
THERE IS NO “THEORY OF EVERYTHING” INSIDE E8

JACQUES DISTLER AND SKIP GARIBALDI

ABSTRACT. We analyze certain subgroups of real and complex forms of the Lie groupE8,
and deduce that any “Theory of Everything” obtained by embedding the gauge groups of
gravity and the Standard Model into a real or complex form ofE8 lacks certain representation-
theoretic properties required by physical reality. The arguments themselves amount to rep-
resentation theory of Lie algebras along the lines of Dynkin’s classic papers and are written
for mathematicians.

1. INTRODUCTION

Recently, the preprint [1] by Garrett Lisi has generated a lot of popular interest. It boldly
claims to be a sketch of a “Theory of Everything”, based on theidea of combining the local
Lorentz group and the gauge group of the Standard Model in a real form ofE8 (necessarily
not the compact form, because it contains a group isogenous to SL(2,C)). The purpose of
this paper is to explain some reasons why an entire class of such models—which include
the model in [1]—cannot work, using mostly mathematics withrelatively little input from
physics.

The mathematical set up is as follows. Fix a real Lie groupE. We are interested in
subgroupsSL(2,C) andG of E so that:

(ToE1) G is connected, reductive, compact, and centralizesSL(2,C)

We complexify and decomposeLie(E)⊗ C as a direct sum of representations ofSL(2,C)
andG. We identifySL(2,C) × C with SL2,C × SL2,C and write

(1.1) Lie(E) =
⊕

m,n≥1

m⊗ n⊗ Vm,n

wherem andn denote the irreducible representation ofSL2,C of that dimension andVm,n

is a complex representation ofG × C. (Physicists would usually write2 and2̄ instead of
2 ⊗ 1 and1 ⊗ 2.) Of course,

m⊗ n⊗ Vm,n ≃ n⊗m⊗ Vm,n

and since the action ofSL(2,C).G on Lie(E) is defined overR, we deduce thatVm,n ≃
Vn,m. We further demand that

V2,1 is a complex representation ofG, and(ToE2)

Vm,n = 0 if m+ n > 4.(ToE3)

We recall the definition of complex representation and explain the physical motivation for
these hypotheses in the next section. Roughly speaking, (ToE1) is a trivial requirement
based on trying to construct a Theory of Everything along thelines suggested by Lisi,
(ToE2) is the statement that the gauge theory (with gauge groupG) is chiral, as required by
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the Standard Model, and (ToE3) is the requirement that the model not contain any “exotic”
higher-spin particles. In fact, physics requires slightlystronger hypotheses onVm,n, for
m+ n = 4. We will not impose the stronger version of (ToE3).

Definition 1.2. A ToE subgroupof a real Lie groupE is a subgroup generated by a copy
of SL(2,C) and a subgroupG such that (ToE1), (ToE2), and (ToE3) hold.

Our main result is:

Theorem 1.3. There are no ToE subgroups in (the transfer of) the complexE8 nor in any
real form ofE8.

Notation. Unadorned Lie algebras and Lie groups mean ones over the realnumbers. We
use a subscriptC to denote complex Lie groups—e.g.,SL2,C is the (complex) group of
2-by-2 complex matrices with determinant 1. We can view ad-dimensional complex Lie
groupGC as a2d-dimensional real Lie group, which we denote byR(GC). (Algebraists
call this operation the “transfer” or “Weil restriction of scalars”.) We use the popular
notation ofSL(2,C) for the transferR(SL2,C) of SL2,C; it is a double covering of the
“restricted Lorentz group”, i.e., of the identity component SO(3, 1)0 of SO(3, 1).

1.4. Strategy and main results.Our strategy for proving Theorem 1.3 will be as follows.
We will first catalogue, up to conjugation, all possible embedding of SL(2,C) satifying
the hypotheses of (ToE3). The list is remarkably short. Specifically, every ToE subgroup
of E is contained inSL(2,C) · Gmax, whereGmax is the maximal compact, connected,
reductive subgroup of the centralizer ofSL(2,C) in E. The proof of Theorem 1.3 shows
that the only possibilities are:

E Gmax

E8(8) Spin(5) × Spin(7)
E8(−24) Spin(11) or Spin(9) × Spin(3)
R(E8,C) E7, Spin(13) or Spin(12).

We then note that the representation,V2,1, of Gmax (and hence, of anyG ⊆ Gmax) has a
self-conjugate structure. In other words, (ToE2) fails.

2. PHYSICS BACKGROUND

One of the central features of modern particle physics is that the world is described by
achiral gauge theory.

2.1.LetM a four dimensional pseudo-Riemannian manifold, of signature(3, 1), which we
will take to be oriented, time-oriented and spin. LetG be a compact Lie group. The data
of a gauge theory onM , with gauge groupG consists of a connection,A, on a principal
G-bundle,P → M , and some “matter fields” transforming as sections of vectorbundle(s)
associated to unitary representations ofG.

Of particular interest are thefermionsof the theory. The orthonormal frame bundle of
M is a principalSO(3, 1)0 bundle. A choice of spin structure defines a lift to a principal
Spin(3, 1)0 = SL(2,C) bundle. LetS± → M be the irreducible spinor bundles, asso-
ciated, via the defining two-dimensional representation and its complex conjugate, to this
SL(2,C) principal bundle.

