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Abstract. Let p be an odd prime number and F a field contain-
ing a primitive pth root of unity. We prove a new restriction on
the group-theoretic structure of the absolute Galois group GF of

F . Namely, the third subgroup G
(3)
F in the descending p-central

sequence of GF is the intersection of all open normal subgroups
N such that GF /N is 1, Z/p2, or the extra-special group Mp3 of
order p3 and exponent p2.

1. Introduction

Let q = pd be a prime power and let G be a profinite group. The
descending q-central sequence of G is defined inductively by

G(1) = G, G(i+1) = (G(i))q[G(i), G], i = 1, 2, . . . .

Thus G(i+1) is the closed subgroup of G generated by all powers hq and
all commutators [h, g] = h−1g−1hg, where h ∈ G(i) and g ∈ G.

Now suppose that q = p. Let F be a field containing a primitive pth
root of unity ζp, and let G = GF be its absolute Galois group. Let Mp3

be the unique nonabelian group of order p3 and exponent p2 (see §8).

Main Theorem. For p 6= 2 and for G = GF as above, G(3) is the
intersection of all open normal subgroups N of G such that G/N is
isomorphic to one of 1, Z/p2, and Mp3.

Determining the profinite groups which are realizable as absolute
Galois groups of fields is a major open problem in Galois theory. Our
Main Theorem appears to be simple yet powerful restriction on the pos-

sible structure of such groups, and on their quotients GF/G
(3)
F . These

quotients an extremely important invariant of fields, carrying a sub-
stantial information about their arithmetical structure. For example,
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when p = 2 it encodes the orderings and the Witt ring of quadratic
forms of F ([MSp90], [MSp96]) as well as some non-trivial valuations
[MMS04]. Further, it encodes the entire mod 2 Galois cohomology ring
of GF [AKM99, Th. 3.14]. In a forthcoming joint work with S. Chebolu

we show that GF/G
(3)
F can be in fact thought of as a group-theoretic

analog of Galois cohomology of F for any p, and use these results to
provide new examples of profinite groups which are not realizable as
absolute Galois groups of fields.

The analog of our Main Theorem for p = 2 was discovered by Ville-
gas in a different formalism [Vil88]. The second author and Spira re-
formulated and reproved it in [MSp96, Cor. 2.18] using the descending

2-central sequence of GF . Namely, then G(3) = G
(3)
F is the intersection

of all open normal subgroups N of G such that G/N is isomorphic to
1, Z/2, Z/4, or to the dihedral group D4 = M8 of order 8.

A main difference between the case p > 2 and the case p = 2 is the
existence in the former case of elements in H2((Z/p)n,Z/p) which are
not expressible as sums of cup products of elements inH1((Z/p)n,Z/p).
To handle this new kind of elements we study the Bockstein homomor-
phism βG : H1(G,Z/p) → H2(G,Z/p) and its relation to Galois theory.

Our approach is purely cohomological. Thus we prove the Main
Theorem more generally for profinite groups G which satisfy two simple
conditions on their lower cohomology. These conditions are known to
hold for G = GF , with F as above, where they are consequences of the
following two Galois-theoretic facts (see §3 for details and terminology):

(i) the Galois symbol KM
2 (F )/p → H2(G,Z/p) is injective (it is

actually bijective by the Merkurjev–Suslin theorem, which is a
special case of the Rost–Voevodsky’s theorem); and

(ii) βG is the cup product by the Kummer element (ζp) ∈ H1(G,Z/p).

More generally, when q = pd is an arbitrary prime power and F is

a field containing a primitive qth root of unity, we characterize G
(3)
F

as the intersection of all open normal subgroups N of GF such that
GF/N belongs to a certain cohomologically defined class of finite groups
(Theorem 5.2). This is based on the natural generalizations of (i) and
(ii) above, as well as the following additional property of GF :

(iii) the map H1(GF ,Z/q) → H1(GF ,Z/p
i), 1 ≤ i ≤ d, is surjective.

Our analysis applies also to p = 2. Thus we give a new cohomolog-
ical proof of the above-mentioned result of [Vil88] and [MSp96], and
generalize it to profinite groups G satisfying the appropriate conditions
on their lower cohomology. We also show that the group Z/2 can be
omitted from the list unless F is a Euclidean field (Corollary 11.4).
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The paper is organized as follows: In §2 we collect various cohomolog-
ical preliminaries, especially facts related to the Bockstein homomor-
phism βG and its connections with roots of unity and cup products. In
§3 we introduce the key notion of a profinite group of Galois relation
type. It axiomatizes the cohomological properties of absolute Galois
groups that we need for our proofs ((i)–(iii) above). In §4 we define an
abelian group Ω(G) and a homomorphism ΛG : Ω(G) → H2(G,Z/q).
These extend the cup product ∪ : H1(G,Z/q)⊗2 → H2(G,Z/q), but
take into account also the Galois-theoretic role of βG. Our axioms on
G imply that Ker(ΛG) is generated by elements of simple type (Defini-
tion 4.2 and Proposition 4.3). These simple type elements are in turn
related to cohomologically defined open subgroups N of G of index
dividing q3, which we call “distinguished subgroups”. In §5 we trans-
late the above result about Ker(ΛG) to the language of distinguished
subgroups, and prove the crucial Theorem 5.2: for G of Galois relation
type, G(3) is the intersection of all distinguished subgroups of G.

In §§6–10 we build a “dictionary” between the images under ΛG of
simple type elements of Ω(G) and some special group extensions. The
solutions of the resulting embedding problems correspond to distin-
guished subgroups of G. This is then used in §11 to prove the Main
Theorem and the analogous results for p = 2 in the general setting of
profinite groups of Galois relation type.

In §12 we study G/G(3) for G of Galois relation type. As a corollary
we recover some known “automatic realization” results in Galois theory.
Our approach seems to provide a good explanation why these curious
automatic realization results are true. Finally, in §13 we give examples
showing that all the finite groups in our lists are indeed necessary.

We thank P. Deligne, L. Moret-Baily, A. Shalev, and T. Weigel for
their interest in this work and their comments related to talks given at
the Israel Mathematical Union 2008 conference and the 2008 conference
on Profinite Groups in ESI, Vienna. We also thank Y. Tschinkel for
his kind encouragement.

2. cohomological preliminaries

Let p be a prime number, let q = pd be a power of p, and let G
be a profinite group. We write H i(G) for the profinite cohomology
group H i(G,Z/q), where G acts trivially on Z/q. Thus H1(G) =
Hom(G,Z/q) consists of all continuous group homomorphisms G →
Z/q. We consider H∗(G) =

⊕∞
i=0H

i(G) as a graded anti-commutative
ring with respect to the cup product ∪.
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A) Normal Subgroups. Let N be a normal closed subgroup of G.
Then G acts canonically onH i(N). Denote the group of all G-invariant
elements ofH i(N) byH i(N)G. For i = 1 this action is given by ϕ 7→ ϕg,
where ϕg(n) = ϕ(g−1ng) for g ∈ G and n ∈ N . Thus H1(N)G consists
of all homomorphisms ϕ : N → Z/q which are trivial on N q[N,G].

The next lemma provides a fundamental connection between the
descending q-central sequence of G and cohomology.

Lemma 2.1. For a normal closed subgroup N of G one has
⋂

{Ker(ϕ) | ϕ ∈ H1(N)G} = N q[N,G].

Proof. Consider the natural projection π : N → N̄ = N/N q[N,G]. The
abelian torsion group N̄ has Pontryagin dual H1(N̄). By the Pon-
tryagin duality [NSW00, Th. 1.1.8],

⋂

ϕ̄∈H1(N̄) Ker(ϕ̄) = {0}, whence
⋂

ϕ̄∈H1(N̄) π
−1(Ker(ϕ̄)) = N q[N,G]. Further, if ϕ̄ ∈ H1(N̄) and ϕ =

infN(ϕ̄), then Ker(ϕ) = π−1(Ker(ϕ̄)). Finally, by the previous remarks,
infN : H1(N̄) → H1(N)G is an isomorphism. The assertion follows. �

Corollary 2.2. There is a natural non-degenerate pairing

N/N q[N,G] ×H1(N)G → Z/q.

Corollary 2.3. G(i)/G(i+1) is dual to H1(G(i))G for i ≥ 1.

B) Spectral sequences. Let N be a closed normal subgroup of G.
Recall that the Hochschild–Serre spectral sequence

Eij
2 = H i(G/N,Hj(N)) ⇒ H i+j(G)

induces the 5-term exact sequence
(2.1)

0 → H1(G/N)
infG−−→ H1(G)

resN−−→ H1(N)G
trgG/N
−−−−→ H2(G/N)

infG−−→ H2(G).

Here trgG/N is the differential d0,1
2 of the spectral sequence [NSW00,

§2.1]. If N ′ is another closed normal subgroup of G and N ′ ≤ N , then
the projection G/N ′ → G/N and the restriction map resN ′ : Hj(N) →
Hj(N ′) induce a spectral sequence morphism fromH i(G/N,Hj(N)) ⇒
H i+j(G) to H i(G/N ′, Hj(N ′)) ⇒ H i+j(G) [NSW00, pp. 78–79]. In
particular, there is a commutative diagram

(2.2) H1(N)G
trgG/N

//

resN′

��

H2(G/N)

infG/N′

��

H1(N ′)G
trgG/N′

// H2(G/N ′).
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C) Connecting homomorphisms. Let n,m be positive integers.
The exact sequences

0 → Z/n → Z/mn → Z/m → 0

0 → 1
n
Z/Z →֒ 1

mn
Z/Z

n
−→ 1

m
Z/Z → 0

of trivial G-modules give rise to connecting homomorphisms

βG,m,n : H1(G,Z/m) → H2(G,Z/n)

β ′
G,m,n : H1(G, 1

m
Z/Z) → H2(G, 1

n
Z/Z),

respectively. When m = n = q is our fixed p-power, we abbreviate

βG = βG,q,q

and call it the Bockstein homomorphism of G. Note that it is
functorial in G. We now relate βG,m,n to some other connecting homo-
morphisms and cup products.

