
Excellent connections in the motives of

quadrics

A.Vishik

Abstract

In this article we prove the Conjecture claiming that the con-

nections in the motives of excellent quadrics are minimal ones for

anisotropic quadrics of given dimension. This imposes severe restric-

tions on the motive of arbitrary anisotropic quadric. As a corollary

we estimate from below the rank of indecomposable direct summand

in the motive of a quadric in terms of its dimension. This generalises

the well-known Binary Motive Theorem. Moreover, we have the de-

scription of Tate-motives involved. This, in turn, gives another proof

of Karpenko’s Theorem on the value of the first higher Witt index.

But also other new relations among higher Witt indices follow.

1 Introduction

Let Q be smooth projective quadric of dimension n over the field k of char-
acteristic not 2, and M(Q) be its motive in the category Chow(k) of Chow
motives over k (see [14], or Chapter XII of [2]). Over the algebraic closure
k, our quadric becomes completely split, and so, cellular. This implies that
M(Q|k) becomes isomorphic to a direct sum of Tate motives:

M(Q|k)
∼= ⊕λ∈Λ(Q)Z(λ)[2λ],

where Λ(Q) = Λ(n) is {i| 0 6 i 6 [n/2]}
⊔

{n − i| 0 6 i 6 [n/2]}. But
over the ground field k our motive could be much less decomposable. The
Motivic Decomposition Type invariant MDT (Q) measures what kind of de-
composition we have in M(Q). Any direct summand N of M(Q) also splits
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over k, and N |k
∼=

∑

λ∈Λ(N) Z(λ)[2λ], where Λ(N) ⊂ Λ(Q) (see [14] for de-

tails). We say that λ, µ ∈ Λ(Q) are connected, if for any direct summand
N of M(Q), either both λ and µ are in Λ(N), or both are out. This is an
equivalence relation, and it splits Λ(Q) = Λ(n) into disjoint union of con-
nected components. This decomposition is called the Motivic Decomposition
Type. It interacts in a nontrivial way with the Splitting pattern, and using
this interaction one proves many results about both invariants. The (abso-
lute) Splitting pattern j(q) of the form q is defined as an increasing sequence
{j0, j1, . . . , jh} of all possible Witt indices of q|E over all possible field ex-
tensions E/k. We will also use the (relative) Splitting patter i(q) defined as
{i0, . . . , ih} := {j0, j1 − j0, j2 − j1, . . . , jh − jh−1}.

Let us denote the elements {λ| 0 6 λ 6 [n/2]} of Λ(n) as λlo, and the
elements {n−λ| 0 6 λ 6 [n/2]} as λup. See the Appendix for the detailed ex-
planation. The principal result relating the splitting pattern and the motivic
decomposition type claims that all elements of Λ(Q) come in pairs whose
structure depends on the splitting pattern.

Proposition 1.1 ([14, Proposition 4.10], cf [2, Theorem 73.26]) Let λ and
µ be such that jr−1 6 λ, µ < jr, where 1 6 r 6 h, and λ + µ = jr−1 + jr − 1.
Then λlo is connected to µup.

Consequently, any direct summand in the motive of anisotropic quadric
consists of even number of Tate-motives when restricted to k, in particular,
of at least two Tate-motives. If it consists of just two Tate-motives we will
call it binary. It can happen that M(Q) splits into binary motives. As was
proven by M.Rost ([12, Proposition 4]), this is the case for excellent quadrics,
and, hypothetically, it should be the only such case. The excellent quadratic
forms introduced by M.Knebusch ([8]) are sort of substitutes for the Pfister
forms in dimensions which are not powers of two. Namely, if you want to
construct such a form of dimension, say, m, you need first to present m in the
form 2r1−2r2 + . . .+(−1)s−12rs, where r1 > r2 > . . . > rs−1 > rs+1 > 1 (it is
easy to see that such presentation is unique), and then choose pure symbols

αi ∈ KM
ri

(k)/2 such that α1
...α2

... . . .
...αs. Then the respective excellent form is

an m-dimensional form (〈〈α1〉〉− 〈〈α2〉〉+ . . .+(−1)s−1〈〈αs〉〉)an. In particular,
if m = 2r one gets an r-fold Pfister form. It follows from the mentioned result
of M.Rost that the only connections in the motives of excellent quadrics are
binary ones coming from Proposition 1.1. At the same time, the experimental
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data suggested that in the motive of anisotropic quadric Q of dimension n
we should have not only connections coming from the splitting pattern i(Q)
of Q but also ones coming from the excellent splitting pattern:

Conjecture 1.2 ([14, Conjecture 4.22]) Let Q and P be anisotropic quadrics
of dimension n with P -excellent. Then we can identify Λ(Q) = Λ(n) = Λ(P ),
and for λ, µ ∈ Λ(n),

λ, µ connected in Λ(P ) ⇒ λ, µ connected in Λ(Q).

Partial case of this Conjecture, where λ and µ belong to the outer ex-
cellent shell (that is, λ, µ < j1(P )), was proven earlier and presented by the
author at the conference in Eilat, Feb. 2004. The proof used Symmetric
operations, and the Grassmannian G(1, Q) of projective lines on Q, and is a
minor modification of the proof of [15, Theorem 4.4] (assuming char(k) = 0).
Another proof using Steenrod operations and Q×2 appears in [2, Corollary
80.13] (here char(k) 6= 2).

The principal aim of the current paper is to prove the whole conjecture
for all field of characteristic different from 2.

Theorem 1.3 Conjecture 1.2 is true.

This Theorem shows that the connections in the motive of an excellent
quadric are minimal among anisotropic quadrics of a given dimension. More-
over, for a given anisotropic quadric Q we get not just one set of such con-
nections, but h(Q) sets, where h(Q) is a height of Q, since we can apply the
Theorem not just to q but to qi := (q|ki

)an for all fields ki, 0 6 i < h, from
the generic splitting tower of Knebusch (see [7]). And the more splitting
pattern of Q differs from the excellent splitting pattern, the more nontrivial
conditions we get, and the more indecomposable M(Q) will be.

As an application of this philosophy, we get the result bounding from
below the rank of indecomposable direct summand in the motive of a quadric
in terms of its dimension - see Theorem 2.1. This is a generalisation of
the binary motive Theorem ([5, Theorem 6.1], see also other proofs in [15,
Theorem 4.4] and [2, Corollary 80.11]) which claims that the dimension of
a binary direct summand in the motive of a quadric is equal to 2r − 1,
for some r, and which has many applications in the quadratic form theory.
Moreover, we can describe which particular Tate-motives must be present in
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N |k depending on the dimension on N . An immediate corollary of this is
another proof of the Theorem of Karpenko (formerly known as the Conjecture
of Hoffmann) describing possible values of the first higher Witt index of q
in terms of dim(q). This approach to the Hoffmann’s Conjecture based on
the Conjecture 1.2 is, actually, the original one introduced by the author in
2001, and it is pleasant to see it working, after all. But, aside from the value
of the first Witt index, the Theorem 2.1 gives many other relations on higher
Witt indices.

