PURITY OF F_4 -TORSORS WITH TRIVIAL g₃ INVARIANT

VLADIMIR CHERNOUSOV AND IVAN PANIN

ABSTRACT. We prove that the functor $R \to \mathfrak{P}\!f_n(R)$ of *n*-fold Pfister forms satisfies purity for regular local rings containing the field \mathbf{Q} of rational numbers. As an application we show that purity holds for F_4 torsors with trivial g_3 invariant.

1. Main results

In the present note we address to the purity conjecture for F_4 -torsors. The question on purity of torsors was raised in [CTS, Question 6.4, p. 124] by J.-L. Colliot-Thélène and J.-J. Sansuc. Until recently for exceptional groups the answer was known for type G_2 only (see [ChP]) and our aim is to consider the next open case of groups of type F_4 with trivial g_3 invariant.

Let us recall what the purity property for a functor is. Let \mathcal{F} be a covariant functor from the category of commutative rings to the category of sets, and let R be a domain with field of fractions K. We say that an element $\xi \in \mathcal{F}(K)$ is *unramified* at a prime ideal $\mathfrak{P} \subset R$ of height 1 if

$$\xi \in \operatorname{Im} \left[\mathcal{F}(R_{\mathfrak{P}}) \longrightarrow \mathcal{F}(K) \right].$$

We say that ξ is *unramified* if it is unramified with respect to all prime ideals in R of height 1. It is clear that

$$\operatorname{Im}\left[\mathfrak{F}(R) \to \mathfrak{F}(K)\right] \subseteq \mathfrak{F}(K)_{ur}$$

where $\mathcal{F}(K)_{ur}$ is the set of all unramified elements. We say that the functor \mathcal{F} satisfies purity for a domain R if every $\xi \in \mathcal{F}(K)_{ur}$ is in the image of $\mathcal{F}(R)$, i.e. if

$$\bigcap_{\text{at }\mathfrak{P}=1} \operatorname{Im} \left[\mathfrak{F}(R_{\mathfrak{P}}) \to \mathfrak{F}(K) \right] = \operatorname{Im} \left[\mathfrak{F}(R) \to \mathfrak{F}(K) \right].$$

ł

In what follows we assume that 2 is invertible in R. We say that a quadratic space over R is an n-fold Pfister space if the corresponding quadratic form is isomorphic to a form

$$\langle \langle a_1, \ldots, a_n \rangle \rangle = \langle 1, -a_1 \rangle \otimes \cdots \otimes \langle 1, -a_n \rangle$$

Key words and phrases. Linear algebraic group, exceptional groups, torsor, non-abelian cohomology, Pfister forms, purity conjecture.

Supported by the Canada Research Chairs Program, and by NSERC research grant.

Supported by the Presidium of RAS Program "Fundamental Research", the RFFIgrant, joint DFG-RFBR project 09-01-91333-NNIO-a.

where a_1, \ldots, a_n are units in R. We will consider the following two functors:

 $\mathcal{P}\!f_n\left(R\right) = \{ \text{ isomorphism classes of } n\text{-fold Pfister spaces over } R \, \}.$ and

 $\mathcal{T}(R) = H^1_{\acute{e}t}(R, G_0) = \{ \text{ isomorphism classes of } G_0 \text{-torsors over } R \}$ where G_0 is a split group of type F_4 .

Recall that the set of isomorphism classes of group schemes of type F_4 over R (resp. over K) can be identified in a natural way with $H^1_{\acute{e}t}(R, G_0)$ (resp. $H^1(K, G_0)$). So abusing notation we will identify a group G of type F_4 with the corresponding cocycle ξ and the isomorphism class [G] with the equivalence class $[\xi]$. Given such a group G over a field K one can associate [S93], [GMS], [PetRac], [Ro] the cohomological invariants $f_3(G)$, $f_5(G)$ and $g_3(G)$ of G in $H^3(K, \mu_2)$, $H^5(K, \mu_2)$ and $H^3(K, \mathbb{Z}/3\mathbb{Z})$ respectively. The group G can be viewed as the automorphism group of a corresponding 27dimensional Jordan algebra J. The invariant $g_3(G)$ vanishes if and only if J is reduced, i.e. J has zero divisors.