Lemma 2.4. Suppose q = 2. For ψ ∈ H1(G) one has βG(ψ) = ψ ∪ ψ.

Proof. This is straightforward when G ∼= Z/2. In the general case, it
follows by inflating from G/Ker(ψ) to G. �

Next let ǫ : H1(G,Q/Z) → H2(G,Z) be the connecting map arising
from the short exact sequence of trivial G-modules

0 → Z →֒ Q → Q/Z → 0.

Since Q is cohomologically trivial, ǫ is in fact an isomorphism. Let

jm : 1
m

Z/Z
∼
−→ Z/m, πn : Z → Z/n

be the natural maps. A routine computation gives:

Lemma 2.5. βG,m,n ◦ j
∗
m = π∗

n ◦ ǫ on H1(G, 1
m

Z/Z).

Now let F be a field. Set (Q/Z)′ =
⊕

l 6=char F (Q/Z)l, where for

l prime (Q/Z)l is the l-primary component of Q/Z. Assume that
char F 6 |n,m. For an integer r consider the r-th Tate twists ( 1

n
Z/Z)(r),

(Z/n)(r), and (Q/Z)′(r) [NSW00, Def. 7.3.6]. Let ιn : ( 1
n
Z/Z)(r)

∼
−→

(Z/n)(r) be the isomorphism of multiplication by n. Thus µn =
(Z/n)(1) is the GF -module of nth roots of unity, and ιn = jn when
r = 0. The exact sequence

(2.3) 0 → ( 1
n
Z/Z)(r) →֒ (Q/Z)′(r)

n
−→ (Q/Z)′(r) → 0

gives rise to a connecting homomorphism

δi,r : H i(GF , (Q/Z)′(r)) → H i+1(GF , (
1
n
Z/Z)(r)).
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Lemma 2.6. There is an equality of maps

δi,r ∪ id = id∪δj,s : H i(GF , (Q/Z)′(r)) ×Hj(GF , (Q/Z)′(s))

→ H i+j+1(GF , (
1
n
Z/Z)(r + s)).

Proof. Tensorizing (2.3) with (Q/Z)′(s) gives the same sequence but
with (r + s)-twists, which is also exact. Therefore the composed map

H i(GF , (Q/Z)′(r)) ×Hj(GF ,(Q/Z)′(s))
∪
−→ H i+j(GF , (Q/Z)′(r + s))

δi+j,r+s

−−−−→ H i+j+1(GF , (
1
n
Z/Z)(r + s))

breaks as δi,r ∪ id [GS06, Prop. 3.4.8]. Similarly, it breaks also as
id∪δj,s, and the equality follows. �

For F and n as above, consider the Kummer homomorphism

κn : F× = H0(GF , F
×
sep) → H1(GF , µn).

Lemma 2.7. (a) β ′
GF ,m,n

is the restriction of δ1,0 to H1(GF ,
1
m

Z/Z).

(b) ι∗n ◦ δ
0,1 = κn ◦ ι

∗
m on H0(GF , (

1
m

Z/Z)(1)).

Proof. For every r there is a commutative diagram with exact rows

0 // ( 1
n
Z/Z)(r) � � // ( 1

mn
Z/Z)(r)

n
//

_�

��

( 1
m

Z/Z)(r) //

_�

��

0

0 // ( 1
n
Z/Z)(r) � � // (Q/Z)′(r)

n
// (Q/Z)′(r) // 0.

It gives rise to a commutative square of connecting homomorphisms

(2.4) H i(GF , (
1
m

Z/Z)(r))

��

δ
// H i+1(GF , (

1
n
Z/Z)(r))

H i(GF , (Q/Z)′(r))
δi,r

// H i+1(GF , (
1
n
Z/Z)(r)).

For i = 1 and r = 0 we have δ = β ′
GF ,m,n

, and the left vertical map
in (2.4) is an embedding. This proves (a).

Next take in (2.4) i = 0 and r = 1 and consider the resulting con-
necting map δ. From the commutative diagram with exact rows

0 // ( 1
n
Z/Z)(1) � � //

ιn≀

��

( 1
mn

Z/Z)(1)
n

//

ιmn≀

��

( 1
m

Z/Z)(1) //

ιm≀

��

0

1 // µn � � // µmn
n

//
_�

��

µm //
_�

��

1

1 // µn � � // F×
sep

n
// F×

sep
// 1,
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we get that ι∗n ◦ δ = κn ◦ ι
∗
m. Combined with (2.4), this gives (b). �

Corollary 2.8. Let d = gcd(m,n).

(a) There is an equality of maps

ι∗d◦(β
′
GF ,m,n

∪ id) = ι∗m ∪ (κn ◦ ι
∗
m) :

H1(GF ,
1
m

Z/Z) ×H0(GF , (
1
m

Z/Z)(1)) → H2(GF , µd).

(b) There is an equality of maps

βGF ,m,n ∪ id = id∪κn : H1(GF ,Z/m) ×H0(GF , µm) → H2(GF , µd).

Proof. As ( 1
m

Z/Z) ⊗ ( 1
n
Z/Z) ∼= 1

d
Z/Z, Lemma 2.6 gives

ι∗d ◦ (δ1,0 ∪ id) = ι∗d ◦ (id∪δ0,1) = ι∗m ∪ (ι∗n ◦ δ
0,1)

on H1(GF ,
1
m

Z/Z)×H0(GF , (
1
m

Z/Z)(1)). By Lemma 2.7, this restricts
to (a). (b) follows from (a). �

See [Led05, p. 91], [GS06, Lemma 7.5.10], and [Koc02, Th. 8.13] for
related results.

D) Cohomology of finite abelian p-groups. For a profinite group
G, let H i

dec(G) be the decomposable part of H i(G), i.e., its subgroup
generated by cup products of elements of H1(G). In this subsection we
show that when G = (Z/q)n, the group H2(G) is generated by H i

dec(G)
and the image of βG. In fact, for every finite abelian p-group G of
exponent divisible by q = pd, the structure of H∗(G) as a graded ring
was computed by Chapman (for p 6= 2) and by Townsley-Kulich (for
p = 2), in terms of generators and relations ([Cha82], [TK88]). Since
the identification of the Bockstein elements as generators is somewhat
implicit in [Cha82] and [TK88], we outline an alternative proof of the
required result. It is based on the following decomposition of H2(G)
to its symmetric and skew-symmetric parts, as studied by Tignol and
Amitsur ([TA85], [Tig86]); see also Massy [Mas87].

Let G be a finite abelian group and A be a finite trivial G-module.
Call a map a : G × G → A skew-symmetric if it is Z-bilinear and
a(σ, σ) = 0 for all σ ∈ G. Then a(σ, τ) = −a(τ, σ) for σ, τ ∈ G. The
set Skew(G,A) of all such maps forms an abelian group under addition.

For a 2-cocycle f ∈ Z2(G,A) define af ∈ Skew(G,A) by af(σ, τ) =
f(σ, τ) − f(τ, σ). We call f symmetric if af = 0. Since the action
of G on A is trivial, 2-coboundries are symmetric. Let H2(G,A)sym

be the subgroup of H2(G,A) consisting of all cohomology classes of
symmetric 2-cocyles. The map f 7→ af induces a homomorphism Ψ
with a split exact sequence [TA85, Prop. 1.3]

(2.5) 0 → H2(G,A)sym → H2(G,A)
Ψ
−→ Skew(G,A) → 0.
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For ǫ as above, ǫ ∪ id gives by [Tig86, Prop. 1.5] an isomorphism

(2.6) H1(G,Q/Z) ⊗Z A
∼
−→ H2(G,A)sym,

Now let A = Z/q.

Proposition 2.9. For G = (Z/q)n one has Ψ(H2
dec(G)) = Skew(G,Z/q).

Proof. Write G = 〈σ1〉×· · ·×〈σn〉 with σi of order q. Take χ1, . . . , χn ∈
H1(G) such that χi(σi) = 1 for all i, and χi(σk) = 0 for i 6= k. For
distinct i, j the cohomology class χi ∪χj is represented by the 2-cocyle
(σ, τ) 7→ χi(σ)χj(τ). Hence

(Ψ(χi ∪ χj))(σk, σl) = χi(σk)χj(σl) − χi(σl)χj(σk)

is 1 if (i, j) = (k, l), is −1 if (i, j) = (l, k), and is 0 otherwise.
Now given a ∈ Skew(G,Z/q), take ϕ =

∑

i<j a(σi, σj) · χi ∪ χj. For

k < l we get (Ψ(ϕ))(σk, σl) = a(σk, σl). But maps in Skew(G,Z/q) are
determined by their values on (σk, σl), k < l. Hence Ψ(ϕ) = a. �

Proposition 2.10. Let G be a finite abelian p-group. Then βG maps
H1(G) isomorphically onto H2(G)sym.

Proof. As (Z/q)⊗Z (Z/q) ∼= Z/q, the isomorphism (2.6) coincides with

(π∗
q ◦ ǫ) ∪ id : H1(G,Q/Z) ⊗H0(G) → H2

sym(G),

where πq : Z → Z/q is the natural map. Moreover, H0(G) = Z/q, so

H1(G, 1
q
Z/Z) ⊗H0(G) = H1(G,Q/Z) ⊗H0(G).

By Lemma 2.5, (2.6) is therefore also given by

(βG ◦ j∗q ) ∪ id : H1(G, 1
q
Z/Z) ⊗H0(G) → H2

sym(G),

and the latter isomorphism may be identified with βG. �

Corollary 2.11. Let G = (Z/q)n.

(a) H2(G) is generated by H2
dec(G) and by the image of βG.

(b) When q = 2 one has H2(G) = H2
dec(G).

