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Abstract. We prove that the functor R → Pf
n
(R) of n-fold Pfister

forms satisfies purity for regular local rings containing the field Q of
rational numbers. As an application we show that purity holds for F4-
torsors with trivial g3 invariant.

1. Main results

In the present note we address to the purity conjecture for F4-torsors.
The question on purity of torsors was raised in [CTS, Question 6.4, p. 124]
by J.-L. Colliot-Thélène and J.-J. Sansuc. Until recently for exceptional
groups the answer was known for type G2 only (see [ChP]) and our aim is
to consider the next open case of groups of type F4 with trivial g3 invariant.

Let us recall what the purity property for a functor is. Let F be a covariant
functor from the category of commutative rings to the category of sets,
and let R be a domain with field of fractions K. We say that an element
ξ ∈ F (K) is unramified at a prime ideal P ⊂ R of height 1 if

ξ ∈ Im [F (RP) −→ F (K) ].

We say that ξ is unramified if it is unramified with respect to all prime ideals
in R of height 1. It is clear that

Im [F (R) → F (K) ] ⊆ F (K)ur

where F (K)ur is the set of all unramified elements. We say that the functor
F satisfies purity for a domain R if every ξ ∈ F (K)ur is in the image of
F (R), i.e. if

⋂

ht P=1

Im [F (RP) → F (K)] = Im [F(R) → F(K)].

In what follows we assume that 2 is invertible in R. We say that a qua-
dratic space over R is an n-fold Pfister space if the corresponding quadratic
form is isomorphic to a form

〈〈 a1, . . . , , an 〉〉 = 〈 1,−a1 〉 ⊗ · · · ⊗ 〈 1,−an 〉
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where a1, . . . , an are units in R. We will consider the following two functors:

Pfn (R) = { isomorphism classes of n-fold Pfister spaces over R }.
and

T (R) = H1
ét(R,G0) = { isomorphism classes of G0-torsors over R }

where G0 is a split group of type F4.
Recall that the set of isomorphism classes of group schemes of type F4

over R (resp. over K) can be identified in a natural way with H1
ét(R,G0)

(resp. H1(K,G0)). So abusing notation we will identify a group G of type
F4 with the corresponding cocycle ξ and the isomorphism class [G] with
the equivalence class [ξ]. Given such a group G over a field K one can asso-
ciate [S93], [GMS], [PetRac], [Ro] the cohomological invariants f3(G), f5(G)
and g3(G) of G in H3(K,µ2), H5(K,µ2) and H3(K, Z/3Z) respectively. The
group G can be viewed as the automorphism group of a corresponding 27-
dimensional Jordan algebra J . The invariant g3(G) vanishes if and only if
J is reduced, i.e. J has zero divisors.

The main results of this paper are the following purity theorems:

1.1. Theorem. Let R be a regular local ring containing the field Q of rational
numbers and let K be its field of fractions. Let [G] ∈ T (K)ur be such that
g3(G) = 0. Then [G] is in the image of T (R) → T (K).

1.2. Theorem. The functor R 7→ Pfn (R) satisfies purity for regular local
rings containing Q.

1.3. Theorem. Let ϕm (resp. ϕn ) be an m-fold (resp. an n-fold ) Pfister
space over R. If ϕm,K is a subform of the form ϕn,K , then there exists an
(n−m)-fold Pfister space ϕn−m over R such that ϕn

∼= ϕm ⊗ϕn−m over R.

1.4. Remark. For many groups of classical type the purity theorem is
known; more precisely it is known for split groups of type An (unpublished);
groups of the form SL1,A, where A is a central simple algebra over a field
[CTO]; split groups of type Bn [P]; split simply connected groups of type
Cn (obvious); certain split groups of type Dn (like the special orthogonal
group of a quadratic form) [P].

1.5. Remark. The characteristic restriction in the theorem is due to the fact
that we use the main result in [P] on rationally isotropic quadratic spaces
which was proven in characteristic zero only (the resolution of singularities
is involved in that proof).

2. Rationally direct summands of a quadratic space

Throughout the paper R denotes a regular local ring containing the field
Q of rational numbers. Note that R is a unique factorization domain ([Ma,
Theorem 48, page 142]).

For the definition and basic properties of quadratic spaces over a commu-
tative ring we refer to [K]. The aim of this section is to establish a criterion
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when one quadratic space over R can be realized as a direct summand of
the second one. That criterion is stated in Proposition 2.2.

Let (V, f) be a quadratic space over R. We denote by f(−,−) a symmetric
bilinear form on V corresponding to f .

