
QUATERNION ALGEBRAS WITH THE SAME SUBFIELDS

SKIP GARIBALDI AND DAVID J. SALTMAN

Abstract. G. Prasad and A. Rapinchuk asked if two quaternion divi-
sion F -algebras that have the same subfields are necessarily isomorphic.
The answer is known to be “no” for some very large fields. We prove that
the answer is “yes” if F is an extension of a global field K so that F/K
is unirational and has zero unramified Brauer group. We also prove a
similar result for Pfister forms and give an application to tractable fields.

1. Introduction

Gopal Prasad and Andrei Rapinchuk asked the following question in Re-
mark 5.4 of their paper [PR]:

(1.1)
If two quaternion division algebras over a field F have the same

maximal subfields, are the algebras necessarily isomorphic?

The answer is “no” for some fields F , see §2 below. The answer is “yes” if
F is a global field by the Albert-Brauer-Hasse-Minkowski Theorem [NSW,
8.1.17]. Prasad and Rapinchuk note that the answer is unknown even for
fields like Q(x). We prove that the answer is “yes” for this field:

Theorem 1.2. Let F be a field of characteristic 6= 2 that is transparent.

If D1 and D2 are quaternion division algebras over F that have the same

maximal subfields, then D1 and D2 are isomorphic.

The term “transparent” is defined in §6 below. Every retract rational
extension of a local, global, real-closed, or algebraically closed field is trans-
parent; in particular K(x1, . . . , xn) is transparent for every global field K of
characteristic 6= 2 and every n. There are many other examples.

The theorem can be viewed as a statement about symbols in the Ga-
lois cohomology group H2(F,Z/2Z). We also state and prove an analogue
for symbols in Galois cohomology of Hd(F,Z/2Z)—i.e., d-Pfister quadratic
forms—in Theorem 9.1 below.

Notation. A global field is a finite extension of Q or of Fp(t) for some prime
p. A local field is a completion of a global field with respect to a discrete
valuation.
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2. An example

Example 2.1. Several people (in no particular order: Markus Rost, Kelly
McKinnie, Adrian Wadsworth, Murray Schacher, Daniel Goldstein...) noted
that some hypothesis on the field F is necessary for the conclusion of the
theorem to hold. Here is an example to illustrate this.

Let F0 be a field of characteristic 6= 2. We follow [Lam 05] for notation
on quadratic forms, except that we define the symbol 〈〈a1, . . . , ad〉〉 to be the
d-Pfister form ⊗d

i=1〈1,−ai〉. For a Pfister form φ, we put φ′ for the unique
form such that φ ∼= 〈1〉 ⊕ φ′.

Suppose that F0 has quaternion division algebras Q1, Q2 that are not
isomorphic. Write φi := 〈〈ai, b〉〉 for the norm form of Qi. The Albert form
φ1 − φ2 has anisotropic part similar to γ = 〈〈a1a2, b〉〉.

Fix an extension E/F0 and a proper quadratic extension E(
√
c) contained

in Qi but not Qi+1, with subscripts taken modulo 2. Equivalently, −c is
represented by φ′i but not by φ′i+1. Put qi,c := 〈c〉 ⊕ φ′i+1; it is anisotropic.
Further, its determinant c is a nonsquare, so qi,c is not similar to φi, φi+1,
nor γ. All three of those forms remain anisotropic over the function field
E(qi,c) of qi,c by [Lam 05, X.4.10(3)]. That is, Q1 ⊗E(qi,c) and Q2 ⊗E(qi,c)
are division and contain E(qi,c)(

√
c), and the two algebras are still distinct.

We build a field F from F0 inductively. Suppose we have constructed the
field Fj for some j ≥ 0. Let Fj+1 be the composita of the extensions Fj(qi,c)
for c as in the previous paragraph with E = Fj and i = 1, 2. Let F be the
colimit of the Fj .

By construction, Q1⊗F and Q2⊗F are both division, are not isomorphic
to each other, and have the same quadratic subfields. This shows that some
hypothesis on the field F is necessary for the conclusion of the theorem to
hold.