Thefermions of our gauge theoryare denoted

ψ ∈ Γ(S+ ⊗ V ), ψ ∈ Γ(S− ⊗ V )

whereV → M is a vector bundle associated to a (typically reducible) representation,R,
of G.
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Definition 2.2. A real structureon a representationV (overC) is an antilinear map,J :
V → V , satisfyingJ2 = 1. Physicists call a representation possessing a real structure
real.

A quaternionic structureon a representationV (overC) is an antilinear map,J : V →
V , satisfyingJ2 = −1. Physicists call a representation possessing a quaternionic structure
pseudoreal.

Subsuming these two subcases, we will say that a representation V (overC) has aself-
conjugate structureif there is an antilinear mapJ : V → V , satisfyingJ4 = 1. Physicists
call a representationV , which does not possess a self-conjugate structure,complex.

For an alternative view, we suppose thatV is an irreducible representation (overC) of
a real reductive Lie groupG and exploit [2,§7]. If V has a real structureJ , then the subset
V ′ of elements ofV fixed byJ is a real vector space that is a representation ofG such that
EndG(V ′) = R andV ′ ⊗ C is canonically identified withV . A quaternionic structure on
V defines a real structure onV ⊕ V via (v1, v2) 7→ (Jv2,−Jv1) such that(V ⊕ V )′ is
irreducible withEndG((V ⊕ V )′) ∼= H. If V is complex, thenV ⊕ V has an essentially
unique real structure andEndG((V ⊕ V )′) ∼= C.

Definition 2.3. A gauge theory, with gauge groupG, is said to bechiral if the representa-
tion,R by which the fermions (2.1) are defined, is complex in the above sense. By contrast,
a gauge theory is said to benonchiral if the representationR in 2.1 has a self-conjugate
structure.

Note that whether a gauge theory is chiral depends cruciallyon the choice ofG. A
gauge theory might be chiral for gauge groupG, but nonchiral for a subgroupH ⊂ G,
because there exists a self-conjugate structure onR, compatible withH , even though no
such structure exists, compatible with the full groupG.

Conversely, suppose that a gauge theory is nonchiral for thegauge groupG. It is also
necessarily nonchiral for any gauge groupH ⊂ G.

2.4. GUTs.The Standard Model is a chiral gauge theory with gauge group

GSM := (SU(3) × SU(2) × U(1))/(Z/6Z)

Various grand unified theories (GUTs) proceed by embeddingGSM is some (usually sim-
ple) group,GGUT. Popular choices forGGUT areSU(5) [3], Spin(10), E6, and the Pati-
Salam group,(Spin(6) × Spin(4))/(Z/2Z) [4].

It is easiest to explain what the fermion representation ofGSM is after embeddingGSM

in GGUT := SU(5). LetW be the five-dimensional defining representation ofSU(5). The
representationR from 2.1 is the direct sum of three copies of

R0 = ∧2W ⊕W

Each such copy is called a “generation” and is 15-dimensional. One identifies each of the
15 weights ofR0 with left-handed fermions: 6 quarks (two in a doublet, each in three
colors), two leptons (e.g., electron and its neutrino), 6 antiquarks, and a positron. With
three generations,R is 45-dimensional.

For the other choices of GUT group, the analogue of a generation (R0) is higher-
dimensional, containing additional fermion which are not seen at low energies. When
decomposed underGSM ⊂ GGUT, the representation decomposes asR0 + R′, where
R′ is a real representation ofGSM. In Spin(10), a generation is the 16-dimensional
half-spinor representation. InE6, it is the 27, and for the Pati-Salam group, it is the
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(4, 1, 2) ⊕ (4, 2, 1) representation. In each case, these representations are complex rep-
resentations (in the above sense) ofGGUT, and the complex-conjugate representation is
called an “anti-generation.”

So far, we have described a chiral gauge theory in a fixed (pseudo) Riemannian structure
onM . Lisi’s proposal [1] is to try to combine the spin connectiononM , and the gauge
connection onP into a single dynamical framework. This motivates Definition 1.2 of a
ToE subgroup.

Fix a ToE subgroup—say, withG = GSM—in some real Lie groupE. The action of
central element−1 ∈ SL(2,C) provides aZ/2Z grading on the Lie algebra ofE. This
Z/2Z grading allows one to define a sort of superconnection associated toE (precisely
what sort of superconnection is explained in a blog post by the first author [5].) In the pro-
posal of [1], we are supposed to identify each of the generators ofLie(E) as either a boson
or a fermion. The Spin-Statistics Theorem [6] says that fermions transform as spinorial
representations ofSpin(3, 1); bosons transform as “tensorial” representations (represen-
tation which lift to the double cover,SO(3, 1)). To be consistent with the Spin-Statistics
Theorem, we must, therefore, require that the fermions belong to the−1-eigenspace of the
aforementionedZ/2Z action, and the bosons to the+1-eigenspace.

In fact, to agree with 2.1, we should require that the−1 eigenspace (when tensored with
C) decompose as a direct sum of two-dimensional representations (overC) of SL(2,C),
corresponding to “left-handed” and “right-handed” fermions, in the sense of 2.1.