Proof. (a) follows from Proposition 2.9, Proposition 2.10, and the exact
sequence (2.5). (b) follows from (a) and Lemma 2.4. �

3. Groups of Galois relation type

Let G be again a profinite group. The cup product ∪ : H1(G) ×
H1(G) → H2(G) uniquely extends to a homomorphism

(3.1) ∪ : H1(G) ⊗Z H
1(G) → H2(G), α 7→ ∪α.

Definition 3.1. We say that G has Galois relation type if:
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(i) the kernel of the homomorphism (3.1) is generated by elements
of the form ψ ⊗ ψ′, where ψ, ψ′ ∈ H1(G);

(ii) there exists ξ ∈ H1(G) such that for every ψ ∈ H1(G) one has
ψ ∪ ξ + βG(ψ) = 0; and

(iii) the natural map H1(G) = H1(G,Z/q) → H1(G,Z/pi) is sur-
jective for 1 ≤ i ≤ d (where q = pd).

As a main example, consider a field F of characteristic 6= p and
containing a (fixed) primitive qth root of unity ζq. Let GF be the
absolute Galois group of F . Let KM

i (F ) be the ith Milnor K-group of
F , and consider the Galois symbol KM

i (F )/q → H i(GF ,Z/q). It is an
isomorphism for i = 1, 2, by the Kummer theory and the Merkurjev–
Suslin theorem ([MeSu82], [GS06, Th. 8.6.5]), respectively. Moreover,
it induces a commutative square

(3.2) (F×/(F×)q) ⊗Z (F×/(F×)q)
∼

//

��

H1(GF ) ⊗Z H
1(GF )

∪

��

KM
2 (F )/q

∼
// H2(GF ).

Here the left vertical map is given by
n

∑

i=1

(ai(F
×)q ⊗ bi(F

×)q) 7→
n

∑

i=1

{ai, bi} + qKM
2 (F )

and is surjective. Its kernel is the Steinberg group, generated by all
a(F×)q ⊗ b(F×)q with 1 ∈ a(F×)q + b(F×)q [Efr06, §24.1]. We obtain:

Proposition 3.2. G = GF has Galois relation type.

Proof. By definition, the Steinberg group is generated by elements
a(F×)q ⊗ b(F×)q which are mapped to 0 in KM

2 (F )/q. Now use the
surjectivity (resp., injectivity) of the upper (resp., lower) horizontal
map in (3.2) to deduce (i).

By Corollary 2.8(b), for ψ ∈ H1(GF ) one has βGF
(ψ)∪ζq = ψ∪κq(ζq),

where on the left hand side we consider ζq as an element of H0(GF , µq).
Identifying µq with Z/q via ζ iq 7→ ī, we get βGF

(ψ) = ψ ∪ κq(ζq) in

H2(GF ,Z/q) = H2(GF , µq). Thus (ii) holds by taking ξ = −κq(ζq).
Finally, let 1 ≤ i ≤ d. By Kummer’s theory, the natural epimor-

phism F×/(F×)q → F×/(F×)p
i
yields an epimorphism H1(GF ,Z/q) →

H1(GF ,Z/p
i), proving (iii). �

Remark 3.3. Using also the surjectivity of the Galois symbol in di-
mension 2, one can strengthen Proposition 3.2 to Galois groups G =
Gal(E/F ), where E/F is a Galois extension, F contains a primitive
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qth root of unity, and E has no proper p-extensions. Indeed, then
H1(GE) = 0. In (3.2) all maps are surjective. Applying it for E,
we obtain that H2(GE) = 0 as well. It therefore follows from the
Hochschild–Serre spectral sequence that infGF

: H i(G) → H i(GF ) is an
isomorphism for i = 1, 2 [NSW00, Prop. 2.1.3]. Since the cup product
and the Bockstein homomorphisms commute with inflation, conditions
(i)–(iii) for GF now transform into the analogous conditions for G.

4. Cohomology elements of simple type

For a profinite group G we define an abelian group Ω(G) by

Ω(G) =

{

H1(G) ⊗Z H
1(G), if q = 2,

(

H1(G) ⊗Z H
1(G)

)

⊕H1(G), if q 6= 2.

Define a homomorphism ΛG : Ω(G) → H2(G) as follows:

ΛG(α) = ∪α, if q = 2,

ΛG(α1, α2) = ∪α1 + βG(α2), if q 6= 2.

The map G 7→ Ω(G) is functorial. Given an epimorphism G1 → G2

of profinite groups, the inflation map infG1 : H1(G2) → H1(G1) induces
a homomorphism infG1 : Ω(G2) → Ω(G1) with a commutative square:

(4.1) Ω(G2)
infG1

//

ΛG2

��

Ω(G1)

ΛG1

��

H2(G2)
infG1

// H2(G1).

Lemma 4.1. Assume that G has Galois relation type and let G̃ =
G/G(2). Then ΛG̃ is surjective.

Proof. For 1 ≤ i ≤ d, the natural mapH1(G) → H1(G,Z/pi) is just the
natural map Hom(G̃,Z/q) → Hom(G̃,Z/pi), so by Definition 3.1(iii),

it is surjective. Since additionally G̃ is abelian of exponent dividing q,
it is therefore an inverse limit of finite groups G̃j of the form (Z/q)nj .

By Corollary 2.11, each H2(G̃j) is generated by the images of ∪ and
βG̃j

(and of ∪ only, if q = 2). Hence each ΛG̃j
is surjective. Conclude

that ΛG̃ = lim−→ΛG̃j
is surjective. �

Definition 4.2. We say that α ∈ Ω(G) has simple type if either:

(i) q = 2 and α = ψ ⊗ ψ′ for some ψ, ψ′ ∈ H1(G); or
(ii) q 6= 2 and α = (ψ ⊗ ψ′, ψ) for some ψ, ψ′ ∈ H1(G).
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We callM = Ker(ψ)∩Ker(ψ′) is a kernel of α (it may depend on ψ, ψ′).
Observe thatM is a normal open subgroup ofG and that (ψ, ψ′) induce
an embedding of G/M in (Z/q)2. Hence G(2) ≤M . Note that inflation
homomorphisms map simple type elements to simple type elements.

Proposition 4.3. Assume that G has Galois relation type. Then the
group Ker(ΛG) is generated by elements of simple type.

Proof. For q = 2, this is just Definition 3.1(i).
So suppose that q 6= 2 and let α ∈ Ker(ΛG). There exists ψ0 ∈ H1(G)

with α − (0, ψ0) ∈ (H1(G) ⊗ H1(G)) ⊕ {0}. Take ξ ∈ H1(G) as in
Definition 3.1(ii). Thus ψ0 ∪ ξ + βG(ψ0) = 0, i.e., ΛG(ψ0 ⊗ ξ, ψ0) = 0.
Let α′ = α − (ψ0 ⊗ ξ, ψ0). Then α′ ∈ (H1(G) ⊗ H1(G)) ⊕ {0} and
ΛG(α′) = ΛG(α) = 0. By Definition 3.1(i), there exist ψi, ψ

′
i ∈ H1(G),

i = 1, . . . , n, with α′ =
∑n

i=1(ψi ⊗ ψ′
i, 0) and ψi ∪ ψ

′
i = 0 for all i. For

each i we have ΛG(ψi ⊗ ξ, ψi) = 0. Then

(4.2) α = (ψ0 ⊗ ξ, ψ0) +
n

∑

i=1

(ψi ⊗ (ψ′
i + ξ), ψi) −

n
∑

i=1

(ψi ⊗ ξ, ψi).

Here all summands are simple type elements in Ker(ΛG). �

Lemma 4.4. Let α ∈ Ker(ΛG) have simple type and kernel M . Then
there exist ϕ ∈ H1(M)G and ᾱ ∈ Ω(G/M) of simple type and with
trivial kernel, such that infG(ᾱ) = α and ΛG/M(ᾱ) = trgG/M(ϕ).

Proof. Take ψ, ψ′ as in Definition 4.2 with M = Ker(ψ) ∩ Ker(ψ′).
There exist ψ̄, ψ̄′ ∈ H1(G/M) such that infG(ψ̄) = ψ and infG(ψ̄′) = ψ′.
We define ᾱ ∈ Ω(G/M) to be ψ̄⊗ ψ̄′, if q = 2, and (ψ̄⊗ ψ̄′, ψ̄), if q 6= 2.
Thus ᾱ has simple type and trivial kernel, and infG(ᾱ) = α. By (4.1)
and (2.1), there is a commutative diagram with an exact row

Ω(G/M)
infG

//

ΛG/M

��

Ω(G)

ΛG

��

H1(M)G
trgG/M

// H2(G/M)
infG

// H2(G).

It yields ϕ ∈ H1(M)G as required. �

Definition 4.5. Call a subgroup N of G distinguished if there is an
open subgroup M of G and elements ϕ ∈ H1(M)G and ᾱ ∈ Ω(G/M),
with ᾱ of simple type and with trivial kernel, such that

ΛG/M(ᾱ) = trgG/M (ϕ), N = Ker(ϕ).

In this case we say that M,ϕ, ᾱ are data for N .
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Remark 4.6. Since ᾱ ∈ Ω(G/M) has trivial kernel, G/M embeds in
(Z/q)2. Hence (G : N) = (G : M)(M : N)|q3 and G(2) ≤ M . Also, the
exponent of G/N divides q2.

Example 4.7. For every ψ ∈ H1(G), the subgroup M = Ker(ψ) of G
is distinguished. Indeed, take ψ̄ ∈ H1(G/M) with infG(ψ̄) = ψ and set
ᾱ = 0 ∈ Ω(G/M). Trivially, ᾱ = ψ̄ ⊗ 0 if q = 2, and ᾱ = (0 ⊗ ψ̄, 0) if
q 6= 2. Thus ᾱ has simple type and trivial kernel. For ϕ = 0 ∈ H1(M)G

we have trgG/M(ϕ) = ΛG/M (ᾱ) = 0 and M = Ker(ϕ).

5. G(3) as an intersection

Let G be again a profinite group, and let ∆G be the intersection of
all distinguished subgroups of G.