One cannot simply omit the hypothesis “division” in the theorem, by
Example 3.6.

Furthermore, Theorem 1.2 does not generalize to division algebras of de-
gree > 2, even over number fields. One can easily construct examples using
the local-global principle for division algebras over a number field, see [PR,
Example 6.5] for details.

3. Discrete valuations: good residue characteristic

Fix a field F with a discrete valuation v. We write F̄ for the residue
field and F̂ for the completion. (Throughout this note, for fields with a
discrete valuation and elements of such a field, we use bars and hats to
indicate the corresponding residue field/completion and residues/image over
the completion.)

For a central simple F -algebra A, we write Â for A ⊗ F̂ . It is Brauer-
equivalent to a central division algebra B over F̂ . As v is complete on F̂ , it
extends uniquely to a valuation on B by setting v(b) := 1

deg B
v(NrdB(b)) for
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b ∈ B×, see, e.g., [R, 12.6]. We say that A is unramified if v(B×) = v(F×)—

e.g., if F̂ splits A—and ramified if v(B×) is strictly larger. That is, A is
ramified or unramified if v is so on B. Note that these meanings for ramified
and unramified are quite a bit weaker than the the usual definitions (which
usually require that the residue division algebra of B be separable over F̄ ).

The valuation ring in F̂ is contained in a noncommutative discrete valu-
ation ring S in B, and the residue algebra of S is a (possibly commutative)
division algebra B̄ whose center contains F̄ . One has the formula

dimF̄ B̄ · [v(B×) : v(F×)] = dim
F̂
B

(see [W, p. 393] for references). That is, A is unramified if and only if
dimF̄ B̄ = dim

F̂
B.

We use a few warm-up lemmas.

Lemma 3.1. Let A1, A2 be central simple algebras over a field F that has a

discrete valuation. If there is a separable maximal commutative subalgebra

that embeds in one of the Âi and not the other, then the same is true for

the Ai.

Proof. Let L̂ be a separable maximal commutative subalgebra of Â1 that is
not a maximal subalgebra of Â2. Choose α̂ ∈ L̂ so that L̂ = F̂ (α̂). Since

A1 is dense in Â1, we can choose α ∈ A1 as close as we want to α̂. Thus we
can choose the Cayley-Hamilton polynomial of α to be as close as we need
to that of α̂. In particular, by Krasner’s Lemma (applied as in [R, 33.8]),

we can assume that F̂ (α) ∼= F̂ (α̂). In particular, F̂ (α) is not a maximal

subalgebra of Â2, which implies that F (α) is not a maximal subalgebra of

A2 and is by construction a maximal subfield of A1. Since F̂ (α) ∼= F̂ (α̂),
the minimal polynomial of α over F has nonzero discriminant and hence is
separable. �

Lemma 3.2. Let A1, A2 be central division algebras of prime degree over a

field F with a discrete valuation. If

(1) Â1 is split and Â2 is not; or

(2) both Â1 and Â2 are division, but only one is ramified,

then there is a separable maximal subfield of A1 or A2 that does not embed

in the other.

Proof. The statement is obvious from Lemma 3.1. In case (1), we take take

the diagonal subalgebra in Â1. In case (2), we take a maximal separable
subfield that is ramified. �

For the rest of this section, we fix a prime p and let F be a field with a

primitive p-th root of unity ζ; we suppose that F has a discrete valuation v
with residue field of characteristic different from p.

A degree p symbol algebra is an (associative) F -algebra generated by el-
ements α, β subject to the relations αp = a, βp = b, and αβ = ζβα. It is
central simple over F [D, p. 78] and we denote it by (a, b)F or simply (a, b).
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Lemma 3.3. If A is a degree p symbol algebra over F , then A is isomorphic

to (a, b)F for some a, b ∈ F× with v(a) = 0.