Acknowledgements: I would like to thank Nikita Karpenko and Kirill
Zainoulline for the very stimulating discussions, and Jean-Pierre Serre for
the very useful remarks which led to the inclusion of the Appendix. The
support of EPSRC Responsive Mode grant EP/G032556/1 is gratefully ac-
knowledged. This research was partially done during my visit to the Univer-
sity of Bielefeld, and I would like to thank this institution for the support
and excellent working conditions.

2 Applications of the Main Theorem

For the direct summand N of M(Q) let us denote as rank(N) the cardinality
of Λ(N) (that is, the number of Tate-motives in N |k), as a(N) and b(N)
the minimal and maximal element in Λ(N), respectively, and as dim(N)
the difference b(N) − a(N). Unless otherwise stated, n will always be the
dimension of a quadric.

Theorem 2.1 Let N be indecomposable direct summand in the motive of
anisotropic quadric with dim(N) + 1 = 2r1 − 2r2 + . . . + (−1)s−12rs, where
r1 > r2 > . . . > rs−1 > rs + 1 > 1. Then:

(1) rank(N) > 2s;

(2) For 1 6 k 6 s, let dk =
∑k−1

i=1 (−1)i−12ri−1 + ε(k) ·
∑s

j=k(−1)j−12rj ,
where ε(k) = 1, if k is even, and ε(k) = 0, if k is odd. Then

(a(N) + dk)lo ∈ Λ(N), and (n− b(N) + dk)
up ∈ Λ(N).

Remark: In particular, we get: if rank(N) = 2, that is, N is binary, then
dim(N) = 2r − 1, for some r - the Binary Motive Theorem.
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Proof: First, we reduce to the special case:

Lemma 2.2 It is sufficient to prove Theorem 2.1 in the case i1(q) = 1, and
a(N) = 0, b(N) = dim(Q).

Proof: It follows from [14, Corollary 4.14] that there exists 1 6 t 6 h(q) such
that jt−1(q) 6 a(N), (n− b(N)) < jt(q), and

dim(N) = n− jt−1(q) − jt(q) + 1.

Then we can pass to the field kt−1 from the generic splitting tower of Kneb-
usch, and N |kt−1 shifted by (−jt−1)[−2jt−1] will be a direct summand in the
motive of Qt−1, where qt−1 = (q|kt−1)an. It follows from Corollary 4.2, that
under this transformation lower motives λlo are transformed into lower mo-
tives (λ− jt−1)lo, while upper motives λup are transformed into the upper ones
(λ− jt−1)

up.
It can happen that N |kt−1(−jt−1)[−2jt−1] is decomposable, but it follows

from [14, Corollary 4.14] that it should contain indecomposable submotive
N ′ of the same dimension. Since we estimate the rank of N from below, it
is sufficient to prove the statement for N ′ and q′ = qt−1. Thus, everything is
reduced to the case t = 1. Considering the subform q′′ of q′ of codimension
i1(q

′)−1, we get from [14, Theorem 4.15] that M(Q′′) contains a direct sum-
mand isomorphic to N ′(−a(N ′))[−2a(N ′)], while i1(q

′′) = 1 by [14, Corollary
4.9(3)]. Again, Corollary 4.2 shows that separation into upper and lower mo-
tives is preserved under these manipulations. Hence, we reduced everything
to the case: i1(q) = 1, and a(N) = 0, b(N) = dim(Q).

�

We will use the following observation describing the relation between the
MDT of a form and of some anisotropic kernel of it.

Observation 2.3 Let ρ be some quadratic form over k, E/k be some field
extension, m = iW (ρ|E), and ρ′ = (ρ|E)an. Then Λ(ρ′) is naturally embedded
into Λ(ρ) by the rule: λlo 7→ (λ+m)lo, λ

up 7→ (λ+m)up, and connections in
Λ(ρ′) imply ones in Λ(ρ).

Proof: It is sufficient to recall that by [13, Proposition 2], (see also [14,
Proposition 2.1]),

M(Xρ|E) =
(

⊕m−1
i=0 Z(i)[2i] ⊕ Z(n− i)[2n− 2i]

)

⊕M(Xρ′)(m)[2m],
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where Xρ is the respective projective quadric, and n = dim(Xρ). �

Now everything follows from excellent connections for Q and Q1, where
q1 = (q|k(Q))an. Let P be anisotropic excellent quadric of dimension =

dim(Q), and P̃ be anisotropic excellent quadric of dimension = dim(Q1).
By Observation 2.3, we can identify Λ(Q1) with the subset of Λ(Q) by the
rule: λlo 7→ (λ+1)lo and λup 7→ (λ+1)up, and the connection between u and
v in Λ(Q1) implies the connection between their images in Λ(Q). We will
apply inductively the following statement about excellent splitting patterns.

Lemma 2.4 Let ϕ, ψ be anisotropic excellent forms (over some unrelated
fields) of dimension D + 1 and D − 1, respectively, where D = 2l1 − 2l2 +
. . .+ (−1)m−12lm, and l1 > l2 > . . . > lm−1 > lm + 1 > 1. Then:
either: 1) D = 2r, for some r (that is, m = 1);
or: 2) For ϕ′ := ϕ1, and ψ′ - one of: ψ, or ψ1, we have: dim(ϕ′) = D′−1,

dim(ψ′) = D′ + 1, where D′ = 2l2 − . . .+ (−1)m−22lm.

Proof: If i1(ϕ) = 1, then dim(ϕ) = 2r + 1, and m = 1.
If i1(ϕ) = 2, then D′ = D − 2, and dim(ϕ1) = dim(ϕ) − 4 = D′ − 1, so

we can take ψ′ = ψ.
Finally, if i1(ϕ) > 2, then i1(ψ) = i1(ϕ) − 2, and we can take ψ′ = ψ1. �

The above Lemma permits to pass from the pair (ϕ, ψ) of excellent
anisotropic forms of dimension (D+ 1, D− 1) to the pair (ϕ, ψ)(1) = (ψ′, ϕ′)
of excellent anisotropic forms of dimension (D′ + 1, D′ − 1), where ϕ′ and ψ′

are some anisotropic kernels of the original forms (over some extensions from
the Knebusch tower). In particular, by Observation 2.3, we have natural
embeddings Λ(ϕ′) ⊂ Λ(ϕ), Λ(ψ′) ⊂ Λ(ψ), and connections in Λ(ϕ′), Λ(ψ′)
imply connections in Λ(ϕ), Λ(ψ).