Remark2.5. In the language of (ToE3),m + n = odd are fermions andm + n = even
are bosons. In Lisi’s setup, the bosons are 1-forms onM , with values in a vector bundle
associated to the aforementionedSpin(3, 1)0 principal bundle via them⊗n representation
(with m + n even). The casem + n = 4 is special; these correspond to the gravitational
degrees of freedom in Lisi’s theory.(3 ⊗ 1) ⊕ (1 ⊗ 3) is the adjoint representation; these
correspond to the spin connection. The 1-form with values inthe 2 ⊗ 2 representation
is the vierbein. It is a serious result from physics (see sections 13.1, 25.4 of [7]) that a
unitary interacting theory is incompatible with massless particles in higher representation
(m+n ≥ 6). But, in light of the difficulties in making physical sense of the bosonic sector
of Lisi’s theory, it would be cleaner — meaning demanding less input from physics— to
focus on the fermionic sector and forbid the presence of gravitinos (m + n = 5) or yet-
higher spin fermionic fields. (ToE3), as stated, forbids both. In §9, we will revisit the
possibility of admitting gravitinos.

2.6. Dimension considerations.Elaborating on the discussion above, in a Theory of
Everything one wishes to identify weight vectors inV2,1 andV1,2 with left- and right-
handed fermions. As there are3 × 15 = 45 known fermions of each chirality, we find that
the−1-eigenspace must have dimension at least2 × 2 × 45 = 180.

In caseE is a real form ofE8, the−1-eigenspace has dimension 112 or 128 (this is
implicit in Elie Cartan’s classification of real forms ofE8 as in [8, p. 518, Table V]),1 so no
identification of the fermions as distinct weight vectors inLie(E) (as in Table 9 in [1]) can
be compatible with the Spin-Statistics Theorem and the existence of three generations.

1Alternatively, the marvelous bound on the trace from [9, Th.3] implies that for every elementx of order 2
in a reductive complex Lie groupG, the−1-eigenspace ofAd(x) has dimension≤ (dim G + rank G)/2. In
particular, whenG is a real form ofE8, the−1-eigenspace has dimension≤ 128.
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3. sl2 SUBALGEBRAS AND THEDYNKIN INDEX

3.1. In [10, §2], Dynkin defined theindexof an inclusionf : g1 →֒ g2 of simple complex
Lie algebras as follows. Fix a Chevalley basis of the two algebras, so that the Cartan
h1 of g1 is contained in the Cartanh2 of g2. The Chevalley basis identifieshi with the
complexificationQ∨

i ⊗ C of the coroot latticeQ∨
i of gi, and the inclusionf gives an

inclusionQ∨
1 ⊗ C →֒ Q∨

2 ⊗ C. Fix the Weyl-invariant inner product( , )i onQ∨
i so that

(α∨, α∨)i = 2 for short corootsα∨. Then theDynkin indexof the inclusion is the ratio
(f(α∨), f(α∨))2/(α

∨, α∨)1 whereα∨ is a short coroot ofg1. For example, the irreducible
representationsl2 → sln has index

(

n+1
3

)

by [10, Eq. (2.32)].

3.2. We now consider the case whereg1 = sl2 and write simplyg andQ∨ for g2 andQ∨
2 .

In §8 of that same paper (or see [11,§VIII.11]), Dynkin proved that after conjugating by
an element of the automorphism group ofg, one can assume that the Cartan subalgebra of
sl2 is contained in the given Cartan subalgebra ofg and that the imageh of a simple root
of sl2 in Q∨ ⊗ C satisfies the strong restrictions:

h =
∑

δ∈∆

pδδ
∨ for pδ real and non-negative [10, Lemma 8.3],

where∆ denotes the set of simple roots ofg and further that

δ(h) ∈ {0, 1, 2} for all δ ∈ ∆.

But note that for each simple rootδ, the fundamental irreducible representation ofg with
highest weight dual toδ has weightpδ (as a representation ofsl2), hencepδ is an integer.

As a consequence of this and specifically [10, Lemma 8.2], onecan identify ansl2-
subalgebra ofg up to conjugacy by writing the Dynkin diagram ofg and putting the number
δ(h) at each vertex; this is themarked Dynkin diagramof thesl2 subalgebra.

Here is an alternative formula for computing the index of ansl2 subalgebra from its
marked Dynkin diagram. Writeκg andm∨ for the Killing form and dual Coxeter number
of g. We have:

(3.3) (Dynkin index) =
1

2
(h, h) =

1

4m∨
κg(h, h) =

1

2m∨

∑

positive rootsα of g

α(h)2,

where the second equality is by, e.g., [12,§5], and the third is by the definition ofκg. One
can calculate the numberα(h) by writing α as a sum of positive roots and applying the
marked Dynkin diagram forh.

Lemma 3.4. For every simple complex Lie algebrag, there is a unique copy ofsl2 in g of
index1, up to conjugacy.

Proof. The index of ansl2-subalgebra is(h, h)/2, where the defining vectorh belongs to
the coroot latticeQ∨. If g is not of type B, then the coroot lattice is not of type C, and the
claim amounts to the statement that the vectors of minimal length in the coroot lattice are
actually roots. This follows from the constructions of the root lattices in [13,§12.1].

Otherwiseg has type B and isson for some oddn ≥ 5. The conjugacy class of ansl2-
subalgebra is determined by the restriction of the naturaln-dimensional representation;
they are parameterized by partitions ofn (i.e.,

∑

ni = n) so thatn1 ≥ · · · ≥ ns >
0, n1 > 1, and there are an even number of evenni’s [14, §6.2.2]. The index of the
compositionsl2 → son → sln is then

∑
(

ni+1
3

)

; we must classify those partitions such
that this sum equals the Dynkin index ofson → sln, which is 2. The unique such partition
is 2 ≥ 2 ≥ 1 ≥ · · · ≥ 1 > 0. �
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If g has type C,F4, or G2, then the same argument shows that there is up to conjugacy
a unique copy ofsl2 in g with index 2, 2, or 3 respectively. We will see below that forg

of typeB6, there are two conjugacy classes ofsl2-subalgebras of index 2. This amounts
to the fact that there are vectors in theC6 root lattice that are not roots but have the same
length as a root, cf. Exercise 5 in§12 of [13].