The main results of this paper are the following purity theorems:

1.1. **Theorem.** Let R be a regular local ring containing the field \mathbf{Q} of rational numbers and let K be its field of fractions. Let $[G] \in \mathcal{T}(K)_{ur}$ be such that $g_3(G) = 0$. Then [G] is in the image of $\mathcal{T}(R) \to \mathcal{T}(K)$.

1.2. **Theorem.** The functor $R \mapsto \mathfrak{P}f_n(R)$ satisfies purity for regular local rings containing \mathbf{Q} .

1.3. **Theorem.** Let φ_m (resp. φ_n) be an m-fold (resp. an n-fold) Pfister space over R. If $\varphi_{m,K}$ is a subform of the form $\varphi_{n,K}$, then there exists an (n-m)-fold Pfister space φ_{n-m} over R such that $\varphi_n \cong \varphi_m \otimes \varphi_{n-m}$ over R.

1.4. **Remark.** For many groups of classical type the purity theorem is known; more precisely it is known for split groups of type A_n (unpublished); groups of the form $SL_{1,A}$, where A is a central simple algebra over a field [CTO]; split groups of type B_n [P]; split simply connected groups of type C_n (obvious); certain split groups of type D_n (like the special orthogonal group of a quadratic form) [P].

1.5. **Remark.** The characteristic restriction in the theorem is due to the fact that we use the main result in [P] on rationally isotropic quadratic spaces which was proven in characteristic zero only (the resolution of singularities is involved in that proof).

2. RATIONALLY DIRECT SUMMANDS OF A QUADRATIC SPACE

Throughout the paper R denotes a regular local ring containing the field **Q** of rational numbers. Note that R is a unique factorization domain ([Ma, Theorem 48, page 142]).

For the definition and basic properties of quadratic spaces over a commutative ring we refer to [K]. The aim of this section is to establish a criterion when one quadratic space over R can be realized as a direct summand of the second one. That criterion is stated in Proposition 2.2.

Let (V, f) be a quadratic space over R. We denote by f(-, -) a symmetric bilinear form on V corresponding to f.

2.1. Lemma. Let $v \in V$ be a vector such that f(v) is a unit in R. Then we have $V \simeq \langle v \rangle \bot \langle v \rangle^{\bot}$.

Proof. Obviously we have $\langle v \rangle \cap \langle v \rangle^{\perp} = 0$. So it suffices to show that every vector $w \in V$ can be written in the form $w = w_1 + w_2$ where $w_1 \in \langle v \rangle$ and $w_2 \in \langle v \rangle^{\perp}$. Let $w_1 = f(w, v)f(v)^{-1}v$. Then $w_2 = w - w_1$ is obviously orthogonal to v, so the result follows.

2.2. **Proposition.** Let (V, f) and (W, g) be two quadratic spaces over R. Then g is a direct summand of f if and only if g_K is a subform of f_K .

Proof. If g is a direct summand of f then obviously g_K is a subform of f_K . Conversely, assume g_K is a subform of f_K . Let $m = \dim g$ and $n = \dim f$. We argue by induction on m. Consider first the case m = 1. Then $g = \langle a \rangle$ where $a \in \mathbb{R}^{\times}$ and f_K represents a. By [P, Cor.2] there exists $v \in V$ such that f(v) = a. Clearly that v is unimodular. By Lemma 2.1 we have $V = \langle v \rangle \perp \langle v \rangle^{\perp}$ implying f can be decomposed as $f = \langle a \rangle \perp f'$.

Assume now that our statement is proven for all quadratic spaces of dimension m = i. Let (W, g) be a quadratic space of dimension i + 1. Take a decomposition $g = \langle a \rangle \perp g'$ where g' is a quadratic form of dimension m - 1and a is a unit in R. By case m = 1, the quadratic form f can be decomposed as $f = \langle a \rangle \perp f'$. Since g_K is a subform of f_K , by Witt cancelation we get g'_K is a subform of f'_K . By induction g' is a direct summand of f', so the result follows.

3. Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. Let K be a quotient field of R and let f_K be an n-fold Pfister form over K unramified with respect to every prime ideal in R of height 1. If f_K is isotropic, then f_K is split over K and there is nothing to prove. So we may assume that f_K is anisotropic over K.