Since i1(Q) = 1, and thus, dim(p) = dim(N) + 2, dim(p̃) = dim(N), we
can apply these considerations to our forms p, p̃, to get:

(p, p̃) → (p, p̃)(1) → (p, p̃)(2) → . . .→ (p, p̃)(s−1).

This process will stop after (s − 1) steps, since D(s−1) = 2rs. All our sets
Λ(P (j)),Λ(P̃ (j)) are naturally embedded into Λ(Q) by Observation 2.3, and,
by the Main Theorem (1.3), connections in the former imply connections in
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the latter. Let us say that λ is the first in the tth shell of some quadric R,
if λ = jt−1(R). Similarly, we say that λ is the last in the tth shell of R, if
λ = jt(R)−1. It follows from Proposition 1.1 that if λ and µ are the first and
the last element in the 1st shell of P (j) or P̃ (j), then λlo is connected to µup,
λup is connected to µlo, and µup − λlo = 2rj+1−1 − 1, for 0 6 j 6 s− 2. But
the last element in the 1st shell of P (j) (respectively, P̃ (j)) will be the first
one in the 1st shell of P̃ (j+1) (respectively, P (j+1)). So, we get connections
in Λ(Q): u1 ↔ u2 ↔ u3 ↔ . . . ↔ us, where u1 = 0, u2k+1 ∈ Λ(Q)lo,
u2k ∈ Λ(Q)up, and ui+1 − ui = (−1)i−1(2ri−1 − 1). And symmetric ones:
v1 ↔ v2 ↔ v3 ↔ . . . ↔ vs, where v1 = n, v2k+1 ∈ Λ(Q)up, v2k ∈ Λ(Q)lo, and
vi+1 − vi = (−1)i(2ri−1 − 1). Since 0 = u1 and n = v1 belong to Λ(N), we
have that ui, vi ∈ Λ(N), for all 1 6 i 6 s. This proves (2) and (1).

•

2r1−1−1

u1

0 . . . . . •

2r2−1−1

v2
. •

2r3−1−1

u3
. •

v4
•
u4 . •

2r3−1−1

v3 . •

2r2−1−1

u2 . . . . . •

2r1−1−1

v1

n

�

As a corollary of Theorem 2.1 we get another proof of the Conjecture of
Hoffmann.

Theorem 2.5 (N.Karpenko, [6]) Let q be anisotropic quadratic form of di-
mension m. Then (i1(q) − 1) is a remainder modulo 2r of (dim(q) − 1), for
some r < log2(dim(q)).

Proof: Let N be indecomposable direct summand of M(Q) such that 0lo ∈
Λ(N) (by [14, Corollary 4.4] suchN exists). Let dim(N)+1 =

∑s
i=1(−1)i−12ri,

where r1 > r2 > . . . > rs−1 > rs+1 > 1. From [14, Corollary 4.14], dim(N) =
dim(Q) − i1(Q) + 1. Thus, dim(q) − 1 = dim(Q) + 1 =

∑s
i=1(−1)i−12ri +

(i1(Q) − 1).
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By Theorem 2.1, we have: (ds)lo ∈ Λ(N), where

ds =
s−1
∑

i=1

(−1)i−12ri−1 + ε(s) · (−1)s−12rs.

But by [14, Theorem 4.13], N(i1(Q)− 1)[2i1(Q)− 2] is also isomorphic to
the direct summand of M(Q). In particular, Λ(N(i1(Q)−1)[2i1(Q)−2])lo ⊂
Λ(Q)lo. But Λ(N(i1(Q)−1)[2i1(Q)−2])lo = Λ(N)lo+(i1(Q)−1), as separation
into lower and upper elements is stable under Tate-shifts (Corollary 4.2).
Thus, for any λ such that λlo ∈ Λ(N), we should have: λ + (i1(Q) − 1) 6

dim(Q)/2. Applying this to ds, we get:

s−1
∑

i=1

(−1)i−12ri−1 + ε(s) · (−1)s−12rs + (i1(Q) − 1) 6

s−1
∑

i=1

(−1)i−12ri−1 + 1/2((−1)s−12rs + (i1(Q) − 1) − 1).

That is, 2rs > (i1(Q)− 1). Thus, (i1(Q)− 1) is the remainder modulo 2rs

of dim(q) − 1. �

One can apply similar considerations to elements dk with k < s and get
other new relations for higher Witt indices.

Proposition 2.6 Let dim(q) − i1(q) = 2r1 − 2r2 + . . . + (−1)s−12rs, where
r1 > r2 > . . . > rs−1 > rs + 1 > 1, and elements dk, 1 6 k 6 s be from
Theorem 2.1. Then, for each 1 6 k 6 s, the elements dk and dk + (i1(q)− 1)
belong to the same (usual) shell of Q.

These relations will be analysed in a separate text.
Another application is the characterisation of even-dimensional indecom-

posable direct summands in the motives of quadrics. An indecomposable
direct summand appeares to be even-dimensional if and only if it is, sort of,
“fat” (like the motive of even-dimensional quadric).

Theorem 2.7 Let N be indecomposable direct summand in the motive of
anisotropic quadric. Then the following conditions are equivalent:
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(1) dim(N) is even;

(2) there exist i such that (Z(i)[2i]⊕Z(i)[2i]) is a direct summand of N |k.

Proof: (2 → 1) IfN |k contains (Z(i)[2i]⊕Z(i)[2i]) then, clearly, i = dim(Q)/2,
and by [14, Theorem 4.19], the dual direct summand

N∨ := Hom(N,Z(dim(Q))[2 dim(Q)])

is isomorphic to N(k)[2k], where k = dim(Q) − a(N) − b(N). Since N and
N∨ both contain the middle part of M(Q), they must be isomorphic by [14,
Lemma 4.2]. But a(N∨) = dim(Q) − b(N). Thus, a(N) = dim(Q) − b(N),
and hence, dim(N) = b(N)− a(N) = 2b(N)− dim(Q) = 2(b(N)− i) is even.

