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Abstract

Let F be an arbitrary field. Let p be a positive prime number and D a cen-
tral division F -algebra of degree pn, with n ≥ 1. We write SB(pm,D) for the
generalized Severi-Brauer variety of right ideals in D of reduced dimension pm for
m = 0, 1, . . . , n − 1. We note by M(SB(pm,D)) the Chow motive with coefficients
in Fp of the variety SB(pm,D). It was proven by Nikita Karpenko that this motive
is indecomposable for any prime p and m = 0 and for p = 2,m = 1 (cf. [7]). We
prove decomposability of M(SB(pm,D)) in all the other cases (p = 2, 1 < m < n

and p > 2, 0 < m < n).

Résumé

Soient F un corps arbitraire, p un nombre premier positif et D une F -algèbre
de division de degré pn. On écrit SB(pm,D) pour la variété de Severi-Brauer
généralisée des idéaux à droite de dimension réduite pm, m = 0, 1, . . . , n−1. On note
par M(SB(pm,D)) le motif de Chow à coefficients dans Fp de la variété SB(pm,D).
Il a été demontré par Nikita Karpenko que ce motif est indecomposable pour le nom-
bre premier p arbitraire et m = 0 et pour p = 2,m = 1 (cf. [7]). Nous prouvons la
décomposabilité de M(SB(pm,D)) dans tous les autres cas (p = 2, 1 < m < n and
p > 2, 0 < m < n).

1 Chow motives with finite coefficients

Our basic reference for Chow groups and Chow motives (including notations) is [4]. We
fix an associative unital commutative ring Λ (most frequently Λ will be the finite field Fp

of p elements, where p is prime) and for a variety (i.e., a separated scheme of finite type
over a field) X we write Ch(X) for its Chow group with coefficients in Λ (while we write
CH(X) for its integral Chow group). Our category of motives is the category CM(F, Λ)
of graded Chow motives with coefficients in Λ, [4, definition of § 64]. By a sum of motives
we always mean the direct sum. We also write Λ for the motive M(SpecF ) ∈ CM(F, Λ).
A Tate motive is the motive Λ(i) with i an integer.
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Let X be a smooth complete variety over F and let M be a motive. We call M split if
it is a finite sum of Tate motives. We call X split, if its integral motive M(X) ∈ CM(F, Z)
(and therefore the motive of X with an arbitrary coefficient ring Λ) is split. We call M
or X geometrically split, if it splits over a field extension of F .

Let M be a geometrically split motive. Over an extension of F the motive M becomes
isomorphic to a finite sum of Tate motives. We write rkM and rki M for respectively
the number of all summands and the number of summands Λ(i) in this decomposition,
where i is an integer. Note that these two numbers do not depend on the choice of the
splitting field extension: they are the ranks of the free Λ-modules colimL/F Ch∗(ML) and
colimL/F Chi(ML) respectively, where the colimit is taken over all field extensions L/F .

We say that X satisfies the nilpotence principle, if for any field extension E/F and
any coefficient ring Λ, the kernel of the change of field homomorphism End(M(X)) →
End(M(X)E) consists of nilpotents. Any projective homogeneous (under an action of a
semisimple affine algebraic group) variety is geometrically split and satisfies the nilpotence
principle, [4, Theorem 92.4 with Remark 92.3].

A complete decomposition of an object in an additive category is a finite direct sum
decomposition with indecomposable summands. We say that the Krull-Schmidt principle
holds for a given object of a given additive category, if every direct sum decomposition
of the object can be refined to a complete one (in particular, a complete decomposition
exists) and there is only one (up to a permutation of the summands) complete decompo-
sition of the object. We have the following theorem:

Theorem 1.1. ([2, Theorem 3.6 of Chapter I]). Assume that the coefficient ring Λ is

finite. The Krull-Schmidt principle holds for any shift of any summand of the motive of

any geometrically split F -variety satisfying the nilpotence principle.