By [P, Cor.1] there exists a quadratic space f over R such that its fiber at the generic point of Spec (R) is isomorphic to f_K . Our aim is to show by induction that f can be decomposed as $f = g_i \perp h_i$ where $g_i = \langle \langle -a_1, -a_2, \ldots, -a_i \rangle \rangle$ is an *i*-fold Pfister form, h_i is a quadratic space over R and $i = 1, \ldots, n$. In view of dimension argument, taking i = n we have $f = g_n$ and Theorem 1.2 follows.

Let first i = 1. Since f_K represents 1 over K, by Proposition 2.2 we may write $f = \langle 1 \rangle \perp f'$ for a suitable quadratic form $f' = \langle a_1, \ldots, a_{n-1} \rangle$ over R. Denote $g_1 = \langle 1, a_1 \rangle = \langle \langle -a_1 \rangle \rangle$. By our construction g_1 is a direct summand of f as required. Assume now that $f = g_i \perp h_i$ where $g_i = \langle \langle -a_1, \ldots, -a_i \rangle \rangle$ is an *i*-fold Pfister form and i < n. Consider a diagonalization $h_i = \langle b_{2^i+1}, \ldots, b_{2^n} \rangle$. Let $g_{i+1} = \langle \langle -a_1, \ldots, -a_i, -a_{i+1} \rangle \rangle$ where $a_{i+1} = b_{2^{i}+1}$. Clearly we have $f_K = g_{i,K} \otimes q$ for some (n-i)-fold Pfister form q over K so that $h_{i,K}$ is isomorphic over K to $g_{i,K} \otimes q'$ where q' is the pure subform of q. Since $h_{i,K}$ represents a_{i+1} so is $g_{i,K} \otimes q'$. Then by [KMRT, Theorem 1.10], $g_{i+1,K}$ is a subform of f_K . By Proposition 2.2 it follows g_{i+1} is a direct summand of f and we are done.

Proof of Theorem 1.3. For m = n there is nothing to prove. Assume that m < n. Write φ_m as $\varphi_m = \langle \langle -a_1, \ldots, -a_m \rangle \rangle$. Write φ_n as $\varphi_n = \varphi_m \perp h_m$. Consider a diagonalization $h_m = \langle b_{2^m+1}, \ldots, b_{2^n} \rangle$. Arguing as in the proof of Theorem 1.2 we see that the space $\varphi_{m+1} := \langle \langle -a_1, \ldots, -a_m, -a_{m+1} \rangle \rangle$ is subspace of the space φ_n , where $a_{m+1} = b_{2^m+1}$. Continuing this process we get $\varphi_n \cong \langle \langle -a_1, \ldots, -a_m, \ldots, -a_n \rangle \rangle$ for certain units a_{m+1}, \ldots, a_n in R as required.

4. Proof of Theorem 1.1

Let R be a regular local ring containing \mathbf{Q} and let K be its field of fractions. Consider a group G of type F_4 over K unramified with respect to all prime ideals $\mathfrak{P} \subset R$ of height 1. It is a twisted form $G = {}^{\xi}G_{0,K}$ of a split group G_0 over R with some cocycle $\xi \in Z^1(K, G_{0,K})$.

If $T_0 \subset G_0$ is a maximal K-split torus we denote by $c \in \operatorname{Aut}(G_0) = G_0$ an element such that $c^2 = 1$ and $c(t) = t^{-1}$ for every $t \in T_0$ (it is known that such an automorphism exists, see e.g. [DG], Exp. XXIV, Prop. 3.16.2, p. 355). Let $\Sigma = \Sigma(G_0, T_0)$ be a root system of G_0 with respect to T_0 . Fix its basis { $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ }. Denote by $\check{\alpha}_i : G_m \to T_0, i = 1, \ldots, 4$, the cocharacters dual to $\alpha_1, \ldots, \alpha_4$. Clearly, T_0 can be decomposed as a direct product $T_0 = \prod_i T_{\check{\alpha}_i}$ where $T_{\check{\alpha}_i}$ is the image of $\check{\alpha}_i$.

Let $u \in R$ be a unit which is not a square in K. Let $S = R(\sqrt{u})$ be the corresponding étale quadratic extension of R. Denote the nontrivial involution of S/R by τ .

4.1. Lemma. Let $t = \prod_i \check{\alpha}_i(u_i) \in T_0(R)$ where u_1, u_2, u_3, u_4 are units in Rand let $a_\tau = ct$. Then $\lambda = (a_\tau)$ is a cocycle in $Z^1(S/R, G_0(L))$.

