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ABSTRACT. The representation dimension rdim(G) of a finite group G
is the smallest positive integer m for which there exists an embedding
of G in GL,(C). In this paper we find the largest value of rdim(G),
as G ranges over all groups of order p", for a fixed prime p and a fixed
exponent n > 1.

1. INTRODUCTION

The representation dimension of a finite group G, denoted by rdim(G), is
the minimal dimension of a faithful complex linear representation of G. In
this paper we determine the maximal representation dimension of a group
of order p”. We are motivated by a recent result of N. Karpenko and A.
Merkurjev [KM0O7, Theorem 4.1], which states that if G is a finite p-group
then the essential dimension of G is equal to rdim(G). For a detailed discus-
sion of the notion of essential dimension for finite groups (which will not be
used in this paper), see [BRI7] or [JLY(2, §8]. We also note that a related
invariant, the minimal dimension of a faithful complex projective represen-
tation of GG, has been extensively studied for finite simple groups Gj; for an
overview, see [1Z00, §3].

Let G be a p-group of order p™ and r be the rank of the centre C(G).
A representation of G is faithful if and only if its restriction to C(G) is
faithful. Using this fact it is easy to see that a faithful representation p of
G of minimal dimension decomposes as a direct sum

(1) p=p1® - Dpr

of exactly r irreducibles; cf. [MR(09, Theorem 1.2]. Since the dimension
of any irreducible representation of G is < /[G : C(G)] (see, e.g., [W0O3,
Corollary 3.11]) and |C(G)| > p", we conclude that

(2) rdim(G) < rpl=)/21,
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Let
— L(n=r)/2]
Fp(n) = max(rp )-

It is easy to check that f,(n) is given by the following table:

n P fp(n)
even arbitrary 2p(n=2)/2
odd odd p(n=1/2

odd, > 3 2 3p(n—3)/2

1 2 1

We are now ready to state the main result of this paper.

Theorem 1. Let p be a prime and n be a positive integer. For almost all
pairs (p,n), the mazimal value of rdim(G), as G ranges over all groups of
order p", equals fp(n). The exceptional cases are

(p,n) = (2,5), (2,7) and (p,4), where p is odd.

In these cases the maximal representation dimension is 5, 10, and p + 1,
respectively.

The proof will show that the maximal value of rdim(G), as G ranges over
all groups of order p™, is always attained for a group G of nilpotency class
< 2. Moreover, if (p,n) is non-exceptional, n > 3 and (p,n) # (2,3),(2,4),
the maximum is attained on a special class of p-groups of nilpotency class
2, which we call generalized Heisenberg groups.

The rest of this paper is structured as follows. In §& we introduce gener-
alized Heisenberg groups and study their irreducible representations. Theo-
rem [ is proved in §8

Acknowledgement. We would like to thank Hannah Cairns, Robert Gu-
ralnick, Chris Parker, Burt Totaro, and Robert Wilson for helpful discus-
sions.

2. GENERALIZED HEISENBERG GROUPS

2.1. Spaces of alternating forms. Let V' be a finite dimensional vector
space over an arbitrary field F. Let K C A%(V)* be a subspace. We will
say that K is symplectic if every nonzero element of K is a non-degenerate
alternating map. Clearly nontrivial symplectic subspaces of A?(V)* can
exist only if dim(V') is even.

Lemma 2. Suppose V is an F-vector space of dimension 2m. If F admits
a field extension of degree m then there exists an m-dimensional symplectic
subspace K C A2(V)*.

Proof. Choosing a basis of V, we can identify A?(V)* with the space of
skew-symmetric 2m x 2m-matrices. Let f: M,,(F) — A?(V)* be the linear
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map

—AT 0
If W is a linear subspace of M,,(F) = Endp(F"™) such that W\{0} C
GL,,(F) then K = f(W) is a symplectic subspace.

