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Abstract. Trialitarian automorphisms are related to automorphisms of order
3 of the Dynkin diagram of type D4. Octic étale algebras with trivial discrimi-
nant, containing quartic subalgebras, are classified by Galois cohomology with
value in the Weyl group of type D4. This paper discusses triality for such étale
extensions.


1. Introduction


All Dynkin diagrams but one admit at most automorphisms of order two, which
are related to duality in algebra and geometry. The Dynkin diagram of D4


α3


α4


c


α1


c


α2


c


c


��


@@


is special, in the sense that it admits automorphisms of order 3. Algebraic and
geometric objects related to D4 are of particular interest as they also usually admit
exceptional automorphisms of order 3, which are called trialitarian. For example
the special projective orthogonal group PGO+


8 or the simply connected group Spin8


admit outer automorphisms of order 3. As already observed by E. Cartan, [5], the
Weyl group W (D4) = S3


2 ⋊ S4 of Spin8 or of PGO+
8 similarly admits trialitarian


automorphisms. Let F be a field and let Fs be a separable closure of F . The Galois
cohomology set H1


(


Γ,W (D4)
)


, where Γ is the absolute Galois group Gal(Fs/F ),
classifies isomorphism classes of étale extensions S/S0 where S has dimension 8, S0


dimension 4 and S has trivial discriminant (see §3). There is an induced trialitarian
action on H1


(


Γ,W (D4)
)


, which associates to the isomorphism class of an extension
S/S0 as above, two extensions S′/S′


0 and S′′/S′′
0 , of the same kind, so that the triple


(S/S0, S
′/S′


0, S
′′/S′′


0 ) is cyclically permuted by triality. This paper is devoted to
the study of such triples of étale algebras. It grew out of a study, in the spirit
of [16], of Severi-Brauer varieties over the “field of one element”, [13], which is in
preparation (see also [17] and [18]).
In Part 2 we describe some basic constructions on finite Γ-sets and étale alge-
bras. Some results are well-known, others were taken from [13], like the Clifford
construction. In Section 3 we recall how Γ-sets and étale algebras are related to
Galois cohomology. Section 4 is devoted to triality in connection with Γ-sets and
in Section 5 we discuss trialitarian automorphisms of the Weyl group W (D4). In
Section 6 we consider triality at the level of étale algebras. We give in Table 1 a
list of isomorphism classes of étale algebras corresponding to the conjugacy classes
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of subgroups of W (D4), together with a description of the triality action. We also
consider étale algebras associated to subgroups of W (D4) which are fixed under
triality. We then view in Section 7 triality as a way to create resolvents and give
explicit formulae for polynomials defining étale algebras. Finally we give in the last
section results of Serre on Witt invariants of W (D4).
We are grateful to Parimala for her unshakable interest in triality, in particular for
many discussions at earlier stages of this work and we specially thank J-P. Serre
for communicating to us his results on Witt and cohomological invariants of the
group W (D4). We also thank Emmanuel Kowalski who introduced us to Magma
[2] with much patience, Jean Barge for his help with Galois cohomology and J. E.
Humphreys and B. Mühlherr for the reference to the paper [8]. The paper [10] on
octic fields was a very useful source of inspiration. Finally we are highly thankful
to the referee for many improvements.


2. Étale algebras and Γ-sets


Throughout most of this work, F is an arbitrary field. We denote by Fs a separable
closure of F and by Γ the absolute Galois group Γ = Gal(Fs/F ), which is a profinite
group.
A finite-dimensional commutative F -algebra S is called étale (over F ) if S⊗F Fs is


isomorphic to the Fs-algebra Fn
s = Fs × · · · × Fs (n factors) for some n ≥ 1. Étale


F -algebras are the direct products of finite separable field extensions of F . We
refer to [11, §18.A] for various equivalent characterizations. Étale algebras (with


F -algebra homomorphisms) form a category ÉtF in which finite direct products
and finite direct sums (= tensor products) are defined.
Finite sets with a continuous left action of Γ (for the discrete topology) are called
(finite) Γ-sets. They form a category SetΓ whose morphisms are the Γ-equivariant
maps. Finite direct products and direct sums (= disjoint unions) are defined in
this category. We denote by |X | the cardinality of any finite set X .
For any étale F -algebra S of dimension n, the set of F -algebra homomorphisms


X(S) = HomF -alg(S, Fs)


is a Γ-set of n elements since Γ acts on Fs. Conversely, if X is a Γ-set of n
elements, the F -algebra M(X) of Γ-equivariant maps X → Fs is an étale F -algebra
of dimension n,


M(X) = {f : X → Fs | γ
(


f(x)
)


= f(γx) for γ ∈ Γ, x ∈ X}.
As first observed by Grothendieck, there are canonical isomorphisms