Proof. We need to check that $a_{\tau}\tau(a_{\tau}) = 1$. Indeed, we have

$$a_{\tau}\tau(a_{\tau}) = ct\,\tau(ct) = ctct = t^{-1}t = 1$$

as required.

To complete the proof of Theorem 1.1 we are going to find the parameters u, u_1, u_2, u_3, u_4 such that the twisted group scheme $H = {}^{\lambda}G_0$ has generic fiber isomorphic to G. With this purpose we first remind a criterion when two groups of type F_4 over K are isomorphic. Note that both H and G have trivial g_3 invariant. Then by a result of Springer [Sp] (see also [Ch, Theorem 7.1]) we have G and H_K are K-isomorphic if and only if $f_3(G) = f_3(H_K)$ and $f_5(G) = f_5(H_K)$. This criterion suggests that the required parameters u, u_1, u_2, u_3, u_5 must be given in terms of $f_3(G)$ and $f_5(G)$.

4

4.2. **Proposition.** Let G be as above. Then $f_3(G)$ and $f_5(G)$ are unramified with respect to all prime ideals $\mathfrak{P} \subset R$ of height 1.

Proof. The invariants f_3 , f_5 are symbols given in terms of the trace quadratic form of the Jordan algebra J corresponding to G and hence we may associate to them the 3-fold and 5-fold Pfister forms. Abusing notation we denote these Pfister forms by the same symbols $f_3(G)$ and $f_5(G)$.

Let $\mathfrak{P} \subset R$ be a prime ideal of height 1 and let $v = v_{\mathfrak{P}}$ be the corresponding discrete valuation on K. We need to show that $f_3(G)$, $f_5(G)$ are in the images of $\mathfrak{P}f_3(R_{\mathfrak{P}})) \to \mathfrak{P}f_3(K)$ and $\mathfrak{P}f_5(R_{\mathfrak{P}})) \to \mathfrak{P}f_5(K)$ where $R_{\mathfrak{P}}$ is the localization of R at \mathfrak{P} . Equivalently, $f_3(G_{K_v}), f_5(G_{K_v})$ are in the images of $\mathfrak{P}f_3(R_v) \to \mathfrak{P}f_3(K_v)$ and $\mathfrak{P}f_5(R_v) \to \mathfrak{P}f_5(K_v)$ where R_v and K_v are completions of R and K with respect to v.

To see this, we consider a simple group scheme \mathcal{H}_v of type F_4 over R_v such that its fiber at the generic point of Spec (R_v) is isomorphic to G_{K_v} . Note that such a scheme do exists because G is unramified at \mathfrak{P} and hence G_{K_v} is also unramified. Since R_v is a regular local ring containing \mathbf{Q} by [Ch, Theorems 6.1, 6.6, Remark 8.4] we have $f_3(G_{K_v})$ and $f_5(G_{K_v})$ are of the form $(v_1) \cup (v_2) \cup (v_3)$ and $(v_1) \cup (v_2) \cup (v_3) \cup (v_4) \cup (u_5)$ respectively where v_1, \ldots, v_5 are units in R_v .

4.3. **Proposition.** There exist units $v_1, \ldots, v_5 \in \mathbb{R}^{\times}$ such that $f_3(G) = \langle \langle v_1, v_2, v_3 \rangle \rangle$ and $f_5(G) = \langle \langle v_1, v_2, v_3, v_4, v_5 \rangle \rangle$.

Proof. By Theorem 1.2 and Proposition 4.2 there exist Pfister spaces $g = \langle \langle v_1, v_2, v_3 \rangle \rangle$ and $h = \langle \langle w_1, w_2, w_3, w_4, w_5 \rangle \rangle$ over R such that $f_3(G) = g_K$ and $f_5(G) = h_K$. Here $v_1, v_2, v_3, w_1, \ldots, w_5$ are units in R. Since $f_3(G)$ is a subform of $f_5(G)$ Theorem 1.3 shows that there are units v_3, v_4 in R such that $h = \langle \langle v_1, v_2, v_3, v_4, v_5 \rangle \rangle$. We are done.