It thus remains to construct an m-dimensional linear subspace W of
M, (F') such that W\{0} C GL,,(F'). Let E be a degree m field extension
of F. Then E acts on itself by left multiplication. This gives an F-vector
space embedding of U: E — Endp(F) such that ¥U(e) is invertible for all
e # 0. O

AH[O A].

2.2. Groups associated to spaces of alternating forms. Let wg :
A?(V) — K* denote the dual of the natural injection K — A?(V)*. Note
that there exists a bilinear map 3 :V ® V — K* such that

(3) wi (v, w) = B(v,w) — B(w,v) Vo,weV.
Indeed, choose a basis {e1,...,e,} for V, and define 3 by

N wK(eZ-,ej) if ¢ > 7, and
Blei, e;) = { 0 otherwise.

Definition 3. To the data (V,K,3) as above, we attach a group H =
H(V,K,(). Asaset H=V x K*; the group operation is given by

(4) (v,t) - (V' ) = (v + 0t + ' + B(v,0)).
If K is a symplectic subspace, we will refer to H as a generalized Heisenberg
group.

It is easy to see that (@) is indeed a group law with the inverse given by
(v,t)"! = (=v, —t + B(v,v)) and the commutator given by

(5) [(v1,t1), (v2,t2)] = (0, Wk (v1,v2)) -

Remark 4. Let H = H(V, K, (3), as in Definition Bl Since the inclusion
K < A%(V)* is, by definition, injective, its dual wx: A%(V) — K* is sur-
jective. Formula (B) now tells us that [H, H] = K*.

Moreover, () also shows that K* C C(H), and that equality holds unless
the intersection Ngex ker(k) is nontrivial. In particular, C(H) = K* if K
contains a symplectic form.

Remark 5. The reason for the term generalized Heisenberg group is that in
the special case, where F' = [F),, p is an odd prime, K is a one-dimensional
symplectic subspace and 8 = %wK, the group H(V, K, 3) is often called the
Heisenberg group.

Note that § is not uniquely determined by K it is only unique up to
adding a symmetric bilinear form V x V' — K*. If 3 and ' both satisfy (B
then H(V, K, ) may not be isomorphic to H(V, K, (). For example, let
V be a 2-dimensional vector space over F' = [F5, K be the one-dimensional
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(symplectic) subspace generated by [0

1 (1)], and 3, 3’ be bilinear forms on
V defined by

11 01
o il o]

respectively. Then 5 and 3’ both satisfy @], but H(V, K, (3) is isomorphic to
the quaternion group while H(V, K, 3') is isomorphic to the dihedral group
of order 8.

Remark 6. Two groups S and T are isoclinic if there are isomorphisms
f:8/C(S) - T/C(T) and ¢ : [S,S] — [T,T] such that if a,b € S and
a' b € T with f(aC(S)) = d’C(T) and f(bC(S)) = b'C(T), then we have
g([a,b]) = [a',V]; see [PHA()]. Let K be a subspace of A%2(V)*, and suppose
(3 and (' are bilinear forms on V satisfying [Bl). Then H = H(V, K, ) and
H' = H(V,K, ) are isoclinic (in this case f and g are identity maps).

2.3. Representations. Let p be an arbitrary prime, F' = ), be the finite
field of p elements, V be a vector space over F and K be a subspace of
A2(V)*. Let w = wg : A%(V) — K* denote the dual of K — A%(V)*.

Let ¢ be a morphism K* — C*. Identify (non-canonically) F, with the
group of p" roots of unity in C*, so that we can view 1) as being in (K*)*.
Using the canonical isomorphism between (K*)* and K we associate to ¢
an element k € K such that kK = ¢ ow. In particular, k is non-degenerate if
and only if ¥ o w is non-degenerate; this condition does not depend on the
way we identify F,, with the group of p* roots of unity in C*. Conversely,
to each k € K we can associate a character ¢ of K* such that if we view
P € (K*)*, we have k = 1 ow.