(1 → 2) If dim(N) is even, then in the presentation dim(N) + 1 =
∑s

i=1(−1)i−12ri with r1 > r2 > . . . > rs−1 > rs + 1 > 1, rs should be
zero. Then for ds =

∑s−1
i=1 (−1)i−12ri−1 + ε(s) · (−1)s−1 = dim(N)/2 we have

that (a(N) + ds)lo, (n − b(N) + ds)
up ∈ Λ(N) are different elements of the

same degree (one is upper, another is lower). �

The latter result implies that in the motives of even-dimensional quadrics
all the Tate-motives living in the shells with higher Witt indices 1 are con-
nected among themselves.

Corollary 2.8 Let Q be even dimensional quadric, and s, t be such that
it+1 = is+1 = 1. Then (jt)

up, (jt)lo, (js)
up, and (js)lo are connected in Λ(Q).

Proof: It is sufficient to apply Theorem 2.7 to the quadrics Qi, i = s, t, where
qi = (q|ki

)an, and ki is a field from the splitting tower of Knebusch, to see that
the respective elements of Λ(Q) are connected to the “middle part” (n/2)lo,
(n/2)up, and thus, are connected among themselves. �

Remark: In particular, the motive of the even-dimensional quadric with the
generic (relative) splitting pattern (1, 1, . . . , 1) is indecomposable. But this
can be proven using the Binary Motive Theorem alone.

One should note, that nothing of this sort is true for the odd-dimensional
quadrics with the generic splitting pattern. Indeed, if k is any field, K =
k(a, b1, . . . , bm), and q = 〈〈a〉〉 · 〈b1, . . . , bm〉 ⊥ 〈1〉, then the splitting pattern
of Q is generic, but M(Q) is decomposable (see [14, Theorem 6.1]).
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3 Proof of the Main Theorem

We will first give a shorter but less transparent proof which works in ar-
bitrary characteristic 6= 2, and then provide more transparent version for
characteristic 0. The reason for such a scheme is that, this way, the reader
will see what is really going on. Actually, the first proof is the derivative
of the second, and the author would not be able to find it without having
the second one. In the second case we will use Algebraic Cobordism the-
ory, which is much richer than the Chow group theory, and this restricts our
choice of characteristic. So, the reader who likes short proofs and does not
like Cobordisms can read just the first proof, while the one who, may be,
wants to prove some other statements is encouraged to read the second proof
as well.

3.1 The General case

Let q be nondegenerate quadratic form of dimension (n + 2), and Q be
respective (smooth) projective quadric of dimension n. From [14] one can
see that motivic decomposition of quadrics with Z-coefficients carries the
same information as the one with Z/2-coefficients, and MDT (Q) can be
reconstructed out of

image(Chn(Q×Q) → Chn(Q×Q|k)),

where Ch = CH /2. More explicitly this idea is outlined in [3]. So, to
prove the existence of excellent connections in M(Q) we need to impose
certain restrictions on the image above. The target group here has Z/2-basis
consisting of hi× li and li×hi, 0 6 i 6 [n/2] (plus hn/2 ×hn/2 and ln/2 × ln/2,
if n is even), where hi is the class of the plane section of codimension i, and li
is the class of projective subspace of dimension i (in the case i = n/2, we fix
one of two families of middle-dimensional subspaces). Moreover, in the case n
is even, the element hn/2 ×hn/2 is always in the image, while if some element
v defined over the ground field k has nontrivial coefficient at ln/2 × ln/2, the

quadric Q must be hyperbolic (since the class l1,2
n/2 = (π1)∗((1 × hn/2) · v) is

defined over k). From now on we will assume that Q is not hyperbolic. In
this case, to describe MDT (Q) we need to determine, which elements v of
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the form:
[n/2]
∑

i=1

(αi · (h
i × li) + βi · (li × hi)),

where αi, βi ∈ Z/2, are defined over the field k.
The projector hi × li gives the direct summand Z/2Z(i)[2i] ∈ Λ(Q)lo,

while li × hi gives Z/2Z(n − i)[2n − 2i] ∈ Λ(Q)up. Thus, the above ele-
ment v is a projector corresponding to the direct summand N of M(Q) with
Λ(N)lo = {i|αi = 1}lo, and Λ(N)up = {i|βi = 1}up. In this light, the connec-
tion between certain elements of Λ(Q) amounts to the equality between the
respective α’s and β’s. Let us see what this means in the case of excellent
connections.

Let (n+ 2) =
∑s

i=1(−1)i−12ri, where

r1 > r2 > . . . > rs−1 > rs + 1 > 1.

In the case n even, we put s′ = s, in the case n - odd, we put s′ = s− 1.

Definition 3.1 We call the pair (a, b) excellent of degree t, if:

(i) n− (a+ b) = 2rt−1 − 1, 1 6 t 6 s′;

(ii) a, b belong to the excellent shell number t:

t−1
∑

i=1

(−1)i−12ri−1 + ε(t) ·
s

∑

i=t

(−1)i−12ri 6 a, b

6

t
∑

i=1

(−1)i−12ri−1 + (1 − ε(t)) ·
s

∑

i=t+1

(−1)i−12ri − 1,

where ε(t) = 1, if t is even, and is 0, if t is odd.

Let P be anisotropic excellent quadric of dimension n. The following
observation is straightforward from the computation of the excellent splitting
pattern ([4])

Observation 3.2 Let 0 6 a, b 6 [n/2]. Then the following conditions are
equivalent:

(1) alo is connected to bup in Λ(P );
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(2) (a, b) is an excellent pair.

Thus, our Main Theorem amounts to:

Theorem 3.3 Let Q be anisotropic quadric of dimension n, and

v ∈ Chn(Q×Q) with v =

[n/2]
∑

i=1

(αi · (h
i × li) + βi · (li × hi)).

Then αb = βa, for all excellent pairs (a, b).

We will prove a more general statement, which has additional applica-
tions.

Theorem 3.4 Let k be a field of characteristic not 2, and Q1, Q2 be two
anisotropic quadrics of dimension n over k. Let v ∈ Chn(Q1 ×Q2) be cycle
with

v =

[n/2]
∑

i=1

(αi · (h
i × li) + βi · (li × hi)).

Then αb = βa, for any excellent pair (a, b).

Proof: Let (n + 2) =
∑s

i=1(−1)i−12ri, where r1 > r2 > . . . > rs−1 > rs + 1 >

1. Let (a, b) be an excellent pair of degree t - see Definition 3.1. Take
M =

∑t
i=1(−1)i−12ri − 1. The next Lemma will be mostly used in the

second variant of the proof, but here we will need part (2).
Let us denote L(M) the set of l < M such that

(

M−l
l

)

= 1 ∈ Z/2.