Proposition 5.1. G(3) ≤ ∆G ≤ G(2).

Proof. Let N be a distinguished subgroup of G. Thus there exists an
open normal subgroup M of G and ϕ ∈ H1(M)G such that Ker(ϕ) = N
and G(2) ≤M . Hence Lemma 2.1 gives

G(3) = (G(2))q[G(2), G] ≤M q[M,G] ≤ Ker(ϕ) = N.

Consequently, G(3) ≤ ∆G.
By Lemma 2.1 again,

⋂

ψ∈H1(G) Ker(ψ) = G(2). Since each Ker(ψ) is

distinguished (Example 4.7), we get that ∆G ≤ G(2). �

Theorem 5.2. If G has Galois relation type, then G(3) = ∆G.

Proof. By Proposition 5.1, G(3) ≤ ∆G.
For the converse inclusion, let G̃ = G/G(2). It follows from Lemma

2.1 (with N = G) that the map resG(2) : H1(G) → H1(G(2)) is trivial.

Hence, by (2.1), infG : H1(G̃) → H1(G) is an isomorphism. Conse-
quently, infG : Ω(G̃) → Ω(G) is also an isomorphism.

Now let ϕ ∈ H1(G(2))G. By Lemma 4.1, ΛG̃ is surjective, so there

exists α̃ ∈ Ω(G̃) with trgG̃(ϕ) = ΛG̃(α̃). By (4.1) and (2.1),

ΛG(infG(α̃)) = infG(ΛG̃(α̃)) = infG(trgG̃(ϕ)) = 0.

By Proposition 4.3 we may therefore write infG(α̃) =
∑n

i=1 αi, where
α1, . . . , αn ∈ Ker(ΛG) have simple type.
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For each 0 ≤ i ≤ n let Mi be a kernel for αi. Recall that G(2) ≤Mi,
so (4.1) again gives a commutative diagram

(5.1) Ω(G/Mi)
infG̃

//

ΛG/Mi

��

Ω(G̃)
infG

//

ΛG̃

��

Ω(G)

ΛG

��

H2(G/Mi)
infG̃

// H2(G̃)
infG

// H2(G).

Lemma 4.4 gives rise to ᾱi ∈ Ω(G/Mi) of simple type and with trivial
kernel and to ϕi ∈ H1(Mi)

G such that infG(ᾱi) = αi and ΛG/Mi
(ᾱi) =

trgG/Mi
(ϕi). In particular, Ker(ϕi) is distinguished. For each i let

α̃i = infG̃(ᾱi). It also has simple type, and one has αi = infG(α̃i). By
(5.1), infG(ΛG̃(α̃i)) = 0. Moreover,

infG(α̃) =
∑n

i=1 αi =
∑n

i=1 infG(α̃i).

But infG : Ω(G̃) → Ω(G) is an isomorphism, so α̃ =
∑n

i=1 α̃i.
Next (2.1) and (2.2) give a commutative diagram with an exact row:

H1(Mi)
G

trgG/Mi
//

res
G(2)

��

H2(G/Mi)

infG̃
��

0 // H1(G(2))G
trgG̃

// H2(G̃).

Using this and (5.1) we compute:

trgG̃(ϕ) = ΛG̃(α̃) =
n

∑

i=1

ΛG̃(α̃i) =
n

∑

i=1

ΛG̃(infG̃(ᾱi)) =
∑n

i=1 infG̃(ΛG/Mi
(ᾱi))

=

n
∑

i=1

(infG̃ ◦ trgG/Mi
)(ϕi) =

∑n
i=1(trgG̃ ◦ resG(2))(ϕi).

Since trgG̃ is injective, ϕ =
∑n

i=1 resG(2)(ϕi), so by Proposition 5.1,

Ker(ϕ) ≥
n

⋂

i=1

Ker(resG(2)(ϕi)) = G(2) ∩
n

⋂

i=1

Ker(ϕi) ≥ G(2) ∩ ∆G = ∆G.

Since ϕ ∈ H1(G(2))G was arbitrary, we deduce from Lemma 2.1 that

G(3) = (G(2))q[G(2), G] =
⋂

ϕ∈H1(G(2))G

Ker(ϕ) ≥ ∆G. �

Corollary 5.3. Let G be a profinite group of Galois relation type. Then
G(3) is an intersection of normal open subgroups N of G with G/N of
order dividing q3 and exponent dividing q2.
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6. Extensions

Let Ḡ be a finite group and A a finite trivial Ḡ-module. We consider
central extensions

ω : 0 → A
f
−→ B

g
−→ Ḡ → 1.

For a group isomorphism θ : Ḡ′ → Ḡ define an extension

ωθ : 0 → A
f
−→ B

θ−1◦g
−−−→ Ḡ′ → 1.

When there is a commutative diagram of central extensions

ω : 0 // A
f

// B
g

//

h≀

��

Ḡ // 1

ω′ : 0 // A′
f

// B′
g′

// Ḡ // 1,

with h an isomorphism, ω and ω′ are called equivalent. Let Ext(Ḡ, A)
be the set of all equivalence classes [ω] of extensions ω as above.

The Baer sum [CE56, Ch. XIV, §1] of central extensions

ωi : 0 → A
fi−→ Bi

gi−→ Ḡ → 1, i = 1, 2,

is the central extension

0 → A
(f1,1)=(1,f2)
−−−−−−−→ B

g1=g2
−−−→ Ḡ → 1.

where for the fibred product B1 ×Ḡ B2 we set

B = (B1 ×Ḡ B2)/{(f1(a), f2(a)
−1) | a ∈ A}.

This induces an abelian group structure on Ext(Ḡ, A), which is func-
torial in Ḡ (contravariantly) and in A (covariantly).

There is a canonical isomorphism Ext(Ḡ, A) ∼= H2(Ḡ, A) which is
functorial in both Ḡ and A [NSW00, Th. 1.2.5]. Specifically, the co-
homology class of an inhomogeneous normalized 2-cocycle α : Ḡ2 → A
corresponds to the class of [ω], where B = A×Ḡ as sets, and the group
law is given for a, b ∈ A and σ, τ ∈ Ḡ by

(6.1) (a, σ) ∗ (b, τ) = (a+ b+ α(σ, τ), στ).

Conversely, given ω as above, choose a set-theoretic section s : Ḡ→ B
of g with s(1) = 1. The map α : Ḡ × Ḡ → A, given by α(σ̄1, σ̄2) =
s(σ̄1)s(σ̄2)s(σ̄1σ̄2)

−1, is an inhomogenous normalized 2-cocyle whose
cohomology class corresponds to [ω].

Remark 6.1 ([GS06, Remark 3.3.11], [Led05, p. 33]). Let Ḡ → G̃

be an epimorphism and let A be a G̃-module, whence a Ḡ-module in
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the natural way. Then infḠ : H2(G̃, A) → H2(Ḡ, A) corresponds to the

map infḠ : Ext(G̃, A) → Ext(Ḡ, A) sending the class of

ω̃ : 0 → A
f
−→ B

g
−→ G̃ → 1

to the class of

infḠ(ω̃) : 0 → A
(f,1)
−−→ B ×G̃ Ḡ

(b,σ̄)7→σ̄
−−−−→ Ḡ→ 1.

In particular we have:

Lemma 6.2. Suppose that Ḡ = G̃ × G̃′ and let ω̃ be as above. Then
infḠ(ω̃) is equivalent to

0 → A
(f,1)
−−→ B × G̃′ g×id

−−→ G̃× G̃′ → 1.

Proof. Use the commutative triangle

B ×G̃ Ḡ
(b,(σ̃,σ̃′))7→(b,σ̃′)

//

(b,(σ̃,σ̃′))7→(σ̃,σ̃′)
##GG

GGGG
GGG

B × G̃′

g×id
||xx

xx
xx

xx
x

Ḡ

where the horizontal map is an isomorphism. �

7. Embedding problems

Let G be a profinite group. The following proposition is due to
Hoechsmann [Hoe68, 2.1]:

Proposition 7.1. Let M be an open normal subgroup of G. Consider
the embedding problem

(7.1) G
Φ

||zz
zz

zz
zz

z

��

ω : 0 // A // B // G/M // 1

where A is a finite G/M-module, and let α ∈ H2(G/M,A) be the coho-
mology class corresponding to [ω]. Then the restriction map Φ 7→ ϕ =
Φ|M is a bijection between

(a) the continuous homomorphisms Φ: G → B making (7.1) com-
mutative; and

(b) elements ϕ of H1(M,A)G with trgG/M (ϕ) = α.

In particular, there exists Φ as in (a) if and only if infG(α) = 0.

Here the last sentence follows from the bijection using (2.1).
Now suppose that A = Z/q with the trivial G-action, where q = pd.



16 IDO EFRAT AND JÁN MINÁČ

Proposition 7.2. Let M be an open normal subgroup of G and let ᾱ ∈
Ω(G/M) have simple type and trivial kernel. The following conditions
on an open subgroup N of M are equivalent:

(a) N is a distinguished subgroup of G with data M, ᾱ;
(b) N is normal in G and there is a commutative diagram

G/N

��

h

}}{{
{{

{{
{{

{

ω : 0 // Z/q // B // G/M // 1,

where ω is an extension corresponding to ΛG/M(ᾱ), the vertical
map is the natural projection, and h is a monomorphism.

Proof. (a)⇒(b): By assumption, there exists ϕ ∈ H1(M)G such that
ΛG/M(ᾱ) = trgG/M(ϕ) ∈ H2(G/M) and N = Ker(ϕ). In particular, N
is normal in G. Choose a central extension ω as above corresponding to
ΛG/M(ᾱ). Proposition 7.1 yields a continuous homomorphism Φ: G→
B such that (7.1) commutes and ϕ = Φ|M . Then N = Ker(ϕ) =
M ∩Ker(Φ). Consequently, Φ induces a homomorphism h : G/N → B
whose restriction to M/N is injective. It follows that h is also injective.