Proof. Write A as (a, b) where a = xπna and b = yπnb where x, y have value
0 and π is a uniformizer for F . We may assume that p divides neither na

nor nb, so na = snb modulo p. But A is isomorphic to (a(−b)−s, b) because
(−b, b) is split [D, p. 82, Cor. 5], and v(a(−b)−s) is divisible by p. �

3.4. Let (a, b) be a symbol algebra as in Lemma 3.3 and write F̂ for the

completion of F at v. If (a, b)⊗F̂ is not division, certainly (a, b) is unramified.
Otherwise, there are two cases:

• If v(b) is divisible by p, then we can assume v(b) = 0, (a, b) is unram-

ified, and (a, b) is the symbol algebra (ā, b̄)F̄ . (The residue algebra—
which is division—contains (ā, b̄)F̄ , hence they must be equal.)

• If v(b) is not divisible by p, then (a, b) is ramified and (a, b) is the

field extension F̄ ( p
√
ā). (By hypothesis, a is not a p-th power in F̂ ,

so by Hensel’s Lemma ā is not a p-th power in F̄ .)

Proposition 3.5. Let A1 and A2 be degree p symbol algebras over F that

are division algebras. If

(1) A1 ramifies and A2 does not; or

(2) A1 and A2 both ramify but their ramification defines different exten-

sions of the residue field F̄ ,

then there is a maximal subfield L of one of the Ai that does not split the

other.

Proof. Write Ai as (ai, bi). We can assume v(a1) = v(a2) = 0. If both the
Ai ramify, then the v(bi) must be prime to p and the field extensions of the
ramification of the Ai must be F̄ ( p

√
āi). If these are different fields, then the

field L2 := F ( p
√
a2) cannot split A1 because it does not split the ramification

of A1.
Thus assume A2 is unramified and A1 ramifies. In particular, A1 ⊗ F̂ is

division, and we are done by Lemma 3.2. �

Example 3.6. In the proposition, the hypothesis that A1 and A2 are both
division is necessary. Indeed, for ℓ 6= 2, the field Qℓ of ℓ-adic numbers has
two quaternion algebras: one split and one division. Only one is ramified,
but both are split by every quadratic extension of Qℓ.

4. Discrete valuations: bad residue characteristic

In this section, we consider quaternion algebras over a field with a dyadic
discrete valuation. The purpose of this section is to prove:

Proposition 4.1. Let A1, A2 be quaternion division algebras over a field F
of characteristic 0 that has a dyadic discrete valuation. If A1⊗A2 is Brauer-

equivalent to a ramified quaternion division algebra with residue algebra a



QUATERNION ALGEBRAS WITH THE SAME SUBFIELDS 5

separable quadratic extension of F̄ , then there is a quadratic extension of F
that embeds in A1 or A2 but not both.

What really helps nail down the structure of A1 ⊗ A2 is the hypothesis
that the residue algebra is a separable quadratic extension. In particular,
the division algebra underlying A1 ⊗A2 is “inertially split” in the language
of [JW].

Example 4.2. Let B be a quaternion division algebra over a field F of
characteristic 0 that is complete with respect to a dyadic discrete valuation,
and suppose that the residue algebra B̄ contains a separable quadratic ex-
tension L̄ of F . One can lift L̄/F̄ to a unique quadratic extension L/F and
write B = (L, b) for some b ∈ F× that we may assume has value 0 or 1. One
finds two possibilities:

• If v(b) = 0, then B̄ is a quaternion algebra over F̄ generated by
elements i, j such that

F̄ (i) = L̄, i2 + i ∈ F̄ , j2 = b̄, and ij = j(i + 1).

In this case B is unramified.
• If v(b) = 1, then B̄ = L̄ and B is ramified.

For detailed explanation of these claims, see, e.g., [GP]. (Unlike the situation
in the preceding section, there are more than just these two possibilities for
general quaternion algebras over F , but in those other cases the residue
algebra B̄ is a purely inseparable extension of F̄ of dimension 2 or 4 with
B̄2 ⊆ F̄ . Note that if L/F is unramified and L̄/F̄ is purely inseparable,
then L/F is not uniquely determined by L̄/F̄ .)