4. COPIES OFsl2,C IN THE COMPLEX E8

We first prove some facts about copies ofsl2,C in the complex Lie algebrae8 of typeE8.
The 69 conjugacy classes of such are listed in Table 20 on p. 182 of [10]; we are interested
in just a few of these, without using Dynkin’s table.

Fix a pinning fore8; this includes a maximal toral subalgebrah, a set of simple roots
D := {αi | 1 ≤ i ≤ 8} (numbered

(4.1)
1 3 4 5 6 7 8

2

as in [15]), and fundamental weightsωi dual toαi. As all roots of theE8 root system have
the same length, we can and do identify the root system with its inverse root system.

Example 4.2. Taking any root ofE8, one can generate a copy ofsl2,C in e8 with index 1.
Doing this with the highest root gives ansl2,C with marked Dynkin diagram

index 1:
0 0 0 0 0 0 1

0

Every index 1 copy ofsl2 in e8 is conjugate to this one by Lemma 3.4.

Example 4.3. One can find a copy ofsl2,C × sl2,C in e8 by taking the first copy to be
generated by the highest root ofE8 and the second copy to be generated by the highest
root of the obviousE7 subsystem. If you embedsl2,C diagonally in this algebra, you find
a copy ofsl2,C with index 2 and marked Dynkin diagram

index 2:
1 0 0 0 0 0 0

0

Proposition 4.4. The following collections of copies ofsl2,C in e8 are the same:

(1) copies such that±1 are weights ofe8 (as a representation ofsl2,C) and no other
odd weights occur.

(2) copies such that every weight ofe8 is in {0,±1,±2}.
(3) copies such that the inclusionsl2,C ⊂ e8 has Dynkin index1 or 2.
(4) copies ofsl2,C conjugate to one of those defined in Examples 4.2 or 4.3.

The equality of (3) and (4) says thatsl2,C’s of index 1 or 2 are determined (up to conju-
gacy) by their index. This is a small part of the data contained in Dynkin’s Table 20, which
is not used in our proof.

Proof of Proposition 4.4.One easily checks that (4) is contained in (1)–(3); we prove the
opposite inclusion.

For (3), we identifyh with the complexificationQ⊗ C of the (co)root latticeQ, hence
h with

∑

αi(h)ωi. By (3.3), the index ofh satisfies:

1

60

∑

α

α(h)2 =
1

60

∑

α

(

∑

i

αi(h)〈ωi, α〉

)2

≥
∑

i

(

αi(h)
2
∑

α

〈ωi, α〉
2

60

)
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where the sums vary over the positive roots. We calculate foreach fundamental weightωi

the number
∑

α 〈ωi, α〉
2
/60:

(4.5)
2 7 15 10 6 3 1

4

As the numbersαi(h) are all 0, 1, or 2, the numbers (4.5) show thath for an sl2,C with
Dynkin index 1 or 2 must beω1 (index 2) orω8 (index 1).

For (2), the highest root̃α of E8 is α̃ =
∑

i ciαi, wherec1 = c8 = 2 and the otherci’s
are all at least 3. As̃α(h) is a weight ofe8 relative to a given copy ofsl2,C, we deduce that
ansl2,C as in (2) must haveh = ω1 or ω8, as claimed.

Suppose now that we are given anh for a copy ofsl2,C as in (1). As±1 occur as
weights, there is at least one 1 in the marked Dynkin diagram.

But note that there cannot be three or more 1’s in the marked Dynkin diagram forh.
Indeed, for every connected subsetS of vertices of the Dynkin diagram ofE8,

∑

i∈S αi is
a root [15,§VI.1.6, Cor. 3b]. If the number of 1’s in the marked diagram ofh is at least
three, then one can pickS so that it meets exactly three of theαi’s with αi(h) = 1, in
which case

∑

i∈S αi(h) is odd and at least 3, violating the hypothesis of (1).
For sake of contradiction, suppose that there are two 1’s in the marked diagram forh. If

α8(h) andαi(h) are the two 1’s, then one can find a rootα of E8 where〈ωi + ω8, α〉 is odd
and at least 3, i.e., the coefficients ofαi andα8 in α have opposite parities and sum at least
3. This is a contradiction, so we may assume that both 1’s in the marked Dynkin diagram
lie in theE7 subdiagram. Repeating this argument with smaller and smaller subsystems
shows the contradiction.

We are left with the case the there is exactly one 1 in the marked diagram forh. If
αi(h) = 1 for somei 6= 1, 8, then we find a contradiction because there is a rootα of E8

with αi-coordinate 3. Thereforeαi(h) = 1 only for i = 1 or 8 and not for both. By the
fact used two paragraphs above,β :=

∑

i αi is a root ofE8, soβ(h) =
∑

αi(h) is odd
and must be 1. It follows thath = ω1 or ω8. �

4.6. Centralizer for index 1. Thesl2,C of index 1 ine8 has centralizer the regular subalge-
brae7 of typeE7. Indeed, it is clear thate7 centralizes thissl2,C, and converselye7 × sl2,C

is a maximal proper subalgebra ofe8, so the centralizer cannot be any larger.

5. INDEX 2 COPIES OFsl2,C IN THE COMPLEX E8

Lemma 5.1. The centralizer of the index 2sl2,C in e8 from Example 4.3 is a copy ofso13

contained in the regular subalgebraso14 of e8.