Lemma 1.2. Assume that the coefficient ring Λ is finite. Let X be a variety satisfying

the nilpotence principle. Let f ∈ End(M(X)) and 1E = fE ∈ End(M(X)E) for some

field extension E/F . Then fn = 1 for some positive integer n.

Proof. Since X satisfies the nilpotence principle, we have f = 1+ ε, where ε is nilpotent.
Let n be a positive integer such that εn = 0 = nε. Then fnn

= (1 + ε)nn

= 1 because the
binomial coefficients

(

nn

i

)

for i < n are divisible by n.

2 Motivic decomposability of generalized Severi-

Brauer varieties

Let p be a positive prime integer. The coefficient ring Λ is Fp in this section. Let F
be a field. Let D be a central division F -algebra of degree pn. We write SB(pm, D) for
the generalized Severi-Brauer variety of right ideals in D of reduced dimension pm for
m = 0, 1, . . . , n − 1. For the main Theorem 2.6 we will need the following definition.

Definition 2.1. Let Gr(A
n) be the Grassmann variety of r-planes in A

n. Let c1 =
c1(Tav) ∈ Ch1(Gr(A

n)), where Tav is a tautological r-dimensional vector bundle on
Gr(A

n). We define tp(r, n) as a maximal integer k, such that ck
1 6= 0.
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Remark 2.2. By [5, Example 14.6.6], the integer tp(r, n) does not depend on the base
field and we have an inequality max{r, n − r} ≤ tp(r, n) ≤ r(n − r) = dim Gr(A

n) .

Lemma 2.3. Let E/F be a splitting field extension for X = SB(1, D). Then the subgroup

of F -rational cycles in ChdimX(XE × XE) is generated by a diagonal class.

Proof. We write C̄h(X) for the image of the homomorphism Ch(X) → Ch(XE). By

[8, Proposition 2.1.1], we have C̄h
i
(X) = 0 for i > 0. Since the (say, first) projec-

tion X2 → X is a projective bundle, we have a (natural with respect to the base field
change) isomorphism Chdim X(X2) ≃ Ch(X). Passing to C̄h, we get an isomorphism

C̄hdimX(X2) ≃ C̄h(X) = C̄h
0
(X) showing that dimFp

C̄hdim X(X2) = 1. Since the diago-
nal class in C̄hdimX(X2) is nonzero, it generates all the group.

Corollary 2.4. (cf. [8, Theorem 2.2.1]). The motive with coefficients in Fp of the Severi-

Brauer variety X = SB(1, D) is indecomposable.

Proof. To prove that our motive is indecomposable it is enough to show that End(M(X))=
ChdimX(X × X) does not contain nontrivial projectors. Let π ∈ ChdimX(X × X) be a
projector. By Theorem 2.3, πE is zero or equal to 1E . Since X satisfies the nilpotence
principle, π is nilpotent in the first case, but also idempotent, therefore π is zero. Lemma
1.2 gives us π = 1 in the second case.

Nikita Karpenko has recently proved the motivic indecomposability of generalized
Severi-Brauer varieties also in the case p = 2, m = 1.

Theorem 2.5. (cf. [7, Theorem 4.2]). Let D be a central division F -algebra of de-

gree 2n with n ≥ 1. Then the motive with coefficients in F2 of the variety SB(2, D) is

indecomposable.

Taking into account the Corollary 2.4, Theorem 2.5 and the fact that any generalized
Severi-Brauer variety SB(pm, D) is p-incompressible [7, Theorem 4.3] (this condition is
weaker than motivic indecomposability), one can expect that the Chow motive with
coefficients in Fp of any generalized Severi-Brauer variety SB(pm, D) is indecomposable.
But the following theorem gives us the opposite answer.

Theorem 2.6. Let D be a central division F -algebra of degree pn with n ≥ 1. Then

the motive with coefficients in Fp of the variety SB(pm, D) is decomposable for p = 2,
1 < m < n and for p > 2, 0 < m < n. In these cases M(SB(1, D))(k) is a summand of

M(SB(pm, D)) for 2 ≤ k ≤ tp(p
m, pn).