Proof of Proposition 4.1. Put B for the quaternion division F -algebra un-
derlying A1 ⊗ A2. By the hypothesis on its residue algebra, B remains
division when we extend scalars to the completion F̂ . Hence at least one
of Â1, Â2 is division; by Lemma 3.2 (using that A1 and A2 are division)
we may assume that both are division and that the valuation has the same
ramification index on both algebras. By Lemma 3.1, we may assume that
F is complete.

The residue division algebra Ā1 is distinct from F̄ and we can find a
quadratic subfield L of A1 so that the residue field L̄ is a quadratic extension
of F̄ . As L is a maximal subfield of A1, it is also one for A2 and hence B.
Certainly, L̄ is a subfield of the residue algebra B̄; as both have dimension
2 over F̄ they are equal. That is, L̄ is separable. We write Ai = (L, ai)
and B = (L, b) for some ai, b ∈ F×. As the valuation does not ramify on
L we may assume that v(b) = 1. By the previous paragraph, we may write
Ai = (L, ai) for some ai ∈ F×. As Āi contains the separable extension L̄/F̄ ,
we have v(a1) = v(a2) as in Example 4.2. Then A1⊗A2⊗B—which is split—
is Brauer-equivalent to (L, a1a2b), which is ramified (because v(a1a2b) =
1 + 2v(ai) is odd) and in particular not split. This is a contradiction, which
completes the proof of the proposition. �
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5. Unramified cohomology

For a field F of characteristic not 2, we write Hd(F ) for the Galois co-
homology group Hd(F,Z/2Z). We remind the reader that for d = 1, this
group is F×/F×2 and for d = 2 it is identified with the 2-torsion in the
Brauer group of F .

Definition 5.1. Fix an integer d ≥ 2. We define Hd
u(F ) to be the subgroup

of Hd(F ) consisting of classes that are unramified at every nondyadic dis-
crete valuation of F (in the usual sense, as in [GMS, p. 19]) and are killed
by Hd(F ) → Hd(R) for every real closure R of F .

Example 5.2. (1) A local field F (of characteristic 6= 2) has H2
u(F ) = 0

if and only if F is non-dyadic. Indeed, F has no orderings, so it
suffices to consider the unique discrete valuation on F .

(2) A global field F (of characteristic 6= 2) has H2
u(F ) = 0 if and only if

F has at most 1 dyadic place. This is Hasse’s local-global theorem
for central simple algebras [NSW, 8.1.17].

(3) A real closed field F has Hd
u(F ) = 0 for all d ≥ 2; this is trivial.

A local field F (of characteristic 6= 2) has Hd
u(F ) = 0 for d ≥ 3. This is

trivial because such a field has no orderings and cohomological 2-dimension
2.

Lemma 5.3. If F (
√
−1) has cohomological 2-dimension < d, then Hd

u(F )
is zero.

Proof. By [A, Satz 3], an element x ∈ Hd(F ) is zero at every real closure if
and only if x · (−1)r is zero for some r ≥ 0. On the other hand, there is an
exact sequence for every n [KMRT, 30.12(1)]:

Hn(F (
√
−1))

cor−−−−→ Hn(F )
·(−1)−−−−→ Hn+1(F )

res−−−−→ Hn+1(F (
√
−1)

For n ≥ d, the two end terms are zero, so the cup product with (−1)r defines

an isomorphism Hd(F )
∼−→ Hd+r(F ) for all r ≥ 0. �

We immediately obtain:

Corollary 5.4. A global field F of characteristic 6= 2 has Hd
u(F ) = 0 for

all d ≥ 3. �

Corollary 5.5. If F has transcendence degree d over a real-closed field, then

Hd+1
u (F ) = 0.

Proof. F (
√
−1) has transcendence degree d over an algebraically closed field,

hence has cohomological dimension ≤ d [Se, §II.4.3]. �

We define a discrete valuation of an extension F/F0 to be a discrete
valuation on F that vanishes on F0.
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Proposition 5.6. For every extension F/F0, the homomorphism res : Hd(F0) →
Hd(F ) restricts to a homomorphism Hd

u(F0) → Hd
u(F ). If additionally F/F0

is unirational and

(5.7)
every class in Hd(F ) that is unramified at every discrete valua-

tion of F/F0 comes from Hd(F0),

then the homomorphism Hd
u(F0) → Hd

u(F ) is an isomorphism.