Proof. The centralizer of thesl2,C of index 2 ine8 is contained in the centralizer of the
defining vectorh; this centralizer is reductive with semisimple part the regular subalgebra
so14 of typeD7. The centralizer ofsl2,C contains the centralizer of thesl2,C × sl2,C from
Example 4.3, which is the regular subalgebraso12 of type D6. Furthermore, using the
standard representation theory ofsl2,C, it is easy to see that that the the centralizer ofsl2,C

has dimension 78 (as is implicitly claimed in the statement of the lemma).
The regularso14 does not centralize thissl2,C. On the other hand, the centralizer is

strictly bigger thanso12 because it includes a copy ofsl2,C obtained by embedding diago-
nally in thesl2,C × sl2,C generated by nilpotents corresponding to the highest root of the
D7 subsystem and−α8. (To check that thissl2,C centralizes the index 2 copy we started
with, it is helpful to have a table of structure constants as in [16].) Together withso12, this
generates anso13 subalgebra ofso14. Dimension count gives the claim. �
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5.2. Implicit in the proof above is an inclusion ofso13 in e8 and a comparison of the
pinnings of the two algebras, and in particular an inclusionof coroot lattices in terms of
those pinnings. Number the simple roots ofso13 according to the diagram

1 2 3 4 5 6
>r r r r r r

We writeβ∨
i for the simple coroot corresponding to the simple rooti. Here is a translation

table between the coroots ofso13 and the (co)roots ofe8:

so13 β∨
1 β∨

2 β∨
3 β∨

4 β∨
5 β∨

6

e8 α3 α4 α5 α6 α7 α2 + α3 + 2α4 + 2α5 + 2α6 + 2α7

The index 2sl2,C and the copy ofso13,C give ansl2,C × so13,C subalgebra ofe8,C, and
as a representation,e8,C decomposes as a direct sum of irreducibles:

1 ⊗ so13,C ⊕ 2 ⊗ (spin) ⊕ 3 ⊗ 1 ⊕ 3 ⊗ (vector)

Example 5.3. By Dynkin’s game of adding the highest root to the Dynkin diagram and
deleting a vertex as in [10,§5], so13,C contains a maximal subalgebraso8,C×sp4,C. In turn,
so8 contains a maximal subalgebrasl2 × sp4 [17, Th. 1.4]. This gives ansl2 × sp4 × sp4

subalgebra ofso13.
We remark that thissl2 has index 2 ine8. As the inclusionsso8 ⊂ so13 ⊂ e8 have index

1, it suffices to check thatsl2 has index 2 inso8. This follows from the fact that the adjoint
representation ofso8 has index 12, whereas its restriction tosl2 decomposes as six copies
of the 3-dimensional irreducible representation and a 10-dimensional trivial representation
[18, p. 260], so has index6 · 4 + 10 · 0 = 24.

The main result of this section is the following:

Proposition 5.4. Up to conjugacy, there is a unique copy ofSL2,C × SL2,C in E8,C so that
each inclusion ofSL2,C in E8,C has index 2. The Lie algebra of the centralizer of this
SL2,C × SL2,C is ansp4,C × sp4,C subalgebra ofso13,C in e8.

Proof. An analysis similar to the one in the proof of Proposition 4.4—but more compli-
cated because there is more than one root length andSpin13 has a nontrivial center—shows
that there are two conjugacy classes of copies ofsl2 in so13 of index 2, corresponding to
marked Dynkin diagrams

(a) 2 0 0 0 0 0 and (b) 0 0 0 1 0 0

We can pair each of (a) and (b) with the copy ofsl2 from Example 4.3 to get ansl2 × sl2
subalgebra ofe8 where bothsl2’s have index 2. Clearly, these represent the only twoE8-
conjugacy classes of such subalgebras. With the marked Dynkin diagram in hand, it is not
difficult to calculate the decomposition ofe8 into a direct sum of irreducible representations
of sl2 × sl2.

In case (a), every irreducible summandm⊗ n hasm+ n even. Therefore, this copy of
sl2 × sl2 is the Lie algebra of a subgroup ofE8 isomorphic to(SL2 × SL2)/(−1,−1).

In case (b), we have the following table of multiplicities for m⊗ n:

(5.5)

1 2 3 m
1 20 20 6

n 2 20 16 4
3 6 4 0

In particular, it is the Lie algebra of a copy ofSL2 × SL2 in E8. Combining thesl2’s from
Examples 4.3 and 5.3 gives ansl2× sl2 subalgebra with bothsl2’s of index 2 and the same
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decomposition ofe8 into irreducible representations, so it is in the same conjugacy class.
Clearly, its centralizer contains the copy ofsp4 × sp4 from Example 5.3, and the number
20 in the upper-left corner of (5.5) shows thatsp4 × sp4 is the whole centralizer. �

5.6. We can decomposee8 into a direct sum of irreducible representations of thesl2 ×
sl2 × sp4 × sp4 subalgebra from the proposition by combining the decomposition of e8
into irreducible representations ofsl2 × so13 from 5.2 with the tables in [18]. Recall that
sp4 has two fundamental irreducible representations: one thatis 4-dimensional symplectic
and another that is 5-dimensional orthogonal; we denote them by their dimensions. With
this notation and 1.1, we find:

V2,1 = 5 ⊗ 4, V1,2 = 4 ⊗ 5, V2,3 = 1 ⊗ 4, and V3,2 = 4 ⊗ 1.