Proof. We use the notations: X = SB(1, D), Y = SB(pm, D), d = dim(SB(1, D)) =
pn − 1, r = pn − pm. Let E = F (X), then E/F is a splitting field extension for the
variety X (and also for Y ). We will show that M(X)(k) is a summand of M(Y ). By
Lemma 1.2 it suffices to construct two F -rational morphisms

α : M(XE)(k) → M(YE) and β : M(YE) → M(XE)(k)

satisfying β◦α = 1 ∈ End(M(XE)(k)) = Chd(XE×XE). By Theorem 2.3 we can replace
condition β ◦ α = 1 by β ◦ α 6= 0.
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Let Tav be the tautological vector bundle on X.The product X × Y considered over
X (via the first projection) is isomorphic (as a scheme over X) to the Grassmann bundle
Gr(Tav) of r-dimensional subspaces in Tav (cf. [6, Proposition 4.3]). Let T be the
tautological r-dimensional vector bundle on Gr(Tav). Over the field E the algebra D
becomes isomorphic to EndE(V ) for some E-vector space V of dimension d+1 = pn. We
have XE ≃ P

d(V ) and YE ≃ Gpm(V ). Let T1 and Tpm be the tautological bundles of rank
1 and pm on XE and YE respectively. Then we have an isomorphism (cf. [6, Proposition
4.3]): TE ≃ T1 ⊠ (−Tpm)∨ (here we lift the bundles T1 and Tpm on XE × YE). Let
h = c1(T1) ∈ Ch1(XE) (then −h is a hyperplane class in Ch1(XE)) and ci = ci((−Tpm)∨) ∈
Chi(YE). Then by [5, Remark 3.2.3(b)]

ct(TE) = ct(T1 ⊠ (−Tpm)∨) =

r
∑

i=0

(1 + (h × 1)t)r−i(1 × ci)t
i .

It follows from the conditions of the theorem that the binomial coefficients
(

pn
−pm

2

)

,
(

pn
−pm

pm−1

)

are divisible by p and
(

pn
−pm

−1
pm−2

)

≡ (−1)pm
−2 mod p. Therefore

c1(TE) = (pn − pm)h × 1 + 1 × c1 = 1 × c1 ,

c2(TE) =

(

pn − pm

2

)

h2 × 1 + (pn − pm − 1)h × c1 + 1 × c2 = −h × c1 + 1 × c2 ,

cpm−1(TE) =

(

pn − pm

pm − 1

)

hpm
−1 × 1 +

(

pn − pm − 1

pm − 2

)

hpm
−2 × c1 + . . . =

= (−1)pm
−2hpm

−2 × c1 + . . . ,

where “. . . ” stands for a linear combination of only those terms whose second factor has
codimension > 1. For the top Chern class we have:

cr(TE) =

r
∑

i=0

hr−i × ci .

Let β1 = cr(TE)cpm−1(TE)c2(TE)c1(TE)k−2 = (−h)d × ck
1 + . . . = x× ck

1 + . . . , where “. . . ”
stands for a linear combination of only those terms whose second factor has codimension
> k and where x is the class of a rational point in Ch(XE). We take β = βt

1, where
βt

1 is the transpose of β1. Since the bundle T is defined over F , the morphism β ∈
ChdimY −k(YE × XE) = Hom(M(YE), M(XE)(k)) is F -rational.

By Definition 2.1 the cycle ck
1 is non-zero. Let a ∈ Ch(YE) be the element dual to

ck
1 with respect to the bilinear form Ch(YE) × Ch(YE) → Fp, (x1, x2) 7→ deg(x1 · x2).

