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Abstract. Let G be a semisimple affine algebraic group over a field F . Let E/F be
a minimal field extension such that the group GE is of inner type. Assuming that the
degree of E/F is a power of a prime p, we determine the structure of the Chow motives
with coefficients in a finite field of characteristic p of the projective G-homogeneous
varieties. More precisely, it is known that the motive of any such variety decomposes (in
a unique way) into a sum of indecomposable motives, and we describe the indecomposable
summands which appear in the decompositions. This description is already known for
the groups G of inner type and is new for G of outer type.


1. Introduction


We fix an arbitrary base field F . Besides of that, we fix a finite field F and we consider
the Grothendieck Chow motives over F with coefficients in F. These are the objects of
the category CM(F, F), defined as in [4].


Let G be a semisimple affine algebraic group over F . According to [3, Corollary 35(4)]
(see also Corollary 2.2 here), the motive of any projective G-homogeneous variety decom-
poses (and in a unique way) into a finite direct sum of indecomposable motives. One
would like to describe the indecomposable motives which appear this way. In this paper
we do it under certain assumption on G formulated in terms of a minimal field extension
E/F such that the group GE is of inner type: the degree of E/F is assumed to be a power
of p, where p = char F. (Note that in the case when E = F , that is, when G is of inner
type, the problem has been solved in [5].)


Let us introduce a minimum of terminology and notation needed to formulate the
answer. For any intermediate field L of the extension E/F and any projective GL-
homogeneous variety Y , we consider the upper (see [5, Definition 2.10]) indecomposable
summand MY of the motive M(Y ) ∈ CM(F, F) of Y (considered as an F -variety at this
point). Note that L is the constant field (the algebraic closure of the base field in the
function field) of the F -variety Y . The set of the isomorphism classes of the motives MY


for all L and Y is called the set of upper motives of the algebraic group G.
We are going to claim that the complete motivic decomposition of any projective G-


homogeneous variety X consists of shifts of upper motives of G. In fact, the information
we have is a bit more precise:
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Theorem 1.1. For F , G, E, and X as above, the complete motivic decomposition of X
consists of shifts of upper motives of the algebraic group G. More precisely, any indecom-
posable summand of the motive of X is isomorphic the upper motive MY of a variety Y
such that the Tits index of G over the function field of Y contains the Tits index of G
over the function field of XL, where L is the constant field of Y .


The proof of Theorem 1.1 is given in §4. Before this, we get some preparation results
which are also of independent interest. In §2, we prove the nilpotence principle for the
quasi-homogeneous varieties. In §3, we establish some properties of a motivic corestriction
functor.


By sum of motives we always mean the direct sum; a summand is a direct summand.


2. Nilpotence principle for quasi-homogeneous varieties


Let us consider the category CM(F, Λ) of Grothendieck Chow motives over a field F
with coefficients in an arbitrary associative commutative unital ring Λ.


We say that a smooth complete F -variety X satisfies the nilpotence principle, if for any
field extension K/F the kernel of the change of field homomorphism


End
(


M(X)
)


→ End
(


M(XK)
)


consists of nilpotents, where M(X) stands for the motive of X in CM(F, Λ).
We say that an F -variety X is quasi-homogeneous, if each connected component X0


of X has the following property: there exists a finite separable field extension L/F , a
semisimple affine algebraic group G over L, and a projective GL-homogeneous variety Y
such that Y , considered as an F -variety via the composition Y → Spec L → Spec F , is
isomorphic to X0. (Note that the algebraic group G needs not to be defined over F in
this definition.)


We note that any variety which is projective quasi-homogeneous in the sense of [1, §4]
is also quasi-homogeneous in the above sense. The following statement generalizes [2,
Theorem 8.2] (see also [1, Theorem 5.1]) and [3, Theorem 25]:


Theorem 2.1. Any quasi-homogeneous variety satisfies the nilpotence principle.


Proof. By [4, Theorem 92.4] it suffices to show that the quasi-homogeneous varieties form
a tractable class. We first recall the definition of a tractable class C (over F ). This is a
disjoint union of classes CK of smooth complete K-varieties, where K runs over all field
extensions of F , having the following properties:


(1) if Y1 and Y2 are in CK for some K, then the disjoint union Y1


∐


Y2 is also in CK ;
(2) if Y is in CK for some K, then each component of Y is also in CK ;
(3) if Y is in CK for some K, then for any field extension K ′/K the K ′-variety YK ′ is


in CK ′;
(4) if Y is in CK for some K, Y is irreducible, dim Y > 0, and Y (K) 6= ∅, then CK


contains a (not necessarily connected) variety Y0 such that dim Y0 < dim Y and
M(Y ) ≃ M(Y0) in CM(K, Λ).


