ALGEBRAIC CONES

VLADIMIR L. POPOV*

ABSTRACT. A characterization of algebraic cones in terms of actions of the one-dimensional multiplicative algebraic monoid \mathbf{M}_{m} and the algebraic group \mathbf{G}_{m} is given.

This note answers a question of K. Adjamagbo asked in [A].

Below all algebraic varieties are taken over an algebraically closed field k.

An irreducible algebraic variety X is called a *cone* if X is affine and its coordinate algebra k[X] admits a connected **N**-grading:

$$k[X] = \bigoplus_{d \in \mathbf{N}} k[X]_d, \qquad k[X]_0 = k. \tag{1}$$

Let \mathbf{M}_{m} be the multiplicative algebraic monoid whose underlying variety is the affine line \mathbf{A}^1 and the multiplication $\mu \colon \mathbf{A}^1 \times \mathbf{A}^1 \to \mathbf{A}^1$ is defined by that in k, i.e., $\mu^*(T) = T \otimes T$ where T is the standard coordinate function on \mathbf{A}^1 . The group of units of \mathbf{M}_{m} is $\mathbf{M}_{\mathrm{m}} \setminus \{0\} = \mathbf{G}_{\mathrm{m}}$. We put

$$\chi_d \colon \mathbf{G}_{\mathrm{m}} \longrightarrow \mathbf{G}_{\mathrm{m}}, \qquad t \mapsto t^d,$$
 (2)

One says that \mathbf{M}_{m} acts on a variety Y if a morphism $\alpha \colon \mathbf{M}_{\mathrm{m}} \times Y \to Y$ is given, such that $\alpha(g,\alpha(h,y)) = \alpha(gh,y)$ and $\alpha(1,y) = y$ for all $g,h,\in \mathbf{M}_{\mathrm{m}}, y\in Y$. We write $g(y) := \alpha(g,y)$. The restriction of α to $\mathbf{G}_{\mathrm{m}} \times Y$ is the usual group action of \mathbf{G}_{m} on Y. The set $\mathbf{M}_{\mathrm{m}}(y) := \{g(y) \mid g \in \mathbf{M}_{\mathrm{m}}\}$ is called an \mathbf{M}_{m} -orbit of y (warning: different \mathbf{M}_{m} -orbits may have a nonempty intersection). If $\mathbf{M}_{\mathrm{m}}(y) = y$, then y is called a fixed point of the action.

Theorem. Let X be an irreducible algebraic variety. Consider the properties:

- (i) X is a cone;
- (ii) there is an action of \mathbf{M}_m on X with a unique fixed point;
- (iii) there is an action of \mathbf{G}_m on X with a fixed point and without other closed orbits.

Then (i) \Rightarrow (ii) \Rightarrow (iii) and, if X is normal, (iii) \Rightarrow (i).

Proof. We may assume that $\dim X > 0$.

(i) \Rightarrow (ii) Let X be a cone. Consider a grading (1). Then formula $t \cdot f := t^d f$ for $t \in \mathbf{G}_m$, $f \in k[X]_d$, defines an action of \mathbf{G}_m on k[X] by k-algebra automorphisms. In turn, it defines an (algebraic) action of \mathbf{G}_m on X. As grading (1) is connected,

$$k[X]^{\mathbf{G}_{\mathrm{m}}} = k. \tag{3}$$

Since $k[X]^{\mathbf{G}_{\mathrm{m}}}$ separates closed \mathbf{G}_{m} -orbits (see [MF, Cor. A1.3]), from (3) and [Bor, Cor. I.1.8] we deduce that there is a unique such orbit O. The coordinate algebra k[O]

Date: August 7, 2009.

^{*} Supported by grants $P\Phi\Phi M$ 08-01-00095, HIII-1987.2008.1, and the program Contemporary Problems of Theoretical Mathematics of the Russian Academy of Sciences, Branch of Mathematics.

of O does not contain \mathbf{G}_{m} -stable proper ideals as the zero set of such an ideal would be a proper \mathbf{G}_{m} -stable subset of O. Hence, as closedness of O implies surjectivity of the map $k[X] \to k[O]$, $f \mapsto f|_O$, the \mathbf{G}_{m} -stable ideal $\bigoplus_{d>0} k[X]_d$ vanishes on O. Therefore, O is a single point.