Lemma 7. Let G = V(V,K,3) = V x K* be as in Definition [3. Let
p be an irreducible representation of G such that K* acts by 1. Assume
Yow: V@V — C* is non-degenerate.

(a) If g € G, g ¢ K*, then Tr(p(g)) = 0.
(b) dim(p) = /7.

(c) p is uniquely determined (up to isomorphism) by 1.

Proof. (a) Let g € G\K™*. Since 9 ow is non-degenerate there exists h € G
such that ¥ o w(gK*,hK*) # 1. Observe that p([g,h]) = ¥([g,h])Id, and
that p(h~'gh) = p(9)p([g,h]). Taking the trace of both sides, we have

Tr(p(g)) = 1([g, h]) Tr(p(g)). Since ¢([g,h]) # 1 we must have Tr(p(g)) = 0.
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(b) Since p is irreducible, and the trace of p vanishes outside of K*, we

have:

1= 3 Tr(p(9) e (o(9))

G| 4=

_ ’—é’ > Tr(p(9)Tr(p(g))

geK*
1 . —_—
— @Ohm(p)2 > Tr(y(9)Tr(¥(g))
geK*

2| K]

|G
Thus dim p = /|G|/|K*| = /|V].

(c) We have completely described the character of p, and it follows that
p is uniquely determined by . Indeed,

Tr(p(g)) = {S/W-w(g), if g € K* and

= dim(p)

otherwise.

O

Henceforth, let K be a symplectic subspace of A2(V)*, H = H(V, K, ) =
V x K* be a generalized Heisenberg group, for some § as in ([{). The
proposition below is a direct consequence of Lemma [

Proposition 8. The irreducible representations of H are exhausted by the
following list:
(i) |V| one-dimensional representations, one for every character of V.
(ii) | K| —1 representations of dimension \/|V], one for every nontrivial
character v : K* — C*.

The next corollary is also immediate upon observing that C(H) = K*;
see Remark Hl

Corollary 9. The representation dimension of H equals dim(K)+/|V].

If G is a finite Heisenberg group in the usual sense (as in Remark [)
then for each nontrivial character x of C(G) there is a unique irreducible
representation ¢ of G whose central character is x; cf. [GHO7, §1.1]. This
is a finite group variant of the celebrated Stone-von Neumann Theorem.
For a detailed discussion of the history and the various forms of the Stone-
von Neumann theorem we refer the reader to [R04]. Proposition B tells us
that, in fact, every generalized Heisenberg group over [F,, has the Stone-von
Neumann property. This observation, stated as Corollary [ below, will not
be used in the sequel.

Corollary 10. Two irreducible representations of H with the same nontriv-
tal central character are isomorphic.
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3. PrROOF OoF THEOREM [

The case where n < 2 is trivial; clearly rdim(G) = rank (G) if G is abelian.
We will thus assume that n > 3.

In the non-exceptional cases of the theorem, in view of the inequality ),
it suffices to construct a group G of order p" with rdim(G) = fp(n). Here
fp(n) is the function defined just before the statement of Theorem [l

If (p,n) = (2,3) or (2,4), we take G to be the elementary abelian group
F3 and F3, yielding the desired representation dimension of 3 and 4, respec-
tively. For all other non-exceptional pairs (p,n), we take G to be a gen-
eralized Heisenberg group as described in the table below. Here H(V, K)
stands for H(V, K, ), for some 3 as in ([@). In each instance, the existence
of a symplectic subspace K of suitable dimension is guaranteed by Lemma
and the value of rdim(H (V, K)) is given by Corollary

n p dim(V) | dim(K) | rdim(H(V, K))
even, > 6 | arbitrary | n — 2 2 op(n=2)/2
odd, > 3 odd n—1 1 p(n—1/2
odd, > 9 2 n—3 3 3p(”_3) 2

This settles the generic case of Theorem [[l We now turn our attention to
the exceptional cases. We will need the following upper bound on rdim(G),
strengthening (&2).