Lemma 3.5 Let M =
∑t

i=1(−1)i−12ri − 1, where

r1 > r2 > . . . > rt−1 > rt > 0. Then

(1) All l ∈ L(M) are divisible by 2rt.

(2) The largest among such l’s is

L = L(M) =
t−1
∑

i=1

(−1)i−12ri−1 − ε(t) · 2rt ,

where ε(t) = 1, if t is even, and 0, if t is odd.

12



Proof: (1) Let 2r be the minimal power of 2 in the binary presentation of l.
If r < rt, then the binary decomposition of M − l will not contain 2r, and
so,

(

M−l
l

)

= 0 ∈ Z/2. Thus, if
(

M−l
l

)

= 1, then l is divisible by 2rt .
(2) For the L as above, we have M −L = L+2rt − 1. Since L is divisible

by 2rt , this implies that
(

M−L
L

)

= 1. The next number divisible by 2rt is
already greater than M/2, so our L is the largest element of L(M). �

Let L = L(M) as in Lemma 3.5. For each, 0 6 l1, l2 6 L consider the
element

Sn−(a′+b′)(π1)∗((h
a′

× hb′) · v),

where a′ = a− L+ l1, b
′ = b− L+ l2, and Sj are lower Steenrod operations

(see [1]). Since the above element belongs to Ch0, Sj commutes with push-
forwards, and Q1, Q2 are anisotropic, we have that the degree of the above
element modulo 4 is equal to the degree of the element

Sn−(a′+b′)(π2)∗((h
a′

× hb′) · v).

Thus, we get:

∑

06l16L

∑

06l26L

(

M−l1
l1

)(

M−l2
l2

)

deg(Sn−(a′+b′)((π1)∗−(π2)∗)((h
a′

×hb′)·v)) ≡ 0 (mod 4).

It remains to prove the following result:

Lemma 3.6

∑

06l16L

∑

06l26L

(

M−l1
l1

)(

M−l2
l2

)

deg(Sn−(a′+b′)(π1)∗((h
a′

×hb′) ·v)) ≡ 2 ·αb (mod 4);

∑

06l16L

∑

06l26L

(

M−l1
l1

)(

M−l2
l2

)

deg(Sn−(a′+b′)(π2)∗((h
a′

×hb′) ·v)) ≡ 2 ·βa (mod 4).

Proof: From symmetry, it is sufficient to prove the first statement. We will
need the following easy combinatorial fact:

Lemma 3.7 For any 0 6 r 6 M , for any N > 0,

∑

06l6M

(

M−l
l

)(

N+l
r−l

)

=
(

M+N+1
r

)

∈ Z/2.

13



Proof: It is sufficient to observe that
∑

06l6M

(

M−l
l

)

xl(1 + x)l = (1+x)M+1+(−1)M xM+1

1+2x
.

�

Now, using the relation S• = S• ·c•(TX), and the multiplicative properties
of S• (see [1]), we have:

∑

06l16L

∑

06l26L

(

M−l1
l1

)(

M−l2
l2

)

Sn−(a′+b′)(π1)∗((h
a′

× hb′) · v) =

∑

06l16L

∑

06l26L

(

M−l1
l1

)(

M−l2
l2

)

∑

j1>0

(

−(n+2)
j1

)

∑

k1>0

(

a−L+l1
k1

)

·

Sn−(a+b)+2L−(l1+l2)−(j1+k1)(π1)∗((1 × hb−L+l2) · v) · ha−L+l1+j1+k1 =
∑

06l26L

(

M−l2
l2

)

∑

p1>0

(

M−(n+1)+a−L
p1

)

·

Sn−(a+b)+2L−l2−p1(π1)∗((1 × hb−L+l2) · v) · ha−L+p1 ,

(notice, that the sum over the set 0 6 l1 6 L is the same as over 0 6

l1 6 M , since
(

M−l
l

)

= 0, for M > l > L, and that k1 + l1 6 p1 < M , since
a−L+p1 6 n). Since (a, b) is an excellent pair of degree t,M−(n+1)+a−L >

(ε(t) − 1)
∑s

i=t+1(−1)i−12ri > 0. Thus, for the coefficient
(

M−(n+1)+a−L
p1

)

to

be non-trivial, we must have: p1 6 M − (n + 1) + a − L. On the other
hand, (π1)∗((1 × hb−L+l2) · v) ∈ Chb−L+l2 , and thus, Sj of this element will
be zero, if j > b − L + l2. But (provided, the above coefficient is non-zero),
n− (a+ b) + 2L− l2 − p1 = 2rt−1 − 1 + 2L− l2 − p1 = M − 2rt−1 − l2 − p1 >

M − 2rt−1 − l2 −M + (n + 1) − a + L = b+ L − l2. Hence, for our term to
be non-zero, we should have: l2 = L, p1 = M − (n + 1) + a− L, and in this
case,

Sn−(a+b)+2L−l2−p1(π1)∗((1 × hb−L+l2) · v) =

Sb(π1)∗((1 × hb) · v) = ((π1)∗((1 × hb) · v))2.

Multiplied by ha−L+p1 this gives the element hn · αb of degree 2 · αb. The
Lemma and the Main Theorem are proven. �

�
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3.2 Algebraic Cobordism

The second variant of the proof will be using Algebraic Cobordism Ω∗.
This is the universal oriented generalised cohomology theory on the cate-
gory of smooth quasiprojective varieties over the field k of characteristic 0
constructed by M.Levine and F.Morel - see [10].

For any smooth quasiprojective X over k, the additive group Ω∗(X) is
generated by the classes [v : V → X] of projective maps from smooth va-
rieties V to X subject to certain relations, with the upper grading - the
codimensional one. There is natural morphism of theories pr : Ω∗ → CH∗

given by: pr([v]) := vCH
∗ (1V ). The main properties of Ω∗ are:

(1) Ω∗(Spec(k)) = L = MU(pt) - the Lazard ring, and the isomorphism is
given by the topological realisation functor;

(2) CH∗(X) = Ω∗(X)/L<0 · Ω∗(X).