Proof. Fix y ∈ Hd
u(F0). Every ordering of F restricts to an ordering on F0;

write R and R0 for the corresponding real closures. By hypothesis, the image
of y in Hd(R0) is zero, hence it also has zero image under the composition
Hd(F0) → Hd(R0) → Hd(R). It is easy to see that res(y) is unramified at
every nondyadic discrete valuation of F , and the first claim follows.

We now prove the second sentence. The natural map Hd(F0) → Hd(F )
is injective by [GMS, p. 28]. Fix x ∈ Hd

u(F ). As it is unramified at every
discrete valuation of F/F0, it is the restriction of some element x0 ∈ Hd(F0)
by (5.7). We will show that x0 belongs to Hd

u(F0).
Fix an extension E := F0(x1, x2, . . . , xn) containing F . Every ordering

on F0 extends to an ordering v on E (and hence also on F ) by a recipe as
in [Lam 80, pp. 9–11]. As the map Hd((F0)v) → Hd(Fv) is an injection by
Lemma 5.8 below, we deduce that x0 is killed by every real-closure of F0.

One extends a nondyadic discrete valuation v on F0 to E by setting
v(xi) = 0 and x̄i to be transcendental over F̄0 as in [B, §VI.10.1, Prop. 2];
then the residue field of Ē is F̄0(x1, x2, . . . , xn) and the natural mapHd−1(F̄0) →
Hd−1(Ē) is injective, hence so is Hd−1(F̄0) → Hd−1(F̄ ). It follows that the
image of x0 in Hd−1(F̄0) is zero, which completes the proof. �

Here is the promised lemma:

Lemma 5.8. If R1 ⊆ R2 are real-closed fields, then the natural map Hd(R1) →
Hd(R2) is an isomorphism for every d ≥ 0.

Proof. Hd(Ri) is the usual group cohomology Hd(Z/2Z,Z/2Z). Obviously
H0(Ri) = H1(Ri) = Z/2Z, and 2-periodicity for the cohomology of finite
cyclic groups shows that Hd(Ri) = Z/2Z for all d ≥ 0, with nonzero element
(−1)d. �

Example 5.9. Recall that an extension F of F0 is retract rational if it is the
field of fractions of an F0-algebra domain S and there are F0-algebra homo-
morphisms S → F0[x1, . . . , xn](1/s) → S whose composition is the identity
on S, where F0[x1, . . . , xn] is a polynomial ring and s ∈ F0[x1, . . . , xn] is
a nonzero element. Obviously such an extension is unirational, and (5.7)
holds by [Sa, 11.8] or [M, Prop. 2.15], so Hd

u(F0) ∼= Hd
u(F ).

6. Transparent fields

Definition 6.1. Fix a field F of characteristic 6= 2. For each dyadic val-
uation v, fix a completion F̂ of F . Write K for the limit of the finite
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unramified extensions of F̂ with separable residue field. This extension is
called the maximal unramified extension of F̂ (which highlights the fact that
usually the word “unramified” is quite a bit stronger than how we are using
it). There is a well-defined ramification map

H2(K/F̂ , µ2) → H1(F̄ ,Z/2Z) s.t. (a, b) 7→
{

0 if v(a) = v(b) = 0

(a) if v(a) = 0 & v(b) = 1

We say that F is transparent if for every division algebra D 6= F of exponent
2 such that [D] belongs to H2

u(F ), there is some dyadic place v of F and

completion F̂ such that

(1) D ⊗ F̂ is split by the maximal unramified extension of F̂ , and
(2) the image of [D] in H1(F̄ ,Z/2Z) is not zero.

Another way to phrase these hypotheses is: D⊗F̂ is division and the residue

division algebra D̄ is a separable quadratic extension of F̄ .

Roughly speaking, transparent fields are those for which nonzero 2-torsion
elements of the Brauer group can be detected using ramification.