2.1. Lemma. Let v ∈ V be a vector such that f(v) is a unit in R. Then we
have V ≃ 〈 v 〉⊥〈 v 〉⊥.

Proof. Obviously we have 〈 v 〉 ∩ 〈 v 〉⊥ = 0. So it suffices to show that every
vector w ∈ V can be written in the form w = w1 + w2 where w1 ∈ 〈 v 〉
and w2 ∈ 〈 v 〉⊥. Let w1 = f(w, v)f(v)−1v. Then w2 = w − w1 is obviously
orthogonal to v, so the result follows. �

2.2. Proposition. Let (V, f) and (W,g) be two quadratic spaces over R.
Then g is a direct summand of f if and only if gK is a subform of fK.

Proof. If g is a direct summand of f then obviously gK is a subform of fK .
Conversely, assume gK is a subform of fK. Let m = dim g and n = dim f .
We argue by induction on m. Consider first the case m = 1. Then g = 〈 a 〉
where a ∈ R× and fK represents a. By [P, Cor.2] there exists v ∈ V
such that f(v) = a. Clearly that v is unimodular. By Lemma 2.1 we have
V = 〈 v 〉⊥〈 v 〉⊥ implying f can be decomposed as f = 〈 a 〉⊥f ′.

Assume now that our statement is proven for all quadratic spaces of di-
mension m = i. Let (W,g) be a quadratic space of dimension i + 1. Take a
decomposition g = 〈 a 〉⊥g′ where g′ is a quadratic form of dimension m− 1
and a is a unit in R. By case m = 1, the quadratic form f can be decom-
posed as f = 〈 a 〉⊥f ′. Since gK is a subform of fK , by Witt cancelation we
get g′K is a subform of f ′

K . By induction g′ is a direct summand of f ′, so
the result follows. �

3. Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. Let K be a quotient field of R and let fK be an n-fold
Pfister form over K unramified with respect to every prime ideal in R of
height 1. If fK is isotropic, then fK is split over K and there is nothing to
prove. So we may assume that fK is anisotropic over K.

By [P, Cor.1] there exists a quadratic space f over R such that its
fiber at the generic point of Spec (R) is isomorphic to fK . Our aim is
to show by induction that f can be decomposed as f = gi⊥hi where
gi = 〈〈−a1,−a2, . . . ,−ai 〉〉 is an i-fold Pfister form, hi is a quadratic space
over R and i = 1, . . . , n. In view of dimension argument, taking i = n we
have f = gn and Theorem 1.2 follows.

Let first i = 1. Since fK represents 1 over K, by Proposition 2.2 we
may write f = 〈 1 〉⊥f ′ for a suitable quadratic form f ′ = 〈 a1, . . . , an−1 〉
over R. Denote g1 = 〈 1, a1 〉 = 〈〈−a1 〉〉. By our construction g1 is a
direct summand of f as required. Assume now that f = gi⊥hi where
gi = 〈〈−a1, . . . ,−ai 〉〉 is an i-fold Pfister form and i < n. Consider a
diagonalization hi = 〈b2i+1, . . . , b2n〉. Let gi+1 = 〈〈−a1, . . . ,−ai,−ai+1 〉〉
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where ai+1 = b2i+1. Clearly we have fK = gi,K ⊗ q for some (n − i)-fold
Pfister form q over K so that hi,K is isomorphic over K to gi,K ⊗ q′ where
q′ is the pure subform of q. Since hi,K represents ai+1 so is gi,K ⊗ q′. Then
by [KMRT, Theorem 1.10], gi+1,K is a subform of fK . By Proposition 2.2
it follows gi+1 is a direct summand of f and we are done.

Proof of Theorem 1.3. For m = n there is nothing to prove. Assume that
m < n. Write ϕm as ϕm = 〈〈−a1, . . . ,−am 〉〉. Write ϕn as ϕn = ϕm⊥hm.
Consider a diagonalization hm = 〈b2m+1, . . . , b2n〉. Arguing as in the proof
of Theorem 1.2 we see that the space ϕm+1 := 〈〈−a1, . . . ,−am,−am+1 〉〉 is
subspace of the space ϕn, where am+1 = b2m+1. Continuing this process we
get ϕn

∼= 〈〈−a1, . . . ,−am, . . . ,−an 〉〉 for certain units am+1, . . . , an in R as
required.

4. Proof of Theorem 1.1

Let R be a regular local ring containing Q and let K be its field of
fractions. Consider a group G of type F4 over K unramified with respect to
all prime ideals P ⊂ R of height 1. It is a twisted form G = ξG0,K of a split
group G0 over R with some cocycle ξ ∈ Z1(K,G0,K ).

If T0 ⊂ G0 is a maximal K-split torus we denote by c ∈ Aut(G0) = G0

an element such that c2 = 1 and c(t) = t−1 for every t ∈ T0 (it is known
that such an automorphism exists, see e.g. [DG], Exp. XXIV, Prop. 3.16.2,
p. 355). Let Σ = Σ(G0, T0) be a root system of G0 with respect to T0.
Fix its basis {α1, α2, α3, α4 }. Denote by α̌i : Gm → T0, i = 1, . . . , 4, the
cocharacters dual to α1, . . . , α4. Clearly, T0 can be decomposed as a direct
product T0 =

∏
i Tα̌i

where Tα̌i
is the image of α̌i.