On Ω∗ there is the action of the Landweber-Novikov operations (see [10,
Example 4.1.25]). Let R(σ1, σ2, . . .) ∈ L[σ1, σ2, . . .] be some polynomial,
where we assume deg(σi) = i. Then SR

L−N : Ω∗ → Ω∗+deg(R) is given by:

SR
L−N ([v : V → X]) := v∗(R(c1, c2, . . .) · 1V ),

where cj = cj(Nv), and Nv := −TV + v∗TX is the virtual normal bundle.
If R = σi, we will denote the respective operation simply as Si

L−N . The
following statement follows from the definition of Steenrod and Landweber-
Novikov operations - see P.Brosnan [1], A.Merkurjev [11], and M.Levine [9]

Proposition 3.8 There is commutative square:

Ω∗(X)
Si

L−N
−−−→ Ω∗+i(X)





y





y

Ch∗(X) −−−→
Si

Ch∗+i(X),

where Si is the upper Steenrod operation (mod 2) ([17, 1]).
In particular, using the results of P.Brosnan on Si (see [1]), we get:

Corollary 3.9 (1) pr ◦ Si
L−N(Ωm) ⊂ 2 · CHi+m, if i > m;
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(2) pr ◦ (Sm
L−N − �)(Ωm) ∈ 2 · CH2m, where � is the square operation.

This implies that ( modulo 2−torsion ) we have well defined maps
pr◦Si

L−N

2

and
pr◦(Sm

L−N−�)

2
. In reality, these maps can be lifted to a well defined, so-

called, symmetric operations Φti−m
: Ωm → Ωm+i - see [16]. Since over

algebraically closed field all our varieties are cellular, and thus, the Chow
groups of them are torsion-free, we will not need such subtleties, but we will
keep the notation from [16], and denote our maps Ωm → CHm+i as φti−m

,
and the (mod 2) version Ωm → Chm+i as ϕti−m

(in our situation below there
is no need to mod-out the 2-torsion even over the ground field, since all our
maps end up in the CH0 of quadrics, which are torsion-free, anyway).

Operations ϕq(t) are “almost” additive. The following statement is clear.

Proposition 3.10 ([16, Proposition 2.8])

ϕq(t)(u′ + u′′) = ϕq(t)(u′) + ϕq(t)(u′′) + q(0) · pr(u′) · pr(u′′).

From the multiplicative properties of the Landweber-Novikov operations
one gets (the “simplified version” of) the following proposition which we will
use extensively.

Proposition 3.11 ([16, Proposition 3.15]) Let u ∈ Lr, r > 0 and w ∈
Ωm(X), then, for i > (2r −m),

ϕti(u · v) = η2(u) · S
i−(2r−m)(pr(w)) ∈ Chi−2r(X),

where η2(u) = deg(cr(u))
2

(mod 2) is the Rost invariant, and Sj are Steenrod
operations.

It is worth mentioning the values of η2 on quadrics and projective spaces.

Lemma 3.12 (1) For the n-dimensional quadric Qn, we have:

η2(Qn) =
(

−(n+2)
n

)

∈ Z/2Z.

(2) For the n-dimensional projective space P
n, we have:

η2(P
n) = 1

2

(

−(n+1)
n

)

∈ Z/2Z.
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Proof: It is sufficient to recall that c•(−TQn) = (1 + h)−(n+2)(1 + 2h), while
c•(−TPn) = (1+h)−(n+1), and that deg(hn · [Qn]) = 2, while deg(hn · [Pn]) = 1.
�

In the light of Proposition 3.11, let me also recall the action of the Steen-
rod operations in the Chow groups of quadrics.

Lemma 3.13 Let Q be smooth projective quadric of dimension n, and hi

and li be classes of plane section of codimension i, and of projective subspace
of dimension i, respectively. Then

(1) Sr(hi) =
(

i
r

)

hi+r;

(2) Sr(li) =
(

n+1−i
r

)

li−r.

Proof: This follows from the fact that c•(Nhi⊂Qn
) = (1 + h)i, while

c•(Nli⊂Qn) = (1 + h)n+1−i(1 + 2h)−1. �

3.3 Relations from Symmetric Operations

Let us now give the other proof of the Main Theorem. To simplify the nota-
tions, we will prove Theorem 3.3, but the reader can see that exactly the same
arguments work for Theorem 3.4. Here we will assume that characteristic of
k is zero.

Let v ∈ Chn(Q×Q). Using the surjection Ωn(Q×Q) ։ Chn(Q×Q) we
can lift v to some element w ∈ Ωn(Q×Q). Since over k quadric Q becomes

cellular with Ω∗(Q|k) = ⊕[n/2]
i=0 (L · hi ⊕ L · li), we have:

w =

[n/2]
∑

i=0

(α̃i · (h
i × li) + β̃i · (li × hi)) + δ̃ · (hn/2 × hn/2)+

[n/2]
∑

a=0

[n/2]
∑

b=0

xa,b · (la × lb) +
∑

06a<b6[n/2]

(ya,b · (la × hb) + za,b · (h
b × la)),

where α̃i, β̃i, δ̃ ∈ Z = L0, xa,b ∈ Ln−(a+b), ya,b, za,b ∈ Lb−a. Clearly, αi =

α̃i (mod 2), βi = β̃i (mod 2), where αi, βi are coefficients from the decompo-
sition of v - see 3.1. Let us denote γa,b := η2(xa,b) (mod 2). Since Q is not
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hyperbolic, the number γn/2,n/2 =
xn/2,n/2

2
is integer. It appears that αi, βi

and γa,b ∈ Z/2 are the only bits of information about w we need.
We start by obtaining relations involving α’s, β’s and γ’s. This will be

done with the help of symmetric operations ϕtr : Ωm(Q) → Ch2m+r(Q).

Lemma 3.14 Consider the pair 0 6 c, d 6 [n/2] such that c+2d 6 n. Then:

w1
c,d := hc · ϕtn−(c+2d)

(π1)∗((1 × hd) · w) ∈ Ch0(Q)

is an element of degree

[n/2]
∑

a=c

(

n+1−a
a−c

)

·
(

(

−(n+2−a−d)
n−a−d

)

· βa + γa,d

)

,

while
w2

d,c := hc · ϕtn−(c+2d)

(π2)∗((h
d × 1) · w) ∈ Ch0(Q)

is an element of degree

[n/2]
∑

a=c

(

n+1−a
a−c

)

·
(

(

−(n+2−a−d)
n−a−d

)

· αa + γd,a

)

Remark: The conditions on c and d above are needed to ensure that the
operations are defined.