Let C(G), be the subgroup of central elements g € C'(G) such that g? = 1.
If p: G — GL(V) is an irreducible representation then C(G) (and hence, its
subgroup C(G),) acts on V' by scalar multiplication, g - v — x(g)v, where
X is a multiplicative character of C'(G). Following [MR09, Lemma 2.2], we
will call x: C(G), — C* the associated character (to p).

Lemma 11. Let G be a p-group and r = rank (C(G)) = rank (C(G),).

(a) Suppose there exists an irreducible representation py such that Ker(py)
does not contain C(G),. Then there are irreducible representations pa, . .., py
of G such that p1 & --- ® p, is faithful. In particular,

rdim(G) < dim(p1) + (r — 1)V/[G : C(G)] .
(b) If C(G), is not contained in |G, G|, then

rdim(G) <1+ (r —1)/[G : C(GQ)].

The lemma can be deduced from [KMO7, Remark 4.7] or [MR(9, Theorem
1.2]; for the sake of completeness we give a self-contained proof.

Proof. (a) Let x;1 be the character of C(G), associated to p;. By our as-
sumption x; is nontrivial. Complete y; to a basis x1,Xx2,...,Xxr of the
r-dimensional IF,-vector space C (G); and choose an irreducible representa-
tion p; with associated character x;. (The representation p; can be taken to
be any irreducible component of the induced representation Indg(G)p (x)-)
The restriction of p: = p1 @ --- @ p, to C(G), is faithful. Hence, p
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is a faithful representation of G. As we mentioned in the introduction
dim(p;) < /|G : C(G)] for every i > 2, and part (a) follows.

(b) By our assumption there exists one-dimensional representation p; of
G whose restriction to C(G),, is nontrivial. Now apply part (a). O

We are now ready to prove Theorem [l in the three exceptional cases.

3.1. Exceptional case 1: p is odd and n = 4.

Lemma 12. Let p be an odd prime and G be a group of order p*.
(a) Then rdim(G) < p+ 1.
(b) Suppose C(G) ~F2 and G/C(G) ~F2. Then rdim(G) = p+1.

Proof. (a) We argue by contradiction. Assume there exists a group of order
p* such that rdim(G) > p + 2. If |C(G)| > p* or G/C(G) is cyclic then G
is abelian and rdim(G) = rank (G) < 4 < p+ 1, a contradiction. If C'(G) is
cyclic then rdim(G) < p by @), again a contradiction.

Thus C(G) ~ G/C(G) ~ F2. This reduces part (a) to part (b).

(b) Here C(G), = C(G) has rank 2. Hence, a faithful representation p
of G of minimal dimension is the sum of two irreducibles p; @ p2, as in (),
each of dimension 1 or p.

Clearly dim(p;) = dim(p2) = 1 is not possible, since in this case G would
be abelian, contradicting [G : C(G)] = p?. It thus remains to show that
rdim(G) < p+ 1. Since G/C(G) is abelian, [G,G] C C(G). Hence, by
Lemma [[T(b) we only need to establish that [G,G] C C(G).

To show that [G,G] € C(G), note that the commutator map

UV:G/CG)xG/IC(G) — [G,G]

(9C(G),g'C(G)) ~ lg.9]
can be thought of as an alternating bilinear map from IE‘I% to itself. Viewed in
this way, ¥ can be written as ¥ (v,v") = (w1 (v,v"), wa(v,v")) for alternating
maps wi and ws from IFI% to IF,. Since A2(IF‘127)* is a one-dimensional vector

space over I, w; and wy are scalar multiples of each other. Hence, the
image of V¥ is a cyclic group of order p, and [G,G] € C(G), as claimed. O

To finish the proof in this case, note that G = F, x Go, where G is
a non-abelian group of order p?, satisfies the conditions of Lemma [IA(b).
Thus the maximal representation dimension of a group of order p* is p + 1,
for any odd prime p.