Let u ∈ R be a unit which is not a square in K. Let S = R(
√

u) be
the corresponding étale quadratic extension of R. Denote the nontrivial
involution of S/R by τ .

4.1. Lemma. Let t =
∏

i α̌i(ui) ∈ T0(R) where u1, u2, u3, u4 are units in R
and let aτ = ct. Then λ = (aτ ) is a cocycle in Z1(S/R,G0(L)).

Proof. We need to check that aττ(aτ ) = 1. Indeed, we have

aττ(aτ ) = ct τ(ct) = ctct = t−1t = 1

as required. �

To complete the proof of Theorem 1.1 we are going to find the parameters
u, u1, u2, u3, u4 such that the twisted group scheme H = λG0 has generic
fiber isomorphic to G. With this purpose we first remind a criterion when
two groups of type F4 over K are isomorphic. Note that both H and G have
trivial g3 invariant. Then by a result of Springer [Sp] (see also [Ch, Theorem
7.1]) we have G and HK are K-isomorphic if and only if f3(G) = f3(HK)
and f5(G) = f5(HK). This criterion suggests that the required parameters
u, u1, u2, u3, u5 must be given in terms of f3(G) and f5(G).
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4.2. Proposition. Let G be as above. Then f3(G) and f5(G) are unramified
with respect to all prime ideals P ⊂ R of height 1.

Proof. The invariants f3, f5 are symbols given in terms of the trace quadratic
form of the Jordan algebra J corresponding to G and hence we may associate
to them the 3-fold and 5-fold Pfister forms. Abusing notation we denote
these Pfister forms by the same symbols f3(G) and f5(G).

Let P ⊂ R be a prime ideal of height 1 and let v = vP be the corre-
sponding discrete valuation on K. We need to show that f3(G), f5(G) are
in the images of Pf3 (RP)) → Pf3 (K) and Pf5 (RP)) → Pf5 (K) where RP

is the localization of R at P. Equivalently, f3(GKv
), f5(GKv

) are in the
images of Pf3 (Rv) → Pf3 (Kv) and Pf5 (Rv) → Pf5 (Kv) where Rv and Kv

are completions of R and K with respect to v.
To see this, we consider a simple group scheme Hv of type F4 over Rv such

that its fiber at the generic point of Spec (Rv) is isomorphic to GKv
. Note

that such a scheme do exists because G is unramified at P and hence GKv

is also unramified. Since Rv is a regular local ring containing Q by [Ch,
Theorems 6.1, 6.6, Remark 8.4] we have f3(GKv

) and f5(GKv
) are of the

form (v1)∪ (v2)∪ (v3) and (v1)∪ (v2)∪ (v3)∪ (v4)∪ (u5) respectively where
v1, . . . , v5 are units in Rv. �

4.3. Proposition. There exist units v1, . . . , v5 ∈ R× such that f3(G) =
〈〈 v1, v2, v3 〉〉 and f5(G) = 〈〈 v1, v2, v3, v4, v5 〉〉.

Proof. By Theorem 1.2 and Proposition 4.2 there exist Pfister spaces g =
〈〈 v1, v2, v3 〉〉 and h = 〈〈w1, w2, w3, w4, w5 〉〉 over R such that f3(G) = gK

and f5(G) = hK . Here v1, v2, v3, w1, . . . , w5 are units in R. Since f3(G) is
a subform of f5(G) Theorem 1.3 shows that there are units v3, v4 in R such
that h = 〈〈 v1, v2, v3, v4, v5 〉〉. We are done.

�

We are now in position to complete the proof of Theorem 1.1. Take the
cocycle λ from Lemma 4.1 with the parameters u = v1, u1 = v2, . . . , u4 = v5

and the twisted group scheme H = λG0 over R. Let τ be the nontrivial
automorphism of S = R(

√
u) over R. Let

{Hα1
, . . . ,Hα4

,Xα, α ∈ Σ }

be a Chevalley basis of the Lie algebra of H over S with respect to T0. The
twisted action of τ on Xαi

is given by

τ(Xαi
) = ct(Xαi

)(ct)−1 = c
∏

j

α̌j(uj)(Xαi
)
∏

j

α̌j(u
−1
j )c−1 = uiX−αi

,

so that in the terminology of [Ch] the structure constants of H are u1, . . . , u4.
By [Ch, Theorem 6.1 and Theorem 6.6] the f3 and f5 invariants of HK are
〈〈u, u1, u2 〉〉 and 〈〈u, u1, u2, u3, u4 〉〉. Thus HK and G have the same f3, f5

invariants, hence they are isomorphic. Theorem 1.1 is proven.
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