Let us define a class C as follows. For any field extension K/F , CK is the class of all
quasi-homogeneous K-varieties.
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We claim that the class C is tractable. Indeed, the properties (1)–(3) are trivial and
the property (4) is [2, Theorem 7.2]. �


We turn back to the case where the coefficient ring Λ is a finite field F.


Corollary 2.2. Let M ∈ CM(F, F) be a summand of the motive of a quasi-homogeneous
variety. Then M decomposes in a finite direct sum of indecomposable motives; moreover,
such a decomposition is unique (up to a permutation of the summands).


Proof. Any quasi-homogeneous variety is geometrically cellular. In particular, it is geo-
metrically split in the sense of [5, §2a]. Finally, by Theorem 2.1, it satisfies the nilpotence
principle. The statement under proof follows now by [5, Corollary 2.6]. �


3. Corestriction of scalars for motives


As in the previous section, we fix an arbitrary coefficient ring Λ. We write Ch for
the Chow group with coefficients in Λ. Let C(F, Λ) be the category whose objects are
pairs (X, i), where X is a smooth complete equidimensional F -variety and i is an in-
teger. A morphism (X, i) → (Y, j) in this category is an element of the Chow group
ChdimX+i−j(X × Y ) (and the composition is the usual composition of correspondences).
The category C(F, Λ) is preadditive. Taking first the additive completion of it, and taking
then the idempotent completion of the resulting category, one gets the category of motives
CM(F, Λ), cf. [4, §63 and §64].


Let L/F be a finite separable field extension. We define a functor


corL/F : C(L, Λ) → C(F, Λ)


as follows: on the objects corL/F (X, i) = (X, i), where on the right-hand side X is con-
sidered as an F -variety via the composition X → Spec L → Spec F ; on the morphisms,
the map


HomC(L,Λ)


(


(X, i), (Y, j)
)


→ HomC(F,Λ)


(


(X, i), (Y, j)
)


is the push-forward homomorphism ChdimX+i−j(X ×L Y ) → ChdimX+i−j(X ×F Y ) with
respect to the closed imbedding X ×L Y →֒ X ×F Y . Passing to the additive completion
and then to the idempotent completion, we get an additive and commuting with the Tate
shift functor CM(L, Λ) → CM(F, Λ), which we also denote by corL/F .


The functor corL/F : C(L, Λ) → C(F, Λ) is left-adjoint and right-adjoint to the change
of field functor resL/F : C(F, Λ) → C(L, Λ), associating to (X, i) the object (XL, i).
Therefore the functor corL/F : CM(L, Λ) → CM(F, Λ) is also left-adjoint and right-adjoint
to the change of field functor resL/F : CM(F, Λ) → CM(L, Λ). (This makes a funny
difference with the category of varieties, where the functor corL/F is only left-adjoint to
resL/F , while the right-adjoint to resL/F functor is the Weil restriction.) It follows that


for any M ∈ CM(L, Λ) and any i ∈ Z, the Chow groups Chi(M) and Chi(corL/F M)
are canonically isomorphic as well as the Chow groups Chi(M) and Chi(corL/F M) are.
Indeed, since resL/F Λ = Λ ∈ CM(L, Λ), we have


Chi(M) := Hom
(


M, Λ(i)
)


= Hom
(


corL/F M, Λ(i)
)


=: Chi(corL/F M) and


Chi(M) := Hom
(


Λ(i), M
)


= Hom
(


Λ(i), corL/F M
)


=: Chi(corL/F M).
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In particular, if the ring Λ is connected and M ∈ CM(L, Λ) is an upper (see [5, Definition
2.10]) motivic summand of an irreducible smooth complete L-variety X, then corL/F M
is an upper motivic summand of the F -variety X.


Now we turn back to the situation where Λ is a finite field F:


Proposition 3.1. The following three conditions on a finite galois field extension E/F
are equivalent:


(1) for any intermediate field F ⊂ K ⊂ E, the K-motive of SpecE is indecomposable;
(2) for any intermediate fields F ⊂ K ⊂ L ⊂ E and any L-motive M , the K-motive


corL/K(M) is indecomposable;
(3) the degree of E/F is a power of p (where p is the characteristic of the coefficient


field F).