(b)⇒(a): Lift h to a homomorphism Φ: G → B with kernel N .
Then (7.1) commutes. Then ϕ = Φ|M ∈ H1(M)G. By Proposition 7.1,
ΛG/M(ᾱ) = trgG/M (ϕ) and N = M ∩Ker(Φ) = Ker(ϕ), giving (a). �

8. Special extensions

Proposition 7.2 allows an explicit determination of the distinguished
subgroups N of a profinite group G by means of the quotients G/N .
We now carry this computation for q = p prime, based on an analy-
sis of several central extensions of small p-groups. We first recall the
structure of the nonabelian groups of order p3. When p = 2 these are:

• the dihedral group of order 8,

D4 = 〈r, s | r4 = s2 = (rs)2 = 1〉;

• the quaternionic group

Q8 = 〈r, s | r4 = 1, [r, s] = r2 = s2〉.

For p odd, there are two isomorphism types of groups of order p3:

• the Heisenberg group of order p3 and exponent p,

Hp3 = 〈r, s, t | rp = sp = tp = 1, [r, t] = [s, t] = 1, [r, s] = t〉;
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• the extra-special group of order p3 and exponent p2,

Mp3 = 〈r, s | rp
2

= sp = 1, [r, s] = rp〉.

8.1. Remarks. (a) When p = 2, M8 = D4. However, we will keep in
this case the traditional notation D4, and write Mp3 only when p 6= 2.

(b) Let G be one of the groups D4, Q8, when p = 2, or Hp3, Mp3,
when p 6= 2. Then the unique normal subgroup of G of order p is its
center, which coincides with the Frattini subgroup G(2) [MN77, §3.1].
Therefore G(3) = (G(2))p[G(2), G] = 1.

(c) In Mp3 (for p 6= 2) one has rjsi = sir(1+ip)j for all i, j ≥ 0. In
particular, [s, rp] = 1. Further, by induction, (sirj)k = skir(1+(k−1)ip/2)kj

for k ≥ 0. It follows that (sirj)p = 1 if and only if p|j.

We define epimorphisms from these groups onto (Z/p)2 as follows:

θ : D4 → (Z/2)2, r 7→ (1̄, 1̄), s 7→ (0̄, 1̄);

λ : Hp3 → (Z/p)2, r 7→ (1̄, 0̄), s 7→ (0̄, 1̄), t 7→ (0̄, 0̄);

λ′ : Mp3 → (Z/p)2, r 7→ (1̄, 0̄), s 7→ (0̄, 1̄).

Remark 8.2. For later use we note that no proper subgroup of D4

(resp., Mp3) is mapped surjectively by θ (resp., λ′).

The following central extensions will be needed in the sequel:

ω0 : 0 → Z/p
id
−→ Z/p → 0 → 0;

ω1 : 0 → Z/p
ī7→(̄i,0̄)
−−−−→ (Z/p)2 (̄i,j̄)7→j̄

−−−−→ Z/p → 0;

ω2 : 0 → Z/p
ī7→pi
−−→ Z/p2 ī7→ī

−−→ Z/p → 0;

ω3 : 0 → Z/2
ī7→r2i

−−−→ D4
θ
−→ (Z/2)2 → 0;

ω4 : 0 → Z/p
ī7→ti
−−→ Hp3

λ
−→ (Z/p)2 → 0 (p 6= 2);

ω5 : 0 → Z/p
ī7→rpi

−−−→ Mp3
λ′
−→ (Z/p)2 → 0 (p 6= 2);

ω6 : 0 → Z/p
ī7→(pi,0)
−−−−→ (Z/p2) ⊕ (Z/p)

(̄i,j̄)7→(̄i,j̄)
−−−−−−→ (Z/p)2 → 0.

Thus [ω0], [ω1] are the trivial classes of Ext(0,Z/p), Ext(Z/p,Z/p),
respectively, and [ω1] is the inflation of [ω0]. Likewise

(8.1) inf(Z/p)2([ω2]) = [ω6]

relative to the projection pr1 : (Z/p)2 → Z/p on the first coordinate.

Lemma 8.3. For p 6= 2, the Baer sum of [ω4] and [ω6] is [ω5].
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Proof. Let

B̃ = 〈r̃, s̃, t̃ | r̃p
2

= s̃p = t̃p = 1, [r̃, t̃] = [s̃, t̃] = 1, [r̃, s̃] = t̃〉.

There is a commutative square

B̃

f
��

j
// Hp3

λ
��

(Z/p2) ⊕ (Z/p)
(̄i,j̄)7→(̄i,j̄)

// (Z/p)2 ,

where j maps r̃, s̃, t̃ to r, s, t, respectively, and f maps r̃, s̃, t̃ to (1̄, 0̄),
(0̄, 1̄), (0̄, 0̄), respectively. Moreover, this square is cartesian, i.e.,

(j, f) : B̃ → Hp3 ×(Z/p)2 ((Z/p2) ⊕ (Z/p))

is an isomorphism. The Baer sum is therefore the equivalence class of

0 → Z/p
ī7→t̃i
−−→ B = B̃/〈t̃i · r̃−pi)| ī ∈ Z/p〉

λ◦j
−−→ (Z/p)2 → 0.

Hence B is obtained from B̃ by adding the relation t̃ = r̃p. Using
Remark 8.1(c) we deduce that

B ∼= 〈r, s | rp
2

= sp = 1, [s, rp] = 1, [r, s] = rp〉 = Mp3,

and the Baer sum is [ω5]. �

9. Extensions and simple type elements

We assume again that q = p is prime. Let Ḡ be a finite group.
In this section we compute the extensions corresponding to ΛḠ(ᾱ) for
ᾱ ∈ Ω(Ḡ) of simple type and trivial kernel. Some of these facts are
quite well-known in a Galois setting, as is systematically described in
Ledet’s book [Led05] (see also [Frö85, 7.7], [MN77]), but we derive
them in a more abstract group-theoretic setting.

A) Cup products. Let ψ̄, ψ̄′ ∈ H1(Ḡ). We compute the extensions
corresponding to ψ̄ ∪ ψ̄′ ∈ H2(Ḡ) in various situations. We use the

notation ωψ̄ as in the beginning of §6. For the uniformity of the pre-
sentation we use this notation also when Ḡ ∼= Z/2.

Proposition 9.1. Suppose that Ker(ψ̄) ∩ Ker(ψ̄′) = 1.

(a) If ψ̄ = ψ̄′ = 0, then ψ̄ ∪ ψ̄′ corresponds to ω0.
(b) If ψ̄ 6= 0, ψ̄′ = 0 (resp., ψ̄ = 0, ψ̄′ 6= 0), then ψ̄∪ ψ̄′ corresponds

to ωψ̄1 (resp., ωψ̄
′

1 ).

(c) If p = 2 and ψ̄ = ψ̄′ 6= 0, then ψ̄ ∪ ψ̄′ corresponds to ωψ̄2 .
(d) If p 6= 2 and ψ̄, ψ̄′ 6= 0 are Fp-linearly dependent, then ψ̄ ∪ ψ̄′

corresponds to ωψ̄1 .
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(e) If p = 2 and ψ̄, ψ̄′ are Fp-linearly independent, then ψ̄ ∪ ψ̄′

corresponds to ω
(ψ̄,ψ̄′)
3 .

(f) If p 6= 2 and ψ̄, ψ̄′ are Fp-linearly independent, then ψ̄ ∪ ψ̄′

corresponds to ω
(ψ̄,ψ̄′)
4 .

Proof. Consider the central extension

ω : 0 → Z/p
f
−→ B

g
−→ Ḡ → 1

corresponding to ψ̄ ∪ ψ̄′. An inhomogeneous normalized 2-cocyle Ḡ×
Ḡ→ Z/p representing ψ̄∪ψ̄′ is given by (σ, τ) 7→ ψ̄(σ)·ψ̄′(τ). Therefore
B = (Z/p) × Ḡ, with the group law

(9.1) (a, σ) ∗ (b, τ) = (a+ b+ ψ̄(σ)ψ̄′(τ), στ)

for a, b ∈ Z/p and σ, τ ∈ Ḡ (see (6.1)). The trivial element of B is
(0, 1), and one has f(a) = (a, 1) and g(a, σ) = σ for a ∈ Z/p and
σ ∈ Ḡ. By induction,

(a, σ)i = (ia+ i(i−1)
2
ψ̄(σ)ψ̄′(σ), σi), i = 0, 1, 2, . . . .

We examine the various possibilities.

(a) Immediate.

(b) Here ψ̄ (resp., ψ̄′) is an isomorphism Ḡ → Z/p and B is just
the direct product (Z/p) × Ḡ. The assertion follows.

(c) The assumptions imply that ψ̄ = ψ̄′ : Ḡ → Z/2 is an isomor-
phism. Let σ0 be the generator of Ḡ. Then (0, σ0)

2 = (1, 1) and

(0, σ0)
4 = (0, 1) in B. Hence B ∼= Z/4 and ω is equivalent to ωψ̄2 .

(d) Here ψ̄ : Ḡ → Z/p is an isomorphism. Since p 6= 2 and ∪
is alternate, ψ̄ ∪ ψ̄′ = 0. Hence ω, and therefore also ωψ̄ split, so
B ∼= (Z/p)2. Moreover, pick b ∈ B such that (ψ̄ ◦ g)(b) = 1̄. Then the
map B → (Z/p)2, f(1̄) 7→ (1̄, 0̄), b 7→ (0̄, 1̄), is an isomorphism making
the following diagram commutative:

ω : 0 // Z/p � � f
// B = (Z/p) × Ḡ

g
//

≀

��

Ḡ //

≀ ψ̄
��

1

ω1 : 0 // Z/p � �
ī7→(̄i,0̄)

// (Z/p)2
(̄i,j̄)7→j̄

// Z/p // 0.

Thus ω is equivalent to ωψ̄1 .