By the embedding theorem [PV, Theorem 1.5] we may assume that X is a closed \mathbf{G}_{m} -stable subset of a finite dimensional \mathbf{G}_{m} -module V and X is not contained in its proper submodule. But the set of zeros of all linear functions on V that vanish on X is a submodule containing X. Hence we have the embedding $V^* \hookrightarrow k[X], \ \ell \mapsto \ell|_X$, of \mathbf{G}_{m} -modules. As the weights of V are the inverses of that of V^* , by (3) this yields that the origin 0_V is the unique \mathbf{G}_{m} -fixed point in V; in particular, $O = 0_V$. By (1) this also yields that, for every \mathbf{G}_{m} -weight χ_d of V^* , we have $d \in \mathbf{N}$. Hence by (2) there are $d_1, \ldots, d_n \in \mathbf{N}$ and a basis e_1, \ldots, e_n of V such that $t(e_i) = t^{d_i}e_i$ for every $t \in \mathbf{G}_{\mathrm{m}}$ and i. This shows that the action of \mathbf{G}_m on V extends to the action of \mathbf{M}_{m} on V by putting $0(v) = 0_V$ for every $v \in V$. As \mathbf{M}_{m} is the closure of \mathbf{G}_{m} and X is \mathbf{G}_{m} -stable and closed, X is \mathbf{M}_{m} -stable as well. By the same reason, 0_V is a fixed point of \mathbf{M}_{m} . There are no other such points because $V^{\mathbf{G}_{\mathrm{m}}} = \{0_V\}$.

(ii) \Rightarrow (iii) Assume that \mathbf{M}_m acts on an irreducible variety X with a unique fixed point x. Restrict this action to \mathbf{G}_m . Take a point $y \in X$. If the \mathbf{G}_m -orbit $\mathbf{G}_m(y)$ is closed in X, then $\mathbf{G}_m(y) = \mathbf{M}_m(y)$ since \mathbf{G}_m is dense in \mathbf{M}_m .

We claim that then $\mathbf{G}_m(y)$ is a single point, whence $\mathbf{G}_m(y) = x$ because of the uniqueness of x. Indeed, assume the contrary, i.e., $\dim \mathbf{G}_m(y) = 1$. The orbit map $\varphi_y \colon \mathbf{M}_m \to \mathbf{M}_m(y), \ g \mapsto g(y)$, is a surjective morphism of one-dimensional smooth varieties such that every fiber is finite and, for every point $z \in \mathbf{M}_m(y), \ z \neq \varphi_y(0)$, the cardinality of $\varphi_y^{-1}(z)$ is equal to the order s of the \mathbf{G}_m -stabilizer of y while the cardinality of $\varphi_y^{-1}(\varphi_y(0))$ is s+1. By [G, Sect. 2, Cor. 2] this is impossible, a contradiction. Thus, x is a unique closed \mathbf{G}_m -orbit.

(iii) \Rightarrow (i) Now assume that \mathbf{G}_{m} acts on X with a unique fixed point x and without other closed orbits. Then, for every point $y \in X$, $y \neq x$, the closure $\overline{\mathbf{G}_{m}(y)}$ of the orbit $\mathbf{G}_{m}(y)$ is one-dimensional and

$$x \in \overline{\mathbf{G}_m(y)}. \tag{4}$$

Assume further that X is normal. Then by Sumihiro's theorem [S, Cor. 2 of Lemma 8] there is a \mathbf{G}_{m} -stable affine open neighborhood U of x. We claim that X = U. Indeed, if not, then $X \setminus U$ is a nonempty \mathbf{G}_{m} -stable closed subset in X and (4) is impossible for $y \in X \setminus U$, a contradiction.

Thus, X = U, hence X is affine.

As elements of $k[X]^{\mathbf{G}_{\mathrm{m}}}$ are constant on \mathbf{G}_{m} -orbits, (4) implies that f(y) = f(x) for every $f \in k[X]^{\mathbf{G}_{\mathrm{m}}}$ and $y \in X$; whence (3) holds.