We are now in position to complete the proof of Theorem 1.1. Take the cocycle λ from Lemma 4.1 with the parameters $u = v_1, u_1 = v_2, \ldots, u_4 = v_5$ and the twisted group scheme $H = {}^{\lambda}G_0$ over R. Let τ be the nontrivial automorphism of $S = R(\sqrt{u})$ over R. Let

$$\{H_{\alpha_1},\ldots,H_{\alpha_4},X_\alpha,\ \alpha\in\Sigma\}$$

be a Chevalley basis of the Lie algebra of H over S with respect to T_0 . The twisted action of τ on X_{α_i} is given by

$$\tau(X_{\alpha_i}) = ct(X_{\alpha_i})(ct)^{-1} = c \prod_j \check{\alpha_j}(u_j)(X_{\alpha_i}) \prod_j \check{\alpha_j}(u_j^{-1})c^{-1} = u_i X_{-\alpha_i},$$

so that in the terminology of [Ch] the structure constants of H are u_1, \ldots, u_4 . By [Ch, Theorem 6.1 and Theorem 6.6] the f_3 and f_5 invariants of H_K are $\langle \langle u, u_1, u_2 \rangle \rangle$ and $\langle \langle u, u_1, u_2, u_3, u_4 \rangle \rangle$. Thus H_K and G have the same f_3, f_5 invariants, hence they are isomorphic. Theorem 1.1 is proven.

References

- [Ch] V. Chernousov, Variations on a theme of groups splitting by a quadratic extension and Grothendieck-Serre conjecture for group schemes F_4 with trivial g_3 invariant, Preprint 2009.
- [ChP] V. Chernousov, I. Panin, Purity of G₂-torsors, C. R. Math. Acad. Sci. Paris 345 (2007), no. 6, 307–312.
- [CTO] J.-L. Colliot-Thélène, M. Ojanguren, Espaces Principaux Homogènes Localement Triviaux, Publ. Math. IHES 75 (1992), no. 2, 97–122.
- [CTS] J.-L. Colliot-Thélène, J.-J. Sansuc, Fibrés quadratiques et composantes connexes réelles, Math. Annalen 244 (1979), 105-134.
- [DG] M. Demazure and A. Grothendieck, Structure des Schémas en Groupes Réductifs, SGA 3 III, LN 153, Springer-Verlag, 1970.
- [GMS] S. Garibaldi, A. Merkurjev, and J.-P. Serre, Cohomological invariants in Galois cohomology, University Lecture Series, vol. 28, Amer. Math. Soc., 2003.
- [K] M.-A. Knus, Quadratic and Hermitian Forms over Rings, Grundlehren der Math. Wissenschaften 294 Springer, 1991.
- [KMRT] M. Knus, A. Merkurjev, M. Rost, J–P. Tignol, The Book of Involutions, 44 Colloquium publications: American Mathematical Society 1998.
- [Ma] H. Matsumura, Commutative algebra, W.A. Benjamin Co., New York, 1970.
- [OP1] M. Ojanguren, I.Panin, A purity theorem for the Witt group, Ann. Sci. Ecole Norm. Sup. (4) 32 (1999), no. 1, 71–86.
- [OP2] M. Ojanguren, I.Panin, Rationally trivial hermitian spaces are locally trivial, Math. Z. 237 (2001), 181–198.
- [P] I. Panin, Rationally isotropic quadratic spaces are locally isotropic, Invent. math. 176, 397-403 (2009). (http://www.math.uiuc.edu/K-theory/0671/2003).
- [PetRac] H. Petersson, M. Racine, On the invariants mod 2 of Albert Algebras, Journal of Algebra 174 (1995), 1049–1072.
- [Ra] M. Racine, A note on Quadratic Jordan Algebras of degree 3, Trans. Amer. Math. Soc. 164 (1972), 93–103.
- [Ro] M. Rost, A (mod 3) invariant for exceptional Jordan algebras, C. R. Acad. Sci. Paris, Série I **313** (1991), 823–827.
- [S93] J.-P. Serre, Cohomologie galoisienne: progrès et problèmes, Sém. Bourbaki 1993– 1994, exposé 783.
- [Sp] T. A. Springer, The classification of reduced exceptional simple Jordan algebras, Indag. Math. 22 (1960), 414–422.
- [SV] T.A. Springer and F.D. Veldkamp, Octonions, Jordan Algebras and Exceptional Groups, Springer-Verlag 2000.

Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Steklov Mathematical Institute at St.Petersburg, Fontanka 27, 191023, Russia

E-mail address: chernous@math.ualberta.ca *E-mail address*: panin@pdmi.ras.ru