take

Π = {α1 :=ε1−ε2, . . . , αn−1 :=εn−1−εn}.

Then Xe is a projective G-homogeneous variety, namely the variety of all parabolic
subgroups of G of type S, for the subset S = Π\{αe} of the set of simple roots.

Let W denote the Weyl group of the root system Σ. There are e+1 double cosets
D ∈ WP \W/WP with representatives w as follows, where wαk

denotes the reflection
induced by the root αk.
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1

wαe

(wαewαe−1
)(wαe+1

wαe)

(wαewαe−1
wαe−2

)(wαe+1
wαewαe−1

)(wαe+2
wαe+1

wαe)

...

(wαe · · ·wα1
) · · · (wα2e−1

· · ·wαe)

The subset of Π associated to w = 1 is of course S = Π\{αe}. The general
nontrivial representative

w = w−1 = (wαe · · ·wαe−i
) · · · (wαe+i

· · ·wαe),

for i ∈ {0, . . . , e−1}, has the effect on R
n of switching the tuple of standard basis vec-

tors (εe−i, . . . , εe) with the tuple (εe+1, . . . , εe+1+i). The resulting subset associated
to w is therefore

Π\{αe−(i+1), αe, αe+(i+1)}

for i = 0, . . . , e − 2 and Π\{αe} for i = e − 1.
From Theorem 6.3 of [2], we deduce the following decomposition of the Chow

motive of Xe × Xe, where the relation between the indices i above and l below is
l = i + 1.

M(Xe × Xe) ≃ M(Xe) ⊕
e−1
⊕

l=1

M(Xe−l,e,e+l)(l
2) ⊕ M(Xe)(e

2)

This in turn yields a decomposition of the middle-dimensional component of the
Chow group of Xe × Xe.

CHe2(Xe × Xe) ≃ CHe2(Xe) ⊕
e−1
⊕

l=1

CH(e−l)(e+l)(Xe−l,e,e+l) ⊕ CH0(Xe)

It now suffices to check the congruence mult(δ) ≡ mult(δt) (mod 2) for δ in the
image of any of these summands. We treat the first and last summands separately
from the rest.

The embedding of the first summand CHe2(Xe) is induced by the diagonal mor-
phism Xe → Xe × Xe, so the multiplicities of δ and δt are equal by symmetry.

For the last summand CH0(Xe) we need the following fact.

Proposition 4.2. Any element of CH0(Xe) has even degree.

Proof. If CH0(Xe) has an element of odd degree, then there exists a field extension
K/F of odd degree over which Xe has a rational point. By [8, Prop. 1.17], indAK

divides e. Since the degree of K over F is relatively prime to ind A = 2e = 2a+1,
extension by K does not reduce the index of A [11, Th. 3.15a]. Thus indA = ind AK

divides e, a contradiction. �

Let the element γ ∈ CH0(Xe) have image δ ∈ CHe2(Xe×Xe). By the proposition,
deg(γ) is even. For some field E/F over which Xe has a rational point, we set
X̄e := (Xe)E . Since CH0(X̄e) is generated by a single element of degree 1, the image
of γ in CH0(X̄e) is divisible by 2. It follows that δ ∈ CHe2(X̄e × X̄e) is also divisible
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by 2 and, since multiplicity does not change under field extension, mult(δ) is even.
The same argument can be applied to δt, so mult(δ) ≡ 0 ≡ mult(δt) (mod 2).

The remaining summands are dealt with by the following proposition.

Proposition 4.3. Let Fl := Xd1,d2,...,dk
(A) with d := gcd(e, d1, d2, . . . , dk) < e, and

let the correspondence α : Fl  Xe × Xe induce an embedding

α∗ : CHr(Fl) →֒ CHe2(Xe × Xe).

Then for any δ in the image of α∗, mult(δ) ≡ 0 ≡ mult(δt) (mod 2).

Proof. Consider the diagram below of fiber products, where we select either of the
projections pi and choose the other morphisms accordingly.

(Fl)F (Xe)

((RRRRRRRRRRRRR

(Fl × Xe)F (Xe)
//

��

66lllllllllllll

(Xe)F (Xe)
//

��

SpecF (Xe)

��
Fl × Xe × Xe

//

��

Xe × Xe p2

p1 // Xe

Fl

Taking push-forwards and pull-backs, we get the following diagram which com-
mutes except for the triangle at the bottom. The push-forward by pi takes a cycle
δ ∈ CHe2(Xe ×Xe) to mult(δ) if we chose the first projection p1 or to mult(δt) if we
chose the second projection p2.

CH0

(

(Fl)F (Xe)

)

deg

**UUUUUUUUUUUUUUUUUUUUU

CH0

(

(Fl × Xe)F (Xe)

)

//

44iiiiiiiiiiiiiiii

CH0

(

(Xe)F (Xe)

)

deg
// Z

CHe2 (Fl × Xe × Xe) //

OO

CHe2 (Xe × Xe)
(mult)◦(transpose)

mult //

OO

Z

CHr(Fl)
α∗

99OO

Any δ ∈ im(α∗) also lies in the image of CHe2 (Fl × Xe × Xe), by the definition
of the push-forward. Chasing through the diagram, one sees that mult(δ) (and
similarly mult(δt)) must lie in deg CH0

(

(Fl)F (Xe)

)

. We will be done if we can show

that no element of CH0

(

(Fl)F (Xe)

)

has odd degree.
Note that

FlF (Xe) = Xd1,d2,...,dk
(A)F (Xe) ≃ Xd1,d2,...,dk

(

AF (Xe)

)

,

where AF (Xe) has index equal to gcd(2e, e) = e [12, Th. 2.5]. If some element of

CH0

(

(Fl)F (Xe)

)

has odd degree, then there exists a field extension K/F (Xe) of odd
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degree over which (Fl)F (Xe) has a rational point. By Proposition 2.2, Xd(AF (Xe))
also has a rational point over K. Thus indAK divides d < e, which contradicts
ind AF (Xe) = e, since an odd degree extension cannot reduce the index of AF (Xe)

[11, Th. 3.15a]. �

This completes the proof of the theorem.
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