Example 6.2. (0) If H2
u(F ) = 0—e.g., if F is real closed—then F is

(vacuously, trivially) transparent.
(1) If F is local, then F is transparent. If F is nondyadic, this is Example

5.2(1). Otherwise, for each nonzero x ∈ H2
u(F ), the residue division

algebra is necessarily a separable quadratic extension of F̄ , because
F̄ is perfect with zero Brauer group.

(2) If F is global, then F is transparent. Indeed, H2
u(F ) consists of

classes ramified only at dyadic places, and every such place has finite
residue field.

The unramified Brauer group of an extension F/F0 is the subgroup of
the Brauer group of F consisting of elements that are unramified at every
discrete valuation of F/F0.

Proposition 6.3. If F0 is transparent, F/F0 is unirational, and the unram-

ified Brauer group of F/F0 is zero, then F is transparent.

Proof. Suppose there is a nonzero x ∈ H2
u(F ). By Proposition 5.6, x is the

image of some nonzero x0 ∈ H2
u(F0) and there is a dyadic valuation v of

F0 such that conditions (1) and (2) of Definition 6.1 holds for the division
algebra D0 represented by x0. Extend v to a valuation on F as in the proof
of Proposition 5.6. The maximal unramified extension of F̂ (with respect

to v) contains the maximal unramified extension of F̂0, so it kills x0 and
hence also x; this verifies condition (6.1.1). For condition (6.1.2), it suffices
to note that the map H1(F̄0,Z/2Z) → H1(F̄ ,Z/2Z) is injective as in the
proof of Proposition 5.6. �

Example 6.4. A retract rational extension of a transparent field is trans-
parent, cf. Example 5.9.
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7. Proof of the main theorem

We now prove Theorem 1.2. We assume that D1 and D2 are not isomor-
phic and that there is some quadratic extension of F that is contained in
both of them, hence that D1 ⊗D2 has index 2. We will produce a quadratic
extension of F that is contained in one and not the other.

Suppose first that there is a real closure R of F that does not splitD1⊗D2.
Then one of the Di is split by R and the other is not; say D1 is split. We can
write D1 = (a1, b1) where a1 is positive in R. The field F (

√
a1) is contained

in D1, but not contained in D2 because D2 ⊗R is division.
If there is a nondyadic discrete valuation of F where D1 ⊗D2 is ramified,

then Proposition 3.5 provides the desired quadratic extension.
Finally, suppose that D1 ⊗ D2 is split by every real closure and is un-

ramified at every nondyadic place, so D1 ⊗ D2 belongs to H2
u(F ). By the

original hypotheses on D1 and D2, the class [D1 ⊗ D2] is represented by
a quaternion division algebra B. But F is transparent, so Proposition 4.1
provides a quadratic extension of F that embeds in D1 or D2 but not the
other. �

8. Pfister forms and nondyadic valuations

With the theorem from the introduction proved, we now set to proving
a version of it for Pfister forms. The goal of this section is the following
proposition, which is an analogue of Proposition 3.5.

Proposition 8.1. Let F be a field with a nondyadic discrete valuation. Let

φ1, φ2 be d-Pfister forms over F for some d ≥ 2. If

(1) φ1 is ramified and φ2 is not; or

(2) φ1 and φ2 both ramify, but with different ramification,

then there is a (d − 1)-Pfister form γ over F such that γ divides φ1 or φ2

but not both.

The proof given below for case (1) of the proposition was suggested to us
by Adrian Wadsworth, and is much simpler than our original proof for that
case. It makes use of the following lemma:

Lemma 8.2. Let ψ = 〈a1, . . . , an〉 be a nondegenerate quadratic form over

a field F with a nondyadic discrete valuation v. If v(ai) = 0 for all i and

ψ is isotropic over the completion F̂ of F , then there is a 2-dimensional

nondegenerate subform q of ψ such that q ⊗ F̂ is isotropic.