6. COPIES OFSL(2,C) IN A REAL FORM OF E8

Suppose now that we have a copy ofSL(2,C) inside a real Lie groupE of type E8.
Over the complex numbers, we decomposeLie(E) ⊗ C into a direct sum of irreducible
representations ofSL(2,C) × C ∼= SL2,C × SL2,C; each irreducible representation can be
written asm⊗ n wherem andn denote the dimension of an irreducible representation of
the first or secondSL2,C respectively. The goal of this section is to prove:

Proposition 6.1. Maintain the notation of the previous paragraph. IfLie(E) contains no
irreducible summandsm⊗nwithm+n > 4, then the identity component of the centralizer
of SL(2,C) in E is a

(1) a regular subgroupSpin(7, 5) if E is split; or
(2) a regular subgroupSpin(9, 3) or Spin(11, 1) if the Killing form of Lie(E) has

signature−24.

Proof. Complexifying the inclusion ofSL(2,C) in E and going to Lie algebras gives an
inclusion ofsl2,C × sl2,C in the complex Lie algebrae8 from §4. The hypothesis on the
irreducible summandsm⊗n amounts to the statement that each of the twosl2,C’s has index
1 or 2 by Proposition 4.4. As complex conjugation interchanges the two components, they
must have the same index.

Suppose first that bothsl2’s have index 1. Lemma 3.4 (twice) gives that thissl2 × sl2 is
conjugate to the one generated by the highest root ofE8 from Example 4.2 (so the second
sl2 belongs to the centralizer of typeE7) and by the highest root of theE7 subsystem and
makes up the first two summands of ansl2 × sl2 × so12 subalgebra as in [10, pp. 147,
148]. As this subalgebra has rank 8, it follows that the Lie algebra of the centralizerz of
SL(2,C) in E is a real form ofspin12.

We can decomposeLie(E)⊗C into irreducible representations of(sl2×sl2×spin12)⊗C

using the tables in [18] to find the adjoint representation plus

2 ⊗ 1 ⊗ S+, 1 ⊗ 2 ⊗ S−, and 2 ⊗ 2 ⊗ V,

whereS± denotes the half-spin representations ofspin12 andV is the vector representa-
tion. ButLie(E) is a real representation ofz, so we deduce thatV is also a real represen-
tation of z but S+ andS− are not; they are interchanged by the Galois action. The first
observation shows thatz is spin(12 − a, a) for some0 ≤ a ≤ 6. The second shows thata
must be 1, 3, or 5, as claimed.

It remains to prove the correspondence betweena and the real forms ofE8. Fora = 5,
this is clear: the subgroup generated bySL(2,C) andSpin(7, 5) has real rank 6, so it can
only be contained in the split real form. Now suppose thata = 3 or 1 and thatSL(2,C)
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is in the splitE8; we will obtain a contradiction. OverC, SL(2,C) is conjugate to the
copy of SL2,C × SL2,C in E8,C generated by the highest root ofE8 and the highest root
of the natural subsystem of typeE7. One calculates using the tables in [15], e.g., that the
element−1 ∈ SL(2,C), equivalently,(−1,−1) ∈ SL2 × SL2 is hα2

(−1)hα3
(−1) where

hαi
is the cocharacter corresponding to the corootα∨

i as in [19]. That is, the subgroup
fixed by conjugation by this−1 has root system consisting of rootsα such that〈ω1, α〉 is
even. These roots form the naturalD8 subsystem ofE8 and ourSL(2,C) · Spin(12− a, a)
is a standard subgroup. The vector representation of thisD8 restricts to a sum of the
vector representation ofSpin(12 − a, a) and the 4-dimensional vector representation of
SL(2,C) (which factors throughSO(3, 1)). In particular, this representation is real, so this
D8 subgroup is, according to [20, p. 161], isogenous toSO(8, 8). But then the invariant
symmetric bilinear form on the vector representation has signature 0 but restricts to have
signature±(12 − 2a) ∈ {±6,±10} and±2 on each summand, which cannot add up to
get 0. This is a contradiction, so fora = 3 or 1, the real form ofE8 is neither split nor
compact.

Now suppose that bothsl2’s have index 2. When we decomposee8 as in 1.1, we find
the representation2⊗3 with positive multiplicity 4 by (5.5), which violates our hypothesis
on theSL(2,C) subgroup ofE. �

7. NO THEORY OFEVERYTHING IN A REAL FORM OF E8

We now prove the second claim in Theorem 1.3, namely that eachreal formE of E8

contains no ToE subgroups. SupposeE contains a copy ofSL(2,C) (soE is non-compact)
and a subgroupG satisfying (ToE1) and (ToE3). We will show that (ToE2) fails.

The−1-eigenspace inLie(E) is a real representation ofSL(2,C) · G. By Proposition
6.1,G is contained in a copy ofSpin(12 − a, a) for a = 1, 3, or 5. As in the proof of
Proposition 6.1, there is a representationW of SL(2,C)× Spin(12− a, a) defined overR
that is isomorphic to

(2 ⊗ 1 ⊗ S+) ⊕ (1 ⊗ 2 ⊗ S−)

overC. NowG is contained in the maximal compact subgroup ofSpin(12 − a, a), i.e.,
Lie(G) is a subalgebra ofso(11), so(9)×so(3), orso(7)×so(5). The restriction of the two
half-spin representations ofSpin(12 − a, a) to the compact subalgebra are equivalent [18,
p. 264], and we see that in each case the restriction isquaternionic. (To see this, one uses
the standard fact that the spin representation ofso(2ℓ+1) is real forℓ ≡ 0, 3 (mod 4) and
quaternionic forℓ ≡ 1, 2 (mod 4).) That is, the restrictions ofS+, S−, and their complex
conjugates to the maximal compact subgroup are all equivalent (overC), hence the same
is true for their further restrictions toG, and (ToE2) fails. �

Remark7.1. It is worthwhile noting that, in each of the three cases, it ispossible to embed
GSM in the centralizer, thus showing that (ToE1) is satisfied. Given such an embedding, a
simple computation verifies explicitly thatS+ has a self-conjugate structure as a represen-
tation ofGSM.