(e), (f) Here (ψ̄, ψ̄′) : Ḡ→ (Z/p)2 is an isomorphism. Take σ1, σ2 ∈
Ḡ with

ψ̄(σ1) = 1, ψ̄(σ2) = 0, ψ̄′(σ1) = 0, ψ̄′(σ2) = 1.
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When p = 2, we set r̃ = (1, σ1σ2), s̃ = (0, σ2) and compute in B:

r̃2 = (1, 1), r̃4 = (0, 1), s̃2 = (0, 1), r̃s̃ = (0, σ1), (r̃s̃)2 = (0, 1).

We get an isomorphism B ∼= D4, r̃ 7→ r, s̃ 7→ s, and a diagram

ω : 0 // Z/2 � � f
// B = (Z/2) × Ḡ

g
//

≀

��

Ḡ

(ψ̄,ψ̄′)≀

��

// 1

ω3 : 1 // Z/2 � � ī7→r2i
// D4

θ
// (Z/2)2 // 0

which is commutative with exact rows. Hence ω is equivalent to ω
(ψ̄,ψ̄′)
3 .

For p odd, B has exponent p. Set r̃ = (0, σ1), s̃ = (0, σ2), t̃ = (1, 1).
Then

r̃t̃ = t̃r̃ = (1, σ1), s̃t̃ = t̃s̃ = (1, σ2), r̃s̃ = t̃s̃r̃ = (1, σ1σ2).

This gives an isomorphism B ∼= Hp3 , r̃ 7→ r, s̃ 7→ s, t̃ 7→ t, and a
commutative diagram

ω : 0 // Z/p � � f
// B = (Z/p) × Ḡ

g
//

≀

��

Ḡ

(ψ̄,ψ̄′)≀

��

// 1

ω4 : 0 // Z/p � � ī7→ti
// Hp3

λ
// (Z/p)2 // 0.

Therefore ω is equivalent in this case to ω
(ψ̄,ψ̄′)
4 . �

B) Bockstein elements.

Proposition 9.2. If 0 6= ψ̄ ∈ H1(Ḡ) and Ḡ ∼= Z/p, then βḠ(ψ̄) corre-

sponds to ωψ̄2 .

Proof. As a connecting homomorphism in a cohomology exact sequence,
βḠ : H1(Ḡ) → H2(Ḡ) is defined as follows [NSW00, Ch. I, §3]: let
pr : Z/p2 → Z/p be the natural projection. Given a nonzero ψ̄ ∈
H1(Ḡ), we consider it as an inhomogeneous 1-cocycle, and lift it to a

map ψ̂ : Ḡ→ Z/p2 with ψ̄ = pr ◦ψ̂. Then the map

χ : Ḡ× Ḡ→ Z/p, χ(σ1, σ2) = ψ̂(σ1) + ψ̂(σ2) − ψ̂(σ1σ2)

is a normalized 2-cocycle with cohomology class βḠ(ψ̄).

On the other hand, ψ̄ : Ḡ→ Z/p is an isomorphism, so ψ̂ is a section
of the epimorphism ψ̄−1 ◦ pr : Z/p2 → Ḡ. By the remarks in §6, the
cohomology class βḠ(ψ̄) of χ therefore corresponds to the extension

ωψ̄2 : 0 → Z/p → Z/p2 ψ̄−1◦pr
−−−−→ Ḡ → 1. �
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Corollary 9.3. Suppose that p 6= 2 and let ψ̄, ψ̄′ ∈ H1(Ḡ) be Fp-

linearly dependent, ψ̄ 6= 0. Then ΛḠ(ψ̄ ⊗ ψ̄′, ψ̄) corresponds to ωψ̄2 .

Proof. Since ∪ is alternate, ψ̄ ∪ ψ̄′ = 0. Hence ΛḠ(ψ̄ ⊗ ψ̄′, ψ̄) = βḠ(ψ̄).
Now use Proposition 9.2. �

When ψ̄, ψ̄′ are Fp-linearly independent the computation is more
involved. It is sufficient for us to consider only the case p 6= 2.

Proposition 9.4. Suppose that p 6= 2. Let ψ̄, ψ̄′ ∈ H1(Ḡ) be Fp-
linearly independent with Ker(ψ̄) ∩ Ker(ψ̄′) = 1. Then ΛḠ(ψ̄ ⊗ ψ̄′, ψ̄)

corresponds to ω
(ψ̄,ψ̄′)
5 .

Proof. We may decompose Ḡ = G̃× G̃′, where G̃, G̃′ ∼= Z/p and there

exists ψ̃ ∈ H1(G̃) with infḠ(ψ̃) = ψ̄. By Proposition 9.2, βG̃(ψ̃) cor-

responds to ωψ̃2 . Hence βḠ(ψ̄) = infḠ(βG̃(ψ̃)) corresponds to infḠ(ωψ̃2 ).
By Lemma 6.2, this extension is

0 → Z/p
ī7→(pi,1)
−−−−→ (Z/p2) × G̃′ (ψ̃−1◦pr,id)

−−−−−−→ G̃× G̃′ → 1,

where pr : Z/p2 → Z/p is again the natural projection. But the latter
extension is equivalent to

0 → Z/p
ī7→(pi,0)
−−−−→ (Z/p2)× (Z/p)

(ψ̄−1◦pr,(ψ̄′)−1)
−−−−−−−−−→ Ḡ = G̃× G̃′ → 1,

which is ω
(ψ̄,ψ̄′)
6 .

Now by Proposition 9.1(f), ψ̄∪ ψ̄′ corresponds to ω
(ψ̄,ψ̄′)
4 . It therefore

follows from Lemma 8.3 that ψ̄∪ ψ̄′ +βḠ(ψ̄) corresponds to ω
(ψ̄,ψ̄′)
5 . �

C) Summary. Putting together the results of the previous two sub-
sections we obtain:

Proposition 9.5. Let ᾱ ∈ Ω(Ḡ) have simple type and trivial kernel.
Then ΛḠ(ᾱ) ∈ H2(Ḡ) corresponds to one of the following extensions:

(i) when p = 2: ω0, ω
ψ̄
1 , ωψ̄2 , ω

(ψ̄,ψ̄′)
3 ;

(ii) when p 6= 2: ω0, ω
ψ̄
1 , ωψ̄2 , ω

(ψ̄,ψ̄′)
5 ,

where ψ̄, ψ̄′ are taken as above.

Proof. When p = 2 we have ᾱ = ψ̄ ⊗ ψ̄′, with ψ̄, ψ̄′ ∈ H1(Ḡ) and
Ker(ψ̄) ∩ Ker(ψ̄′) = 1. Furthermore, ΛḠ(ᾱ) = ψ̄ ∪ ψ̄′. Now apply
Proposition 9.1.

When p 6= 2 we write ᾱ = (ψ̄⊗ψ̄′, ψ̄) where again ψ̄, ψ̄′ ∈ H1(Ḡ) and
Ker(ψ̄) ∩ Ker(ψ̄′) = 1. Here ΛḠ(ᾱ) = ψ̄ ∪ ψ̄′ + βḠ(ψ̄). If ψ̄ = 0, then

this corresponds to either ω0 or ωψ̄1 , by Proposition 9.1(a)(b). If ψ̄ 6= 0
and ψ̄, ψ̄′ are Fp-linearly dependent, then ΛḠ(ᾱ) = βḠ(ψ̄) corresponds
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to ωψ̄2 , by Proposition 9.2. Finally, if ψ̄, ψ̄′ are Fp-linearly independent,

then by Proposition 9.4, ΛḠ(ᾱ) corresponds to ω
(ψ̄,ψ̄′)
5 . �

One has the following converse result:

Proposition 9.6. When p = 2 let i ∈ {0, 1, 2, 3} and when p 6= 2 let
i ∈ {0, 1, 2, 5}. Let (Z/p)s be the right group in ωi (so s = 0, 1, 1, 2, 2 for

i = 0, 1, 2, 3, 5, respectively). Let θ : Ḡ
∼
−→ (Z/p)s be an isomorphism.

There exists ᾱ ∈ Ω(Ḡ) of simple type and with trivial kernel such that
ΛḠ(ᾱ) ∈ H2(Ḡ) corresponds to ωθi .

Proof. We may assume that Ḡ = (Z/p)s and θ = id. Let prj : (Z/p)2 →
Z/p be the projection on the jth coordinate, j = 1, 2.

When p = 2 we take ᾱ = ψ̄ ⊗ ψ̄′, where

(ψ̄, ψ̄′) = (0, 0), (idZ/2, 0), (idZ/2, idZ/2), (pr1, pr2),

to obtain using Proposition 9.1(a)(b)(c)(e) ω0, ω1, ω2, ω3, respectively.
When p 6= 2 we take ᾱ = (ψ̄⊗ψ̄′, ψ̄), where (ψ̄, ψ̄′) = (0, 0), (0, idZ/p),

to obtain using Proposition 9.1(a)(b) the extensions ω0, ω1, respec-
tively. Also, take ᾱ = (ψ̄ ⊗ ψ̄′, ψ̄), where ψ̄ = ψ̄′ = idZ/p to obtain
using Corollary 9.3 the extension ω2. Finally, ᾱ = (ψ̄ ⊗ ψ̄′, ψ̄), where
ψ̄ = pr1, ψ̄

′ = pr2, gives using Proposition 9.4 the extension ω5. �

10. Lifting of homomorphisms

We now apply the computations of the previous section to solve some
specific embedding problems.

Lemma 10.1. Let G be a profinite group and ψ : G→ Z/p an epimor-
phism. Then βG(ψ) = 0 if and only if ψ factors via the natural map
Z/p2 → Z/p.