Proof. As φ⊗ F̂ is isotropic, there exist xi ∈ F̂ not all zero so that
∑

aix
2
i =

0. Scaling by a uniformizer, we may assume that v(xi) ≥ 0 for all i and that
at least one xi has value 0. Let j be the smallest index such that v(xj) = 0;
there must be at least two such indices, so j < n.
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Fix ti in the valuation ring of F so that t̄i = x̄i, and put

r :=

j
∑

i=1

ait
2
i and s :=

n
∑

i=j+1

ait
2
i .

By construction of j, v(r) = 0. Since r + s = 0, also v(s) = 0. Now 〈r, s〉 is
a subform of ψ (over F ), and

r̄ + s̄ = r + s =
∑

ait2i =
∑

aix2
i = 0.

So 〈r, s〉 is isotropic over F̂ [Lam 05]. �

Proof of Proposition 8.1. Obviously, 〈〈xπ, yπ〉〉 ∼= 〈〈−xy, yπ〉〉, so we may as-
sume that

φi = 〈〈ai2, ai3, . . . , aid, bi〉〉
where aij has value 0 and bi has value 0 or 1.

In case (2), b1 and b2 have value 1 and the residue forms

r(φi) = 〈〈āi2, āi3, . . . , āid〉〉
are not isomorphic. We take γ to be 〈〈a12, a13, . . . , a1d〉〉; it divides φ1. The
projective quadric X defined by γ = 0 is defined over the discrete valuation
ring, and F̄ (X) does not split r(φ2) by [Lam 05, X.4.10]. Hence F (X) does
not split φ2 and γ does not divide φ2.

Now suppose we are in case (1); obviously v(b1) = 1. If φ2 ⊗ F̂ is
anisotropic, then as φ2 does not ramify, v(b2) = 0 and the second residue
form of φ2 is zero. Certainly γ := 〈〈a13, . . . , a1d, b1〉〉 divides φ1. On the other

hand, every anisotropic multiple of γ⊗ F̂ over F̂ will have a nonzero second
residue form, so φ2 cannot contain γ.

Otherwise, φ2 ⊗ F̂ is hyperbolic, and there exists some 2-dimensional
subform q of φ2 that becomes hyperbolic over F̂ by Lemma 8.2. It follows
that there is a (d − 1)-Pfister ψ that is contained in φ2 and that becomes

hyperbolic over F̂ . But φ1 ⊗ F̂ is ramified, hence anisotropic, so φ1 cannot
contain ψ. �

9. Theorem for quadratic forms

Theorem 9.1. Let F be a field of characteristic 6= 2 such that Hd
u(F ) = 0

for some d ≥ 2. Let φ1 and φ2 be anisotropic d-Pfister forms over F such

that, for every (d− 1)-Pfister form γ, we have: γ divides φ1 if and only if γ
divides φ2. Then φ1 is isomorphic to φ2.

We remark that for d = 2, Theorem 9.1 does not include the case where
F is a retract rational extension of a global field with more than one dyadic
place, a case included in Theorem 1.2.

Proof of Theorem 9.1. Suppose that φ1 and φ2 are d-Pfister forms over F
for some d ≥ 2, Hd

u(F ) is zero, and φ1 is not isomorphic to φ2. Then φ1 +φ2

is in Hd(F ) \Hd
u(F ).
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If there is a nondyadic discrete valuation where φ1 + φ2 ramifies, then
Proposition 8.1 gives a (d − 1)-Pfister form that divides one of the φi and
not the other. Otherwise, there is an ordering v of F such that φ1 and φ2

are not isomorphic over the real closure Fv , i.e., one is locally hyperbolic
and the other is not. Write φi = 〈〈ai1, ai2, . . . , aid〉〉 and suppose that φ1 is
locally hyperbolic, so some a1j is positive; renumbering if necessary, we may
assume that it is a11. Then the form 〈〈a12, a13, . . . , a1d〉〉 divides φ1, but it is
hyperbolic over Fv and so does not divide φ2. �

10. Appendix: tractable fields

We now use the notion of unramified cohomology from §5 to prove some
new results and give new proofs of some known results regarding tractable
fields. Recall from [CTW] that a field F of characteristic 6= 2 is called
tractable if for every a1, a2, a3, b1, b2, b3 ∈ F× such that the six quaternion
algebras (ai, bj) are split for all i 6= j and the three quaternion algebras
(ai, bi) are pairwise isomorphic, the algebras (ai, bi) are necessarily split.
(This condition was motivated by studying conditions for decomposability
of central simple algebras of degree 8 and exponent 2.) We prove:

Proposition 10.1. If H2
u(F ) = 0, then F is tractable.