First considerSpin(11, 1). There is an obvious embedding ofGGUT := Spin(10).
Under this embedding,S+ decomposes as the direct sum of the two half-spinor represen-
tations,i.e.as a generation and an anti-generation.

For Spin(7, 5), there is an obvious embedding of the Pati-Salam group,GGUT :=
(Spin(6) × Spin(4))/(Z/2Z). Again,S+ decomposes as the direct sum of a generation
and an anti-generation.
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Finally,Spin(3, 9) contains(SU(3)× SU(2)× SU(2)×U(1))/(Z/6Z) as a subgroup.
Under this subgroup,

S+ = (3, 2, 2)1/6 ⊕ (3, 2, 2)−1/6 + (1, 2, 2)−1/2 + (1, 2, 2)1/2

where the subscript indicates theU(1) weights, and the overall normalization is chosen
to agree with the physicists’ convention for the weights of the Standard Model’sU(1)Y .
Embedding theSU(2) of the Standard model in one of the twoSU(2)s, we obtain an
embedding ofGSM ⊂ Spin(3, 9) where, againS+ has a self-conjugate structure as a
representation ofGSM.

8. NO THEORY OFEVERYTHING IN COMPLEX E8

We now complete the proof of Theorem 1.3 by showing that thereare no ToE subgroups
in the transferE := R(E8,C) of the complex Lie group of typeE8.

8.1. First, recall the transferR(GC) of a complex groupGC as described, e.g., in [21,
§2.1.2]. Its complexification can be viewed asGC ×GC, where complex conjugation acts
via

(8.2) (g, g′) = (g′, g).

One can viewR(GC) as the subgroup of the complexification consisting of elements fixed
by (8.2).

Now consider an inclusionφ : SL(2,C) = R(SL2,C) →֒ R(E8,C). Complexifying, we
identifyR(SL2,C) × C with SL2,C × SL2,C and similarly forR(E8,C) and write outφ as:

(8.3) φ(g1, g2) = (φ1(g1)φ2(g2), ψ1(g1)ψ2(g2))

for some homomorphismsφ1, φ2, ψ1, ψ2 : SL2,C → E8,C. As φ is defined overR, we
have:

φ(g1, g2) = φ(g2, g1) = (ψ1(g2)ψ2(g1), φ1(g2)φ2(g1)),

and it follows thatψ1(g1) = φ2(g1) andψ2(g2) = φ1(g2). Conversely, given any two
homomorphismsφ1, φ2 : SL2,C → E8,C (overC) with commuting images, the same equa-
tions define a homomorphismφ : SL(2,C) → R(E8,C) defined overR.

8.4. Plan of the proof. Now suppose that we have a subgroupSL(2,C) · G of R(E8,C)
satisfying (ToE1) and (ToE3). WriteC for the identity component of the centralizer of the
image of the map(φ1, φ2) : SL2,C × SL2,C → E8,C from (8.3). Clearly,G is contained in
the transferR(C) of C. In each of the cases below, we verify that

(8.5) C is semisimple,

so the maximal compact subgroup ofR(C) is the compact real formCR ofC. Furthermore,
in each of the cases below, we will observe that

(8.6) −1 is in the Weyl group ofC.

It follows thatCR is an inner form, hence every irreducible representation ofCR is real
or quaternionic, hence every representation ofCR is self-conjugate. That is, (ToE2) fails,
which is the desired contradiction.

8.7. Case 1:φ1 or φ2 is trivial. Consider the easiest-to-understand case whereφ1 or φ2

is the zero map, sayφ2. That is,φ is the transfer of a homomorphismφ1 : SL2,C → E8,C,
which by Proposition 4.4 has index 1 or 2.

If φ1 has index 1, thenC is simply connected of typeE7, hence (8.5) and (8.6) hold. If
φ1 has index 2, thenC is isogenous toSpin13,C by Lemma 5.1, and again (8.5) and (8.6)
hold.
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8.8. Case 2:φ1 and φ2 are injections. Finally, we consider the case whereφ1 andφ2 are
both injections. Again, (ToE3) and Proposition 4.4 impliesthatφ1 andφ2 have Dynkin
index 1 or 2.

If φ1 andφ2 both have index 1, then overC this is the same embedding ofSL2,C × SL2,C

in E8,C as the one in the proof of Proposition 6.1. The centralizerC is the standardD6

subgroup ofE8,C.
If φ1 andφ2 both have index 2, thenφ1 × φ2 gives an embedding as in Proposition 5.4,

andC has Lie algebrasp4,C × sp4,C of typeB2 × B2. Note that (ToE3) fails in this case
by (5.5).