The pull-back homomorphism f : Ch(X × Y ) → Ch(YF (X)) = Ch(YE) with respect to
the morphism YF (X) = (Spec F (X)) × Y → X × Y given by the generic point of X is
surjective by [4, Corollary 57.11 ]. Let α′ ∈ Ch(X×Y ) be a cycle whose image in Ch(YE)
under the surjection f is a. We define α as α′

E and we have α = 1× a + . . . , where “. . . ”
stands for a linear combination of only those elements whose first factor is of positive
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codimension and where 1 = [XE ]. Then β ◦ α = 1 × x + . . . , where “. . . ” stands for a
linear combination of only those terms whose first factor is of positive codimension. It
follows that β ◦ α 6= 0.

Remark 2.7. The Theorem 2.6 also gives us some information about the integral motive
of the variety SB(pm, D). Indeed, according to [10, Corollary 2.7] the decomposition of
M(SB(pm, D)) with coefficients in Fp lifts (and in a unique way) to the coefficients Z/pN

Z

for any N ≥ 2. Then by [10, Theorem 2.16] it lifts to Z (uniquely for p = 2 and p = 3
and non-uniquely for p > 3). See also Remark 2.10.

Remark 2.8. Let l be an integer such that 0 < l < pn and gcd(l, p) = 1. The com-
plete decomposition of the motive M(SB(l, D)) with coefficients in Fp is described in [1,
Proposition 2.4].

Example 2.9. As an application of Theorem 2.6 we describe the complete motivic de-
composition of SB(4, D) for a division algebra D of degree 8. Let E/F be a splitting field
extension for the algebra D. We note M = M(X). By Theorem 2.6 and Remark 2.2, the
motives M(2), M(3), M(4) and by duality M(7), M(6), M(5) are direct summands of
M(SB(4, D)). By [7, Theorem 4.1], we have an indecomposable direct summand M2,D

of M(SB(4, D)) with a property: F2(0) and F2(16) are presented in the decomposition of
(M2,D)E . By [7, Theorem 3.8], and Theorems 2.4, 2.5 any other indecomposable summand
of M(SB(4, D)) is some shift of either M or M(SB(2, D)). But the second case is impos-
sible because 70 =

(

8
4

)

= rk M(SB(4, D)) < 6 rkM + rk M(SB(2, D)) = 6 · 8 +
(

8
2

)

= 76.
We temporary note X = SB(1, D), Y = SB(4, D). Let us assume that the mo-

tive M(1) is a summand of M(SB(4, D)). Then there exist two correspondences α ∈
ChdimX+1(X × Y ) and β ∈ ChdimY −1(Y × X), such that β ◦ α = 1, where 1 means the
diagonal class in ChdimX(X × X). Let f be a projection Y × X → Y . Then the cy-
cle f∗(βE) ∈ Ch1(XE) is F -rational and non-zero. The contradiction follows from [3,
Proposition 5.1] and [9, Corollary 2.7]. So M(1) and by duality M(8) could not be the
summands of M(Y ).

Assume now that there are more than 6 motives M (with some shifts) in the decom-
position of M(SB(4, D)). Then by duality there are at least 8 such summands. But
the decomposition of any of these 8 summands M into the sum of Tate motives over
the splitting field E contains F2(7). We have a contradiction with rk7 M(SB(4, D)) = 7.
Therefore

M(SB(4, D)) = M2,D ⊕ M(2) ⊕ M(3) ⊕ M(4) ⊕ M(5) ⊕ M(6) ⊕ M(7) . (1)

We can write the decomposition of M2,D over the function field L = F (SB(4, D)):

(M2,D)L = F2 ⊕ M(SB(1, C))(1) ⊕ M(SB(2, C))(4) ⊕ M(SB(2, C))(8)

⊕ M(SB(1, C))(12) ⊕ F2(16) ,

where C is a central division L-algebra (of degree 4) Brauer-equivalent to DL.

Remark 2.10. We have the same decomposition as (1) for the integral motive of the
variety SB(4, D). To show this one can apply [10, Corollary 2.7] and then [10, Theorem
2.16].
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