Proof. Let Ḡ = G/Ker(ψ) ∼= Z/p and let π : G → Ḡ be the natural
map. There exists ψ̄ ∈ H1(Ḡ) with ψ = ψ̄ ◦ π and infG(ψ̄) = ψ. Then

infG(βḠ(ψ̄)) = βG(ψ). By Proposition 9.2, βḠ(ψ̄) corresponds to ωψ̄2 .
It follows from the last sentence of Proposition 7.1 that βG(ψ) = 0 if
and only if the following embedding problem is solvable

G
Φ

{{xx
xx

xx
xx

x

ψ
��

Z/p2 // Z/p // 0.

Note that if the homomorphism Φ exists, then it must be surjective. �

In the next proposition let r, s be the generators of Mp3 as in §8.
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Proposition 10.2. Let p 6= 2 and let G be a profinite group of Galois
relation type. Every epimorphism ψ : G → Z/p breaks via one of the
epimorphisms:

(i) the natural map Z/p2 → Z/p;
(ii) the map λ

′′

: Mp3 → Z/p, defined by r 7→ 1̄, s 7→ 0̄.

Proof. If βG(ψ) = 0, then by Lemma 10.1, ψ breaks via the map (i).
Next assume that βG(ψ) 6= 0. Since G has Galois relation type, there

exists ξ ∈ H1(G) with ψ ∪ ξ + βG(ψ) = 0. In particular, ψ ∪ ξ 6= 0.
Since p 6= 2 and the cup product is alternate, ψ and ξ are Fp-linearly
independent. Now let Ḡ = G/(Ker(ψ) ∩ Ker(ξ)) ∼= (Z/p)2, and let
π : G → Ḡ be the canonical map. Take ψ̄, ξ̄ ∈ H1(Ḡ) with ψ = ψ̄ ◦ π,
ξ = ξ̄ ◦ π, infG(ψ̄) = ψ, and infG(ξ̄) = ξ. Then

infG(ΛḠ(ψ̄ ⊗ ξ̄, ψ̄)) = ΛG(ψ ⊗ ξ, ψ) = 0.

By Proposition 9.4, ΛḠ(ψ̄⊗ ξ̄, ψ̄) corresponds to ω
(ψ̄,ξ̄)
5 . It follows again

from Proposition 7.1 that the embedding problem

G
Φ

zzvv
vv

vv
vv

vv

(ψ,ξ)
��

Mp3
λ′

// (Z/p)2 // 0

is solvable. By Remark 8.2, no proper subgroup of Mp3 is mapped sur-
jectively by λ′. Therefore Φ is surjective. As before, let pr1 : (Z/p)2 →
Z/p be the projection on the first coordinate. We deduce that ψ breaks
via the epimorphism pr1 ◦λ

′, which is just λ′′. �

Next let r, s be the generators of D4 as in §8. We write G(p) for the
maximal pro-p quotient of the profinite group G. One has the following
analog of Proposition 10.2 for p = 2.

Proposition 10.3. Let p = 2 and let G be a profinite group of Galois
relation type and such that G(2) 6∼= Z/2. Every epimorphism ψ : G →
Z/2 factors via one of the epimorphisms:

(i) the natural map Z/4 → Z/2;
(ii) the map θ′ : D4 → Z/2 , defined by r 7→ 1̄, s 7→ 0̄;
(iii) the map θ

′′

: D4 → Z/2, defined by r 7→ 0̄, s 7→ 1̄.

Proof. Let ξ be as in Definition 3.1(ii). By the assumptions, G(2) 6=
1,Z/2. Hence, if G(2) is pro-cyclic, then ψ factors via the map (i). We
may therefore assume that G(2) is not pro-cyclic.

If βG(ψ) = 0, then by Lemma 10.1, ψ factors via the map (i).
Next we assume that ψ, ξ + ψ are F2-linearly independent. Let Ḡ =

G/(ker(ψ) ∩ Ker(ξ)) and let π : G → G/Ḡ be the natural map. There
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exist ψ̄, ξ̄ ∈ H1(Ḡ) with ψ = ψ̄ ◦ π, ξ = ξ̄ ◦ π, infG(ψ̄) = ψ and
infG(ξ̄) = ξ. Note that Ker(ψ̄)∩Ker(ξ̄+ ψ̄) = Ker(ψ̄)∩ker(ξ̄) = 1. By

Proposition 9.1(e), ψ̄ ∪ (ξ̄ + ψ̄) corresponds to the extension ω
(ψ̄,ξ̄+ψ̄)
3 .

By the choice of ξ and Lemma 2.4,

infG(ψ̄ ∪ (ξ̄ + ψ̄)) = ψ ∪ ξ + ψ ∪ ψ = 2βG(ψ) = 0.

Proposition 7.1 therefore implies that the embedding problem

G
Φ

{{{{ww
ww

ww
ww

ww

(ψ,ξ+ψ)
��

D4
θ

// (Z/2)2 // 0

is solvable. Since no proper subgroup of D4 is mapped by θ surjectively
onto (Z/2)2 (Remark 8.2), Φ is surjective. We deduce that ψ factors
via the epimorphism pr1 ◦θ, which is just θ′.

Finally assume that βG(ψ) 6= 0 and ψ, ξ + ψ are F2-linearly depen-
dent. As βG(ψ) = ψ ∪ ξ, necessarily ξ 6= 0. But ψ 6= 0, so ψ = ξ.

Now G(2) is not pro-cyclic, so there exists ψ′ ∈ H1(G) such that
ψ, ψ′ are F2-linearly independent. Then ψ′, ξ + ψ′ are also F2-linearly
independent. By the argument above, the embedding problem

G
Φ

{{{{ww
ww

ww
ww

ww

(ψ′,ξ+ψ′)
��
��

D4
θ

// (Z/2)2 // 0

is solvable. Composing with the map σ : (Z/2)2 → Z/2, (̄i, j̄) 7→ i+ j,
we obtain that ψ = ξ factors via σ ◦ θ, which is just θ

′′

. �

11. The main results

Let G be a again a profinite group and q = p a prime number.

Theorem 11.1. The following conditions on a normal open subgroup
N of G are equivalent:

(a) N is distinguished;
(b) (i) When p = 2, G/N is isomorphic to one of the groups

1, Z/2, (Z/2)2, Z/4, D4;

(ii) When p 6= 2, G/N is isomorphic to one of the groups

1, Z/p, (Z/p)2, Z/p2, Mp3 .
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Proof. (a)⇒(b): Let N be distinguished and M , ᾱ, ϕ data for N .
Thus N = Ker(ϕ). Set Ḡ = G/M and consider a central extension

ω : 0 → Z/p → B → Ḡ → 1

corresponding to ΛḠ(ᾱ). By Proposition 7.2, G/N embeds in B.
If p = 2, then by Proposition 9.5, ω is equivalent to an extension of

one of the forms ω0, ω
ψ̄
1 , ωψ̄2 , ω

(ψ̄,ψ̄′)
3 . Then G/N embeds in one of the

groups Z/2, (Z/2)2, Z/4, D4, and is therefore as in (i).
If p 6= 2, then by Proposition 9.5, ω is equivalent to an extension of

one of the forms ω0, ω
ψ̄
1 , ωψ̄2 , ω

(ψ̄,ψ̄′)
5 . Then G/N embeds in one of the

groups Z/p, (Z/p)2, Z/p2, Mp3, and is therefore as in (ii).

(b)⇒(a): By Example 4.7, G itself is distinguished. We may there-
fore assume that G/N is nontrivial. Hence it is isomorphic to the
middle group B of ωi where i ∈ {0, 1, 2, 3}, if p = 2, and i ∈ {0, 1, 2, 5},
if p 6= 2. Therefore there is an open normal subgroup M of G such
that N ≤M and the following diagram commutes:

ω : 0 // Z/p // G/N //

≀

��

G/M //

≀ θ
��

1

ωi : 0 // Z/p // B // (Z/p)s // 0,

where θ is an isomorphism. Then ω, ωθi are equivalent. By Proposition
9.6, ωθi corresponds to ΛG/M(ᾱ) ∈ H2(G/M) for some ᾱ ∈ Ω(G/M) of
simple type and with trivial kernel, and therefore so does ω. Conclude
from Proposition 7.2 that N is distinguished. �

We deduce the following stronger form of the Main Theorem:

Corollary 11.2. Suppose that p 6= 2 and let G be a profinite group of
Galois relation type. Then G(3) is the intersection of all normal open
subgroups N of G with G/N isomorphic to one of 1, Z/p2, Mp3.

Proof. By Theorems 5.2 and 11.1, G(3) is the intersection of all normal
open subgroups N of G with G/N isomorphic to one of 1, Z/p, Z/p2,
Mp3. By Proposition 10.2, Z/p can be omitted from this list. �

For p = 2 Theorem 5.2 and Theorem 11.1 give:

Corollary 11.3. Let p = 2 and let G be of Galois relation type. Then
G(3) is the intersection of all normal open subgroups N of G such that
G/N is isomorphic to one of the groups 1, Z/2, Z/4, D4.

By Proposition 3.2, this extends [MSp96, Cor. 2.18], which proves it
for G = GF , F a field. Combined with Proposition 10.3 it gives:
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Corollary 11.4. Let p = 2 and let G be a profinite group of Galois
relation type such that G(2) 6∼= Z/2. Then G(3) is the intersection of all
normal open subgroups N of G such that G/N is isomorphic to one of
the groups 1, Z/4, D4.

11.5. Remarks. (a) The converse of Corollary 11.4 also holds: if
G(2) ∼= Z/2, then G(3) is not an intersection as above.

(b) Let F be a field of characteristic 6= 2 and let G = GF . Then
G(2) ∼= Z/2 if and only if F is a Euclidean field, i.e., the set (F×)2 of
all nonzero squares in F is an ordering on F ([Bec74], [Efr06, §19.2]).
Therefore, by (a), the Euclidean fields are those fields for which the
group Z/2 cannot be omitted from the list in Corollary 11.3.

12. The structure of G/G(3)

When p = 2 and G = GF for a field F , the quotient G/G(3) is
the W -group of F , studied in [MSp90], [MSp96], and [MMS04]. It
encodes much of the “real” arithmetic structure of F . We now give
some restrictions on the group structure of G/G(3) also for p odd.