Proof. We start by showing that (3) ⇒ (2). So, we assume that [E : F ] is a power of
p and we prove (2). The extension L/K decomposes in a finite chain of galois degree
p extensions. Therefore we may assume that L/K itself is a galois degree p extension.
Let R = End(M). This is an associative, unital, but not necessarily commutative F-
algebra. Moreover, since M is indecomposable, the ring R has no non-trivial idempotents.
We have End


(


corL/K(M)
)


= R ⊗F End
(


MK(Spec L)
)


. According to [3, §7], the ring


End
(


MK(Spec L)
)


is isomorphic to the group ring FΓ, where Γ is the Galois group of
L/K. Since the group Γ is (cyclic) of order p, we have FΓ ≃ F[t]/(tp−1). Since p = char F,
F[t]/(tp − 1) ≃ F[t]/(tp). It follows that the ring End


(


corL/K(M)
)


is isomorphic to the
ring R[t]/(tp). We prove (2) by showing that the latter ring does not contain non-trivial
idempotents. An arbitrary element of R[t]/(tp) can be (and in a unique way) written in
the form a + b, where a ∈ R and b is divisible by t. Note that b is nilpotent. Let us take
an idempotent of R[t]/(tp) and write it in the above form a + b. Then a is an idempotent
of R. Therefore a = 1 or a = 0. If a = 1, then a + b is invertible and therefore a + b = 1.
If a = 0, then a + b is nilpotent and therefore a + b = 0.


We have proved the implication (3) ⇒ (2). The implication (2) ⇒ (1) is trivial. We
finish by proving that (1) ⇒ (3).


We assume that [E : F ] is divisible by a different from p prime q and we show that
(1) does not hold. Indeed, the galois group of E/F contains an element σ of order
q. Let K be the subfield of E consisting of the elements of E fixed by σ. We have
F ⊂ K ⊂ E and E/K is galois of degree q. The endomorphisms ring of MK(Spec E) is
isomorphic to F[t]/(tq − 1). Since q 6= char F, the factors of the decomposition tq − 1 =
(t − 1) · (tq−1 + tq−2 + · · · + 1) ∈ F[t] are coprime. Therefore the ring F [t]/(tq − 1) is the
direct product of the rings F[t]/(t − 1) = F and F[t]/(tq−1 + · · · + 1), and it follows that
the motive MK(Spec E) is not indecomposable. �


Corollary 3.2. Let E/F be a finite p-primary galois field extension and let L be an
intermediate field: F ⊂ L ⊂ E. Let M ∈ CM(L, F) be an upper indecomposable motivic
summand of an irreducible smooth complete L-variety X. Then corL/F M is an upper
indecomposable summand of the F -variety X. �
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4. Proof of Theorem 1.1


Before starting the proof of Theorem 1.1, let us recall some classical facts and introduce
some notation.


We write D (or DG) for the set of vertices of the Dynkin diagram of G. The galois
group Γ of the field extension E/F acts on D.


Let L be an intermediate field of the extension E/F . Any subset τ in D which is stable
under the action of the galois group of E/L, determines a projective GL-homogeneous
variety Xτ,GL


in the way described in [5, §3]. This is the variety corresponding to the set
D \ τ in the sense of [6]. For instance, XD,GL


is the variety of the Borel subgroups of GL,
and X∅,GL


= Spec L. Any projective GL-homogeneous variety is GL-isomorphic to Xτ,GL


for some τ ⊂ D stable under the action of the galois group of E/L.
For any intermediate field L of E/F and any Gal(E/L)-stable subset τ ⊂ D, we write


Mτ,GL
for the upper indecomposable motivic summand of the F -variety Xτ,GL


.
For any field extension L/F , we consider the Tits index (see [6]) of G over L and we


write τL (or τL,G) for the subset in D consisting of the circled vertices of the Dynkin
diagram.


Proof of Theorem 1.1. This is a recast of [5, proof of Theorem 3.5].
We proof Theorem 1.1 simultaneously for all F, G, X using an induction on n = dim X.


The base of the induction is n = 0 where X = Spec F and the statement is trivial.
From now on we are assuming that n ≥ 1 and that Theorem 1.1 is already proven for


all varieties of dimension < n.
Let M be an indecomposable summand of M(X). We have to show that M is isomor-


phic to a shift of Mτ,GL
for some intermediate field L of E/F and some Gal(E/L)-stable


subset τ ⊂ DG containing τL(X).
Let G′/F (X) be the semisimple anisotropic kernel of the group GF (X). The set DG′ is


identified with DG \ τF (X),G.
We note that the group G′


E(X) is of inner type. The field extension E(X)/F (X) is


galois with the galois group Gal(E/F ). In particular, its degree is a power of p and any
its intermediate field is of the form L(X) for some intermediate field L of the extension
E/F .


According to [1, Theorem 4.2], the motive of XF (X) decomposes into a sum of shifts of
motives of projective G′


L(X)-homogeneous (where L runs over intermediate fields of the


extension E/F ) varieties Y , satisfying dim Y < dim X = n (we are using the assumption
that n > 0 here). It follows by the induction hypothesis and Corollary 3.2, that each
summand of the complete motivic decomposition of XF (X) is a shift of Mτ ′,G′


L(X)
for some


L and some τ ′ ⊂ DG′. The complete decomposition of MF (X) is a part of the above
decomposition.