Suppose finally thatφ1 has index 1 andφ2 has index 2. We conjugate so thatφ2(sl2) is
the copy ofsl2 from Example 4.3, and (by Lemma 3.4 for the centralizerso13 of φ2(sl2))
we can takeφ1(sl2) to be a copy ofsl2 generated by the highest root ofSpin13. Calculating
the weights of the representation of thissl2 × sl2 on e8 gives the following decomposition
into irreducibles:

(8.9)

1 2 3 m
1 39 18 1

n 2 32 16 0
3 10 2 0

with the same notation as (5.5). In particular, theA1 × B4 subgroup ofSpin13 that cen-
tralizes the image ofφ1 × φ2 is all of the identity componentC of the centralizer inE8.
Again (8.5) and (8.6) hold. (Of course, (8.9) shows that (ToE3) fails anyway.)

This completes the proof of Theorem 1.3. �

9. RELAXING (TOE3)

Technically,(m,n) = (2, 3) and(3, 2) arepossiblein an interacting theory, but only in
the presence of local supersymmetry (i.e., in supergravitytheories) [22]. Lisi’s framework
is not compatible with local supersymmetry, so we excluded this possibility above. If we
relax (ToE3) by replacing it with

(ToE3’) V1,4 = V4,1 = 0 andVm,n = 0 if m+ n > 6

then we still don’t find anything further. More precisely, wehave the following strength-
ening of Theorem 1.3.

Theorem 9.1. There are no subgroupsSL(2,C) ·G satisfying (ToE1), (ToE2), and (ToE3’)
in the (transfer of the) complexE8 or any real form ofE8.

Proof. Note that (ToE3’) still forces that in the decomposition ofLie(E), the representation
Vm,n = 0 if m > 3 or n > 3, so each of the twosl2,C summands in the complexification
of SL(2,C) have index 1 or 2 by Proposition 4.4. Looking back, we see thatwe already
proved the theorem for the transfer of the complexE8 in §8.

Suppose we have anSL(2,C) · G subgroup of a real formE of E8. Imitating the
proof in §7, we appeal to Proposition 6.1. We now have the additional possibility that
the complexificationSL2,C × SL2,C of the SL(2,C) subgroup is such that bothSL2,C’s
have index 2 as in§5. The centralizer of such anSL(2,C) is a real form ofsp4,C × sp4,C

by Proposition 5.4. When we decomposee8 as in 1.1, we findV2,1 andV1,2 as in 5.6.
As complex conjugation interchanges these two representations, it follows that complex
conjugation interchanges the twosp4,C factors, i.e., the centralizer ofSL(2,C) has identity
component the transferR(Sp4,C) of Sp4,C. Its maximal compact subgroup is the compact
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form of Sp4,C (also known asSpin(5)), all of whose irreducible representations are self-
conjugate. Therefore, (ToE2) fails. �

Remark9.2. As we have already mentioned, weakening (ToE3) to (ToE3’) isonly consis-
tent in supergravity theories. In the case at hand, withGmax = Spin(5), we find

(9.3) V3,2 ≃ V2,3 = 4, V2,1 ≃ V1,2 = 4 ⊕ 16

where we have indicated the irreducible representations ofSpin(5) by their dimensions.
Since the gravitinos transform nontrivially underGmax and, given their multiplicity, the
only consistent possibility would be a gaugedN = 4 supergravity theory (for a recent
review of such theories, see [23]). Unfortunately, the restof the matter content (it suffices
to look atV2,1) is not compatible withN = 4 supersymmetry. Even if it were,N =
4 supersymmetry would, of course, necessitate that the theory be non-chiral, making it
unsuitable as a candidate Theory of Everything.

10. CONCLUSION

In paragraph 2.6 above, we observed by an easy dimension count that no proposed
Theory of Everything constructed using subgroups of a real formE of E8 has a sufficient
number of weight vectors in the−1-eigenspace to identify with all known fermions. The
proof of our Theorem 1.3 was quite a bit more complicated, butit also gives much more.
It shows that you cannot obtain achiral gauge theory forany ToE subgroupof E, whether
E is a real form or the complex form ofE8. In particular, it is impossible to obtain even
the one-generation Standard Model in this fashion.
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[21] V. Platonov and A. Rapinchuk,Algebraic groups and number theory. Academic Press, Boston, 1994.
[22] M. T. Grisaru and H. N. Pendleton, “Soft spin 3/2 fermions require gravity and supersymmetry,”

Phys. Lett.B67 (1977) 323.
[23] J. Schon and M. Weidner, “Gauged N=4 supergravities,”JHEP05 (2006) 034,

arXiv:hep-th/0602024 .

(DISTLER) THEORY GROUP, DEPARTMENT OFPHYSICS, AND TEXAS COSMOLOGY CENTER, UNIVER-
SITY OF TEXAS, AUSTIN, TX 78712

E-mail address: distler@golem.ph.utexas.edu

(GARIBALDI ) DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE, 400 DOWMAN DR., EMORY

UNIVERSITY, ATLANTA , GA 30322
E-mail address: skip@member.ams.org

http://dx.doi.org/10.1016/0370-2693(77)90383-5
http://arxiv.org/abs/hep-th/0602024

	1. Introduction
	Notation

	2. Physics background
	3. sl2 subalgebras and the Dynkin index
	4. Copies of sl2,C in the complex E8
	5. Index 2 copies of sl2,C in the complex E8
	6. Copies of `39`42`"613A``45`47`"603ASL(2, C) in a real form of E8
	7. No Theory of Everything in a real form of E8
	8. No Theory of Everything in complex E8
	9. Relaxing (ToE3)
	10. Conclusion
	References