Now let $k[X]_d$ be the χ_d -isotypic component of the \mathbf{G}_{m} -module k[V]. Then

$$k[X] = \bigoplus_{d \in \mathbf{Z}} k[X]_d \tag{5}$$

is a **Z**-grading of the k-algebra k[X]. By (3) it is connected, i.e., $k[X]_0 = k$.

We claim that there are no integers $d_1 > 0$ and $d_2 < 0$ such that $k[X]_{d_i} \neq 0$ for i = 1, 2. Indeed, assume the contrary. Then there is a point $y \in X$ such that $k[X]_{d_i}$, i = 1, 2, is not in the kernel of $k[X] \to k[\overline{\mathbf{G}_m(y)}]$, $f \mapsto f|_{\overline{\mathbf{G}_m(y)}}$. Hence, for every i = 1, 2, the χ_{d_i} -isotypic component of the \mathbf{G}_m -module $k[\overline{\mathbf{G}_m(y)}]$ is nonzero. This implies that there is an integer $d \neq 0$ such that the \mathbf{G}_m -stable maximal ideal $\{f \in k[\overline{\mathbf{G}_m(y)}] \mid f(x) = 0\}$ of $k[\overline{\mathbf{G}_m(y)}]$ has the nonzero χ_{d^-} and χ_d^{-1} -isotypic components. Let p and q be the nonzero elements of resp. the first and second of them. Then pq

is constant on $\mathbf{G}_m(y)$ and hence on $\overline{\mathbf{G}_m(y)}$. As pq(x)=0, this means that pq=0 contrary to the irreducibility of $\overline{\mathbf{G}_m(y)}$, a contradiction.

Thus, $k[X]_d = 0$ in (5) either for all negative or for all positive d's. Replacing, if necessary, the action of \mathbf{G}_m on X by $g \cdot y := g^{-1}(y)$, we may assume that the first possibility is realized, i.e., (1) holds. This completes the proof. \square

Remark. The following example shows that, in general, without the assumption of normality of X the implications (iii) \Rightarrow (i) and (ii) \Rightarrow (i) do not hold.

Example. Let X be the image of the morphism

$$\nu : \mathbf{P}^1 \longrightarrow \mathbf{P}^2, \ (a_0 : a_1) \mapsto (p^3 : q^2t - p^3 : q^3 - qp^2), \ p = a_1 - a_0, \ q = a_1 + a_0.$$

X is the projective plane cubic with an ordinary double point O=(1:0:0) and $\mathbf{P}^1 \to X$, $x \mapsto \nu(x)$, is the normalization map. Formula $\alpha(t,(a_0:a_1))=(a_0:ta_1)$ defines an action of \mathbf{G}_{m} on \mathbf{P}^1 that descends to X by means of ν , see [P]. For this action, O is a unique fixed point and $X \setminus O$ is an orbit. This action extends to the one of \mathbf{M}_{m} by putting O(x)=O for every $x\in X$.

References

- [A] K. Adjamagbo, Letter to V. L. Popov, July 9, 2009.
- [Bor] A. Borel, Linear Algebraic Groups, 2nd enlarged ed., Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, 1991.
- [G] A. GROTHENDIECK, Compléments de géométrie algébrique. Espaces de transformations, in: Séminaire C. Chevalley, 1956–1958. Classification de groupes de Lie algébriques, Vol. 1, Exposé no. 5, Secr. math. ENS, Paris, 1958.
- [MF] D. MUMFORD, J. FOGARTY, Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 34, Springer-Verlag, Berlin, 1982.
- [P] V. L. Popov, Algebraic curves with an infinite automorphism group, Math. Notes 23 (1978), 102–108.
- [PV] V. L. POPOV, E. B. VINBERG, Invariant Theory, in: Algebraic Geometry IV, Encyclopaedia of Mathematical Sciences, Vol. 55, Springer-Verlag, Berlin, 1994, pp. 123–284.
- [S] H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28.

Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina 8, Moscow, 119991, Russia

E-mail address: popovvl@orc.ru