Let us choose a summand Mτ ′,G′


L(X)
(i) with minimal i in the complete decomposition


of MF (X). We set τ = τ ′ ∪ τL(X) ⊂ DG. We shall show that M ≃ Mτ,GL
(i) for these L, τ ,


and i.
We write Y for the F -variety Xτ,GL


and we write Y ′ for the F (X)-variety Xτ ′,G′


L(X)
.


We write N for the F -motive Mτ,GL
and we write N ′ for the F (X)-motive Mτ ′,G′


L(X)
.
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By [5, Lemma 2.14] and since M is indecomposable, it suffices to construct morphisms


α : M(Y )(i) → M and β : M → M(Y )(i)


satisfying mult(β ◦ α) = 1.
We construct α first. Since τ ′ ⊂ τ , the F (X)(Y )-variety Y ′ ×L(X) Spec F (X)(Y ) has


a rational point. Let α1 ∈ Ch0


(


Y ′ ×L(X) Spec F (X)(Y )
)


be the class of a rational point.
Let α2 ∈ Chi(XF (X)(Y )) be the image of α1 under the composition


Ch0


(


Y ′ ×L(X) Spec F (X)(Y )
)


→ Ch0(Y
′
F (X)(Y )) → Ch0(N


′
F (X)(Y )) →֒ Chi(XF (X)(Y )),


where the first map is the push-forward with respect to the closed imbedding


Y ′ ×L(X) Spec F (X)(Y ) →֒ Y ′
F (X)(Y ) := Y ′ ×F (X) Spec F (X)(Y ).


Since τL(X) ⊂ τ , the variety X has an F (Y )-point and therefore the field extension
F (X)(Y )/F (Y ) is purely transcendental. Consequently, the element α2 is F (Y )-rational
and lifts to an element α3 ∈ Chdim Y +i(Y × X). We mean here a lifting with respect to
the composition


Chdim Y +i(Y × X) →→ Chi(XF (Y ))
resF (X)(Y )/F (Y )
−−−−−−−−−→ Chi(XF (X)(Y ))


where the first map is the epimorphism given by the pull-back with respect to the mor-
phism XF (Y ) → Y × X induced by the generic point of the variety Y .


We define the morphism α as the composition


M(Y )(i)
α3−−−→ M(X) −−−→ M


where the second map is the projection of M(X) onto its summand M .
We proceed by constructing β. Let β1 ∈ Chdim Y ′(Y ′ ×F (X) YF (X)) be the class of the


closure of the graph of a rational map of L(X)-varieties Y ′
99K YF (X) (which exists because


τ ⊂ τL(X) ∪ τ ′). Note that this graph is a subset of Y ′ ×L(X) YF (X), which we consider as
a subset of Y ′ ×F (X) YF (X) via the closed imbedding Y ′ ×L(X) YF (X) →֒ Y ′ ×F (X) YF (X).
Let β2 be the image of β1 under the composition


Chdim Y (Y ′ ×F (X) YF (X)) =


ChdimY
(


M(Y ′) ⊗ M(YF (X))
)


→ ChdimY
(


N ′ ⊗ M(YF (X))
)


→


ChdimY +i
(


M(XF (X)) ⊗ M(YF (X))
)


= ChdimY +i
(


(X × Y )F (X)


)


where the first arrow is induced by the projection M(Y ′) → N ′ and the second arrow is
induced by the imbedding N ′(i) → M(XF (X)). The element β2 lifts to an element


β3 ∈ Chdim Y +i(X × X × Y ).


We mean here a lifting with respect to the epimorphism


ChdimY +i(X × X × Y ) →→ ChdimY +i
(


(X × Y )F (X)


)


given by the pull-back with respect to the morphism X ×X ×Y → (X ×Y )F (X) induced
by the generic point of the second factor in this triple direct product.


Let π ∈ Chdim X(X ×X) be the projector defining the summand M of M(X). Consid-
ering β3 as a correspondence from X to X × Y , we define


β4 ∈ ChdimY +i(X × X × Y )
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as the composition β3 ◦ π. We get


β5 ∈ Chdim Y +i(X × Y ) = ChdimX−i(X × Y )


as the image of β4 under the pull-back with respect to the diagonal of X. Finally, we
define the morphism β as the composition


M −−−→ M(X)
β5


−−−→ M(Y )(i).


The verification of the relation mult(β ◦ α) = 1, finishing the proof, is similar to that
of [5, proof of Theorem 3.5]. �


Remark 4.1. Theorem 1.1 can be also proved using a weaker result in place of [1,
Theorem 4.2], namely, [2, Theorem 7.5].
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