3.2. Exceptional case 2: p=2 and n = 5.
Lemma 13. Let G be a group of order 32. Then rdim(G) < 5.

Proof. We argue by contradiction. Assume there exists a group of order 32
and representation dimension > 6. Let r = rank (C(G)). Then 1 <r <5
and () shows that rdim(G) <5 for every r # 3.
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Thus we may assume r = 3. If |C(G)| > 16 or G/C(G) is cyclic then G
is abelian, and rdim(G) = rank (G) < 5. We conclude that C(G) ~ F3 and
G/C(G) ~ F3. Applying the same argument as in the proof of Lemmal[[Z(b),
we see that [G,G] € C(G), and hence rdim(G) < 5 by Lemma [[I(b), a
contradiction. O

To finish the proof in this case, note that the elementary abelian group of
order 2° has representation dimension 5. Thus the maximal representation
dimension of a group of order 2° is 5.

3.3. Exceptional case 3: p=2and n=7".
Lemma 14. If |G| = 128 then rdim(G) < 10.

Proof. Again, we argue by contradiction. Assume there exists a group G of
order 128 and representation dimension > 11. Let r be the rank of C(G).
By @), r = 3; otherwise we would have rdim(G) < 10.

As we explained in the introduction, this implies that a faithful represen-
tation p of G of minimal dimension is the direct sum of three irreducibles p1,
p2 and ps3, each of dimension < +/27/|C(G)|. If |C(G)| > 8, then dim(p;) < 2
and rdim(G) = dim(p;) + dim(pz) + dim(ps) < 6, a contradiction.

Therefore, C(G) = (F2)? and dim(p;) = dim(pe) = dim(p3) = 4. By
Lemma [[T(a) this implies that the kernel of every irreducible representation
of G of dimension 1 or 2 must contain C'(G). In other words, any such
representation factors through the group G/C(G) of order 16. Consequently,
if m; is the number of irreducible representations of G of dimension 4 then
mq+4me = 16. We can now appeal to [INO9(), Tables I and II}, to show that
no group of order 27 has these properties. From Table I we can determine
which groups G (up to isoclinism, cf. Remark ) have |C(G)| = 8 and using
Table IT we can determine mq and msy for these groups. There is no group
G with |C(G)| = 8 and m; + 4mg = 16. O

We will now construct an example of a group G of order 27 with rdim(G) =
10. Let V = 3 and let K be the 3-dimensional subspace of A?(V')* generated
by the following three elements:

0 001 0010 0 011
0 010 0 011 0 001
01 0 0" 11 0 0)° 1 001
1 0 00 0100 1 110

Let G := H(V,K,) =V x K* for some 3 as in (). Note that K contains
only one non-zero degenerate element (the sum of the three generators). In
other words, there is only one character x of K* such that yow : VxV — C*
is degenerate. By Remark [l

[G,G] = C(G) = K*.

Let p be a faithful representation of G of minimal dimension. As we ex-
plained in the Introduction, p is the sum of rank (C(G)) = 3 irreducibles.
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Denote them by p1, p2, and ps3, and their associated characters by x1, X2
and xs, respectively. Since p is faithful, x1, x2 and x3 form an Fy-basis of
C(G); ~ F3. By Lemma [, for each nontrivial character xy of K* except
one, there is a unique irreducible representation 1 of G such that y is the
associated character to 1, and dim = 4. Thus at least 2 of the irreducible
components of p, say, p1 and ps must have dimension 4. By Lemma [[4],
dim(p) < 10, i.e., dim(p3) < 2. But every one-dimensional representation
of G has trivial associated character. We conclude that dim(p3) = 2 and
consequently rdim(G) = dim(p) =4+ 4+ 2 = 10.

Thus the maximal representation dimension of a group of order 27 is 10.
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