Proof: From symmetry, it is sufficient to prove the first statement. Let us
denote hc ·ϕtn−(c+2d)

(π1)∗((1× hd)·?) as R(?). The degree of our element can
be checked over k. Using the fact that ϕtl |Ωm is one half of the Chow trace
of (Sl+m

L.N. − δl−m,0�), and applying Lemmas 3.12 and 3.13, we get:

R(hb × lb) =1
2
hc · (Sn−(c+d)

L.−N. − δn−(c+2d),0 · �)(π1)∗((1 × hd) · hb × lb) =

l0 ·
(

η2(P
b−d) · 2

(

b
n−c−b

)

− δb,dδn−(c+2d),0

)

= 0 ∈ Z/2Z · l0

(here we assume η2(P
0) = 1/2);

R(la × ha) = l0 · η2(Qn−a−d)
(

n+1−a
a−c

)

= l0 ·
(

−(n+2−a−d)
n−a−d

)

·
(

n+1−a
a−c

)

;

R(xa,b · la × lb) = l0 · η2(xa,b)2η2(P
b−d)

(

n+1−a
a−c

)

= l0 · δb,dγa,b

(

n+1−a
a−c

)

;

R(ya,b · (la × hb)) = l0 · η2(ya,b)2η2(Qn−b−d)
(

n+1−a
a−c

)

= 0,
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since η2(Qn−b−d) is an integer; by similar reason, R(hn/2 × hn/2) = 0; finally,

R(za,b · (h
a × lb)) = l0 · η2(za,b)2η2(P

b−d)2
(

a
n−a−c

)

= 0.

Taking into account that out of our generators only hd × ld projects non-
trivially to Ch∗ under (π1)∗((1 × hd)·?), and using Proposition 3.10, we get:

R(w) ∈ Ch0(Q) has degree

[n/2]
∑

a=c

(

n+1−a
a−c

)

·
(

(

−(n+2−a−d)
n−a−d

)

· βa + γa,d

)

.

�

Corollary 3.15 Let Q be anisotropic and c + 2d 6 n. Then, for arbitrary
w ∈ Ωn(Q×Q), we have equalities in Z/2Z:

[n/2]
∑

a=c

(

n+1−a
a−c

)

·
(

(

−(n+2−a−d)
n−a−d

)

· βa + γa,d

)

= 0, and

[n/2]
∑

a=c

(

n+1−a
a−c

)

·
(

(

−(n+2−a−d)
n−a−d

)

· αa + γd,a

)

= 0.

Proof: It follows immediately from Lemma 3.14, since the classes w1
c,d, w

2
c,d

are defined over the ground field, and so their degree must be even.

�

It appears that the Main Theorem follows from the above equations. But
to see it we first need to organise them in a more convenient way.

Lemma 3.16 Let 0 6 c, d 6 [n/2] and M ∈ N be such that:

(n+ 1) − c 6 M 6 2(n− (c+ d)) + 1. Then

[n/2]−c
∑

l=0

(

M−l
l

)

·
(

γc+l,d +
(

−(n−(c+d)−l+2)
n−(c+d)−l

)

· βc+l

)

= 0.
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Proof: Consider
∑M+c−(n+1)

j=0 w1
c+j,d ·

(

M+c−(n+1)
j

)

. Notice, that (c+ j) + 2d 6

M + 2c − (n + 1) + 2d 6 2n − 2(c + d) + 1 + 2(c + d) − n − 1 = n. Thus,
w1

c+j,d is defined. We get the relation:

0 =

M+c−(n+1)
∑

j=0

[n/2]
∑

a=c

(

n+1−a
a−c−j

)(

M+c−(n+1)
j

)

(

γa,d +
(

−(n−a−d+2)
n−a−d

)

βa

)

=

[n/2]
∑

a=c

(

M−(a−c)
(a−c)

)

(

γa,d +
(

−(n−a−d+2)
n−a−d

)

βa

)

.

�

Now we have the freedom of picking M in the prescribed bounds. By
choosing it appropriately, we will get relations with few nontrivial terms.

Lemma 3.17 Let M, c, d be as in Lemma 3.16.

(1) Suppose for all l ∈ L(M) such that l < L = L(M) (see Lemma 3.5),
we have: n− (c+ d) − l 6= 2r − 1, for any r. Then

(

γc+L,d +
(

−(n−(c+d)−L+2)
n−(c+d)−L

)

· βc+L

)

=
∑

L>l∈L(M)

γc+l,d.

(2) If, moreover, n− (c+ d) − L 6= 2r − 1, for any r, then

γc+L,d =
∑

L>l∈L(M)

γc+l,d.

Proof: It is sufficient to notice that
(

−(j+2)
j

)

= 1 ∈ Z/2Z if and only if
j = 2r − 1, for some r. �

Let us denote by u1(M, c+L, d) the relation from Lemma 3.17(1),(2). In
the same way, we have “transposed” relations u2(M, a, b):

(

γa,b +
(

−(n−(a+b)+2)
n−(a+b)

)

· αb

)

=
∑

L>l∈L(M)

γa,b−L+l.
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From now on we will fix M =
∑t

i=1(−1)i−12ri − 1.

Let us say that (a, b)
M1

−→ (a′, b), if a′ = a− L+ l, where L = L(M), and

L > l ∈ L(M). In the same way, we say that (a, b)
M2

−→ (a, b′), if b′ = b−L+l.

Finally, we say that (a, b)
M i1 ,M i2

−→ (a′′, b′′), if (a, b)
M i1

−→ (a1, b1)
M i2

−→ (a′′, b′′).
Clearly, M1,M2 gives the same result as M2,M1.

Lemma 3.18 Let (a, b) be exc. pair of degree t, and (a, b)
M i1 ,...,M ip

−→ (a′′, b′′).
Then

n− (a′′ + b′′) 6= 2r − 1, for any r.

Proof: By Lemma 3.5(1), L(M) − l is divisible by 2rt , for any l ∈ L(M).
Hence n− (a′′ + b′′) ≡ n− (a + b) ≡ 2rt−1 − 1 (mod 2rt). But if p > 1, then
n− (a′′ + b′′) > n− (a+ b) = 2rt−1 − 1. Thus, this number 6= 2r − 1, for any
r. �

Lemma 3.19 Let (a, b) be excellent pair of degree t. Then

γa,b + βa =
∑

L>l∈L(M)

γa+l−L,b.

Proof: Take c = a − L, d = b. Let us show that the triple (M, c, d) sat-
isfies the conditions of Lemmas 3.16 and 3.17. Evidently, d > 0, while
c >

∑t−1
i=1(−1)i−12ri−1 +ε(t) ·

∑s
i=t(−1)i−12ri −

∑t−1
i=1(−1)i−12ri−1 +ε(t) ·2rt =

ε(t)·
∑s

i=t+1(−1)i−12ri > 0. At the same time, (n+1)−c 6
∑s

i=1(−1)i−12ri−
1 − ε(t) ·

∑s
i=t+1(−1)i−12ri = M + (1 − ε(t)) ·

∑s
i=t+1(−1)i−12ri 6 M , and

n− (c+d) = 2rt−1−1+
∑t−1

i=1(−1)i−12ri−1−ε(t) ·2rt =
∑t

i=1(−1)i−12ri−1−1,
so 2(n−(c+d))+1 = M . The conditions of Lemma 3.17 follow from Lemma
3.18. So, we have the relation u1(M, a, b). �

Denote a′ := a− L+ l, L > l ∈ L(M).