Proposition 12.1. Let G be a profinite group of Galois relation type
with G/G(3) nonabelian.

(a) If p 6= 2, then Mp3 is a quotient of G/G(3).
(b) If p = 2, then D8 is a quotient of G/G(3).

Proof. By our assumption, G(3) cannot be an intersection of open nor-
mal subgroups N of G with G/N abelian. When p 6= 2 (resp., p = 2)
Corollary 11.2 (resp., Corollary 11.3) yields an open normal subgroup
N of G with G/N ∼= Mp3 (resp., G/N ∼= D4). The natural epimor-
phism h : G→ Ḡ = G/N maps G(3) to Ḡ(3), which is trivial by Remark
8.1(b). Hence h induces an epimorphism h̄ : G/G(3) → Ḡ. �

We recover the following known “automatic realizations”:

Corollary 12.2. Suppose that F is a field of characteristic 6= p and
containing a root of unity of order p.

(a) ([Bra89]) If p 6= 2 and Hp3 is realizable as a Galois group over
F , then Mp3 is also realizable as a Galois group over F .

(b) ([MS91, Prop. 2.1]) If p = 2 and Q8 is realizable as a Galois
group over F , then D4 is also realizable over F .

Proof. When p 6= 2 (resp., p = 2), take Ḡ = Hp3 (resp., Ḡ = Q8). Thus
Ḡ is a quotient of G = GF , and as Ḡ(3) = 1 (by Remark 8.1(b)), also of
G/G(3). Hence G/G(3) is nonabelian. Now apply Proposition 12.1. �
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The next fact was earlier proved in [BLMS07, Th. A.3] when G = GF

for a field F containing a primitive pth root of unity.

Proposition 12.3. Let p 6= 2 and let G be a profinite group of Galois
relation type. Every element of G/G(3) of order p belongs to G(2)/G(3).

Proof. It suffices to show that the elements of order p in G/G(3) are
in the kernel of every epimorphism ψ̄ : G/G(3) → Z/p. Now ψ̄ lifts to
a unique epimorphism ψ : G → Z/p. By Proposition 10.2, ψ breaks
via an epimorphism π : Ḡ → Z/p, where either Ḡ = Z/p2 and π is
the natural projection, or Ḡ = Mp3 and π = λ

′′

(where λ
′′

maps the
generators r, s of Mp3 to 1̄, 0̄, respectively). In both cases, Ḡ(3) = 1, by
Remark 8.1(b) again. Therefore there is a commutative triangle

G/G(3)

ψ̄
��
��||||yy

yy
yy

yy
y

Ḡ
π

// // Z/p.

In both cases π is trivial on elements of Ḡ of order p (for Ḡ = Mp3 this
follows from Remark 8.1(c)). The claim follows. �

Remark 12.4. Proposition 12.3 is no longer true when p = 2. For
instance, G = Z/2(∼= GR) has Galois relation type, yet G/G(3) = Z/2
and G(2)/G(3) = 1. More generally, take G = GF for a field F of
characteristic 6= 2. Then G/G(3) contains an involution which is not in
G(2)/G(3) if and only if F is formally real [MSp90, Th. 2.7].

Example 12.5. Suppose that p 6= 2 and that G has Galois relation
type. By Proposition 12.3, G/G(3) cannot be isomorphic to (Z/p)I ,
with I 6= ∅, to Hp3, nor to Mp3 (see Remark 8.1(c)).

Remark 12.6. By the celebrated Artin–Schreier theorem, an absolute
Galois group of a field is either 1, Z/2, or is infinite. Our results provide
a new cohomological proof of this fact in characteristic 0, as follows.

Assume that F is a field of characteristic 0 with G = GF finite. If
G ∼= Z/p with p 6= 2, then F contains a primitive pth root of unity. By
Proposition 3.2, G has Galois relation type, contrary to what we have
seen in Example 12.5. This shows that G is a finite 2-group.

Next suppose thatG contains an element of order 4. We may then as-
sume that G ∼= Z/4. Let K be its unique subgroup of order 2 and write
H1(K) = {0, ψ}. The map resK : H1(G) → H1(K) is trivial. Hence
the Kummer element κ2(−1) ∈ H1(K) (which comes from H1(G)) is
zero. By Corollary 2.8(b), βK(ψ) = ψ ∪ κ2(−1) = 0. On the other
hand, there are no epimorphisms K → Z/4, contrary to Lemma 10.1.
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Hence, G consists of involutions. By Proposition 10.3, G ∼= 1,Z/2.

13. Examples

We first give examples showing that non of the groups listed in Corol-
laries 11.3 and 11.2 can be omitted from these lists.

Example 13.1. Taking G = GC = 1 we see that the trivial group
cannot be removed from the above lists.

Example 13.2. For p = 2 and G = GR = Z/2 one has G(3) = 1. This
shows that Z/2 cannot be removed from the list in Corollary 11.3.

Example 13.3. Let F be a finite field and let G = GF = Ẑ. Then
G/G(3) ∼= Z/p2. Therefore Z/p2 cannot be removed from the lists.

Example 13.4. Take p = 2 and F = R((t)). Then G = GF =
〈τ, ǫ | ǫ2 = (τǫ)2 = 1〉 [Efr06, §22.1]. There is an epimorphism G 7→ D4,
τ 7→ r, ǫ 7→ s (with notation as in §8). Hence G/G(3) is non-abelian.
Now let N0 be the intersection of all closed normal subgroups N of G
such that G/N is isomorphic to one of 1, Z/2,and Z/4. Then G/N0 is
abelian (in fact, it is isomorphic to (Z/2)2). Consequently, N0 6= G(3).
Therefore D4 cannot be removed from the list in Corollary 11.3.

Example 13.5. Let p 6= 2. Dirichlet’s theorem on primes in arithmeti-
cal progressions yields n ≥ 0 with l = p(pn+ 1) + 1 prime. Let ζp2 be
in the algebraic closure of Fl. Then Fl contains the pth roots of unity,
but does not contain a p2th root of unity ζp2. Therefore the maximal

pro-p Galois group GFl
(p) has a generator σ̄ such that σ̄(ζp2) = ζ1+p

p2 .

Lift σ̄ to some σ ∈ G = GQl
(p). Also let τ be a generator of the inertia

group of G. Then G is generated by τ and σ, subject to the defining
relation στσ−1 = τ 1+p [Efr06, Example 22.1.6].

Now let N0 be the intersection of all closed normal subgroups N of G
with G/N isomorphic to 1 or Z/p2. Then G/N0 is abelian. Since there
is an epimorphism G→Mp3 , τ 7→ r, σ 7→ s (notation as in §8), G/G(3)

is non-abelian, so N0 6= G(3) (in fact, G/N0
∼= (Z/p2) × (Z/p) while

G/G(3) ∼= (Z/p2) ⋊ (Z/p2) = 〈τ̃〉 ⋊ 〈σ̃〉, with action σ̃τ̃ σ̃−1 = τ̃ 1+p).
Thus Mp3 cannot be removed from the list in Corollary 11.2.

Our final two examples show that in Corollaries 11.3 and 11.2 one
cannot omit the assumption that G has Galois relation type.

Example 13.6. Let p = 2 and let G = Q8. Then G has no normal
subgroups N with G/N ∼= Z/4 or G/N ∼= D4, and has three distinct
normal subgroups N with G/N ∼= Z/2, all containing the center Z(G).
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Thus the intersection of all normal subgroups N of G as in Corollary
11.3 is Z(G)(∼= Z/2). On the other hand, G(3) = 1 (Remark 8.1(b)).

Example 13.7. Let p 6= 2 and let G = Z/p or G = Hp3. Then G
has no quotients isomorphic to Z/p2 or Mp3 . Thus the intersection in
Corollary 11.2 is G itself. But by Remark 8.1(b), G(3) = 1.

In this respect, the Main Theorem is a genuine structural result
about absolute Galois groups.

Remark 13.8. In view of Corollaries 11.3 and 11.2, the previous two
examples show that Q8 (when p = 2) and Z/p, Hp3 (when p 6= 2) do
not have Galois relation type. This can be seen directly as follows.

For G = Q8 and p = 2, one has a graded ring isomorphism

H∗(Q8) ∼= F2[x, y, z]/(x
2 + xy + y2, x2y + xy2),

where x, y, z have degrees 1, 1, 4, respectively (see [Ade97, p. 811, Ex-
ample], [AM04, Ch. IV, Lemma 2.10]). In this ring, no product of
nonzero elements of degree 1 vanishes, yet x2 + xy + y2 = 0. Hence
condition (i) of Definition 3.1 is not satisfied for G = Q8.

For G = Z/p and p 6= 2 one has H∗(G) ∼= Fp[x, y]/(x
2), where x, y

have degrees 1, 2, respectively, and (with the obvious abuse of notation)
βG(x) = y [Eve91, §3.2]. Here ∪ : H1(G)×H1(G) → H2(G) is the zero
map, but βG(x) 6= 0. Hence (ii) of Definition 3.1 is not satisfied.

For G = Hp3 and p 6= 2, the structure of H∗(G) is considerably more
complicated, and was computed by Leary [Lea92, Th. 6 and Th. 7].
Here as well, ∪ : H1(G) ×H1(G) → H2(G) is the zero map, but βG is
nontrivial. Therefore condition (ii) of Definition 3.1 is not satisfied.
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[Cha82] G. R. Chapman, The Cohomology Ring of a Finite Abelian Group, Proc.
London Math. Soc. 45 (1982), 564–576.

[Efr06] I. Efrat, Valuations, Orderings, and Milnor K-theory, Mathematical
Surveys and Monographs, vol. 124, American Mathematical Society,
Providence, RI, 2006.

[Eve91] L. Evens, The Cohomology of Groups, Oxford Mathematical Mono-
graphs, The Clarendon Press Oxford University Press, New York, 1991.
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