Proof. For sake of contradiction, suppose we are given ai, bi as in the def-
inition of tractable where the quaternion algebras (ai, bi) are not split. If
the (ai, bi) do not split at some real closure of F , then the ai and bi are all
negative there. Hence (ai, bj) for i 6= j is also not split, a contradiction.

So the (ai, bi) ramify at some nondyadic discrete valuation v of F and
in particular are division over a the completion of F at v. We replace F
with its completion and derive a contradiction. Modifying each ai or bi by a
square if necessary, we may assume that each one has value 0 or 1. Further,
as each (ai, bi) is ramified, at most one of the two slots has value 0.

Suppose first that one of the ai or bi—say, a1—has value 0. Then b1 has
value 1 and a1 is not a square in F . As (a1, bj) is split for j 6= 1, we deduce
that v(bj) = 0. Hence v(a2) = v(a3) = 1. As (a3, b3) is division, b3 is not
a square in F . Since v(a2) = 1 and v(b3) = 0, it follows that (a2, b3) is
division, a contradiction.

It remains to consider the case where the ai’s and bi’s all have value 1.
We can write ai = παi and bi = πβi, where π is a prime element—say, a1

so α1 = 1—and αi, βi have value 0. In the Brauer group of F , we have for
i 6= j:

0 = (παi, πβj) = (παi,−αiβj) = (π,−αiβj) + (αi, βj).

It follows that −αiβj is a square in F for i 6= j. In particular, −β2, −β3,
α2, and α3 are all squares. Then

(a2, b2) = (πα2, πβ2) = (π,−π) = 0,

a contradiction. �
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Example 10.2. In [CTW], the authors proved that a local field is tractable
if and only if it is nondyadic (ibid., Cor. 2.3) and a global field is tractable
if and only if it has at most 1 dyadic place (ibid., Th. 2.10). Combining the
preceding proposition and Example 5.2 gives a proof of the “if” direction for
both of these statements.

Corollary 10.3 ([CTW, Th. 3.17]). Every field of transcendence degree 1

over a real-closed is tractable.

Proof. Combine the proposition and Corollary 5.5. �

Example 10.4. The converse of Proposition 10.1 is false. For every odd
prime p, Qp((x)) is tractable by [CTW, Prop. 2.5]. On the other hand, the
usual discrete valuation on the formal power series ring is essentially the
unique one [EP, 4.4.1], so H2

u(Qp((x))) = H2(Qp) = Z/2Z.

Corollary 10.5. Let F0 be a field of characteristic 6= 2 that

• is tractable and

• is global, local, real-closed, or has no 2-torsion in its Brauer group.

Then every unirational extension F/F0 satisfying (5.7)—e.g., every retract

rational extension F/F0—is also tractable.

Proof. We note that F0 has H2
u(F0) = 0. In case F0 is global or local, then

F0 has one dyadic place or is non-dyadic respectively by [CTW], and the
claim follows, see Example 5.2. Then H2

u(F ) is also zero by Proposition 5.6,
hence F is tractable. �

Of course, this corollary includes the statement that rational extensions of
tractable global fields are tractable, which was a nontrivial result (Example
3.14) in [CTW]. However, a stronger result has already been proved in [Han,
Cor. 2.14]: every rational extension of a tractable field is tractable.

We do get a large family of new examples of tractable fields:

Corollary 10.6. Let F be a global field with at most one dyadic place. If G
is an isotropic, simply connected, absolutely almost simple linear algebraic

group over F , then the function field F (G) is tractable.

Proof. The extension F (G)/F is retract rational by Theorems 5.9 and 8.1
in [Gi]. �
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