Lemma 3.20 γa′,b =
∑

L>l∈L(M) γa′,b−L+l.

Proof: Take c = a′, and d = b − L. Again, we need to show that the triple
(M, c, d) satisfies the conditions of Lemmas 3.16 and 3.17. The latter follows
from Lemma 3.18. As for the former, a′ > a − L > 0, while d > 0 in the
same way as c > 0 in the proof of Lemma 3.19 (from symmetry). And the
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same symmetry implies that (n+ 1) − d 6 M . Finally, 2(n− (c+ d)) + 1 =
2(n− (a− L+ l + b− L)) + 1 > 2(n− (a− L+ b)) + 1 = M (as we know).
Thus we have the relation u2(M, a′, b). �

As a corollary of Lemmas 3.19, 3.20 we get:

Lemma 3.21 Let (a, b) be excellent pair of degree t. Then

γa,b + βa =
∑

a′,b′

γa′,b′,

where (a′, b′) runs over all pairs such that (a, b)
M1,M2

−→ (a′, b′).

And from the symmetry, we also have:

γa,b + αb =
∑

a′,b′

γa′,b′,

where (a′, b′) runs over all pairs such that (a, b)
M2,M1

−→ (a′, b′). Since both sets
are the same, we get an equality:

γa,b + βa =
∑

a′,b′

γa′,b′ = γa,b + αa,

and consequently,
αb = βa.

The Main Theorem is proven.
�

Remark: In reality, one can prove that αb = γa,b = βa, but this requires a
little bit more of computations.

The following picture shows the excellent connections and pairs for the
9-dimensional anisotropic quadric (each · corresponds to a basis element in
Ω∗(Q × Q) (or Ch∗(Q × Q)) (of dimension 6 dim(Q) only), elements of
dimension = dim(Q) and elements la× lb corresponding to excellent pairs are
denoted as •, other elements la × lb as ◦).
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•
α0

. •
α1

excellent connections

. . •
α2

. . . •
α3

. . . . •
α4

◦ ◦ ◦ ◦ •
γ4,4

•
β4

◦ ◦ ◦ •
γ3,3

◦ . •
β3

•
γ2,0

◦ ◦ ◦ ◦ . . •
β2

◦ •
γ1,1

◦ ◦ ◦ . . . •
β1

◦ ◦ •
γ0,2

◦ ◦ . . . . •
β0

4 Appendix: Upper and lower motives

Let N be a direct summand in the motive of a quadric Q. Motives of quadrics
with Z-coefficients carry the same information as such motives with Z/2-
coefficients, so we will stick to the latter ones since in this language formula-
tions are sort of simpler. So, from now on all the motives are the objects of
Chow(k,Z/2). Recall that Λ(Q) can be identified with the set of standard
projectors of M(Q|k) as in [14, Section 4], which gives the canonical decom-
position of M(Q|k) into a direct sum of Tate-motives. By [14, Theorem 5.6],
there exists direct summand N ′ of M(Q) isomorphic to N such that N ′|k is
a direct sum of some part of these fixed Tate-motives. The respective subset
of Λ(Q) is denoted as Λ(N). By [14, Lemma 4.1], Λ(N) does not depend on
the choice of N ′ and is well-defined (as long as Q is non-hyperbolic).

For a direct summand N of a non-hyperbolic quadric Q, let us define
Λ(N)up := Λ(N) ∩ Λ(Q)up, and Λ(N)lo := Λ(N) ∩ Λ(Q)lo.

Let us call the motive N anisotropic, if N does not contain any Tate-
motive Z/2(i)[2i] as a direct summand. In particular, if N is a direct sum-
mand in the motive of anisotropic quadric, then it is anisotropic ([14, Lemma
3.13]).

Proposition 4.1 Let N be anisotropic direct summand in the motive of a
quadric. Then:
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(1) There is a complex

0 → ⊕λ∈Λ(N)upZ/2(λ)[2λ]
F up

→ N
Flo→ ⊕µ∈Λ(N)lo

Z/2(µ)[2µ] → 0,

which becomes a split exact sequence over k.

(2) For any complex of the form

0 → ⊕λ∈ΛupZ/2(λ)[2λ]
Gup

→ N
Glo→ ⊕µ∈Λlo

Z/2(µ)[2µ] → 0,

which is split exact over k, there exist unique identifications: Λup =
Λ(N)up, Λlo = Λ(N)lo, G

up|k = F up|k, Glo|k = Flo|k.

Proof: (1) By the very definition of Λ(Q)up and Λ(Q)lo, for λ ∈ Λ(Q)up and
µ ∈ Λ(Q)lo, the canonical morphism Z/2(λ)[2λ] → M(Q|k) and M(Q|k) →
Z/2(µ)[2µ] are defined over the ground field k. So we get the needed maps
F up and Flo for the standard motive N ′ isomorphic to N . Since these maps
fit into the standard motivic decomposition of N ′|k, the respective sequence
is split exact over k.

(2) If we have any other sequence of a similar sort, then Glo◦F
up = 0 and

Flo◦Gup = 0, since otherwise we would have some composition Z/2(λ)[2λ]
fλ

→

N
gλ→ Z/2(λ)[2λ] (respectively, Z/2(λ)[2λ]

gλ

→ N
fλ→ Z/2(λ)[2λ]) nonzero

(since there are no nonzero maps between the Tate-motives of different
weight), which would mean that Z/2(λ)[2λ] is a direct summand of N ,
because EndChow(k,Z/2)(Z/2) = Z/2. This immediately identifies Λup with
Λ(N)up, and Λlo with Λ(N)lo, since Λ(N)up and Λ(N)lo have no more than
one Tate-motives of any given weight. And we also get canonical identifica-
tions: Gup|k = F up|k, Glo|k = Flo|k. �

The following statement shows that separation of Λ(N) into lower and
upper part depends only on N and not on a particular presentation of N as
a direct summand of a motive of some quadric.

Corollary 4.2 Let N be a direct summand of M(Q), and N ′ be a direct
summand of M(Q′), where N is anisotropic motive, and N ′ ∼= N(i)[2i]. Then
Λ(N ′) is naturally identified with Λ(N) + i, and this identification preserves
the separation into upper and lower motives.

Proof: This follows immediately from Proposition 4.1. �
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