M
(


X(S)
) ∼= S, X


(


M(X)
) ∼= X,


so that the functors M and X define an anti-equivalence of categories


(2.1) SetΓ ≡ ÉtF


(see [6, Proposition (4.3), p. 25] or [11, (18.4)]). Under this anti-equivalence, the
cardinality of Γ-sets corresponds to the dimension of étale F -algebras, the disjoint
union ⊔ in SetΓ corresponds to the product × in ÉtF , and the product × in SetΓ


to the tensor product ⊗ in ÉtF . For any integer n ≥ 1, we let Ét
n


F denote the
groupoid1 whose objects are n-dimensional étale F -algebras and whose morphisms


1A groupoid is a category in which all morphisms are isomorphisms.
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are F -algebra isomorphisms, and Set
n
Γ the groupoid of Γ-sets with n elements. The


anti-equivalence (2.1) restricts to an anti-equivalence Set
n
Γ ≡ Ét


n


F . The split étale


algebra Fn corresponds to the Γ-set n of n elements with trivial Γ-action. Étale
algebras of dimension 2 are also called quadratic étale algebras.


A morphism2 of Γ-sets Y
π←− Z is called a Γ-covering if the number of elements


in each fiber yπ−1 ⊂ Z does not depend on y ∈ Y . This number is called the


degree of the covering. For n, d ≥ 1 we let Cov
d/n
Γ denote the groupoid whose


objects are coverings of degree d of a Γ-set of n elements and whose morphisms are
isomorphisms of Γ-coverings.


A homomorphism S
ε−→ T of étale F -algebras is said to be an extension of degree d


of étale algebras if ε endows T with a structure of a free S-module of rank d. This
corresponds under the anti-equivalence (2.1) to a covering of degree d:


X(S)
X(ε)←−−− X(T )


(see [13]). Let Étex
d/n


F denote the groupoid of étale extensions S
ε−→ T of degree d


of F -algebras with dimF S = n (hence dimF T = dn). From (2.1) we obtain an
anti-equivalence of groupoids


Étex
d/n


F ≡ Cov
d/n
Γ .


The Γ-covering with trivial Γ-action


(2.2) d/n : n
p1←− n× d


where p1 is the first projection corresponds to the extension Fn → (F d)n.
Of particular importance in the sequel are coverings of degree 2, which are also


called double coverings. Each such covering Y
π←− Z defines a canonical automor-


phism Z
σ←− Z of order 2, which interchanges the elements in each fiber of π. Clearly,


this automorphism has no fixed points. Conversely, if Z is any Γ-set and Z
σ←− Z


is an automorphism of order 2 without fixed points, the set of orbits


Z/σ =
{


{z, zσ} | z ∈ Z}


is a Γ-set and the canonical map (Z/σ)← Z is a double covering. An involution of
a Γ-set with an even number of elements is any automorphism of order 2 without
fixed points.
Let σ : S → S be an automorphism of order 2 of an étale F -algebra S, and let
Sσ ⊂ S denote the F -sub-algebra of fixed elements, which is necessarily étale. The
following conditions are equivalent (see [13]):


(a) the inclusion Sσ → S is a quadratic étale extension of F -algebras;
(b) the automorphism X(σ) is an involution on X(S).


We say under these equivalent conditions that the automorphism σ is an involution
of the étale F -algebra S.


2We let morphisms of Γ-sets act on the right of the arguments (with the exponential notation)
and use the usual function notation for morphisms in the anti-equivalent category of étale algebras.
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Basic constructions on Γ-sets. We recall from [11, §18] and [12, §2.1] the con-
struction of the discriminant ∆(X) of a Γ-set X with |X | = n ≥ 2. Consider the
set of n-tuples of elements in X :


Σn(X) = {(x1, . . . , xn) | X = {x1, . . . , xn}}.
This Γ-set carries an obvious transitive (right) action of the symmetric group Sn.
The discriminant ∆(X) is the set of orbits under the alternating group An:


∆(X) = Σn(X)/An.


It is a Γ-set of two elements, so ∆ is a functor


∆: Set
n
Γ → Set


2
Γ.


For any covering Z0
π←− Z of degree 2 with |Z0| = n, (hence |Z| = 2n), we consider


the set of (not necessarily Γ-equivariant) sections of π:


C(Z/Z0) =
{


{z1, . . . , zn} ⊂ Z | {zπ
1 , . . . , z


π
n} = Z0


}


.


It is a Γ-set with 2n elements, so C is a functor


C : Cov
2/n
Γ → Set


2n


Γ ,


called the Clifford functor (see [13]). The Γ-set C(Z/Z0) is equipped with a canon-
ical surjective morphism


(2.3) ∆(Z)
δ←− C(Z/Z0),


which is defined in [12, §2.2] as follows: let σ : Z → Z be the involution canonically


associated to the double covering Z0
π←− Z, so the fiber of zπ is {z, zσ} for each


z ∈ Z; then δ maps each section {z1, . . . , zn} to the A2n-orbit of the 2n-tuple
(z1, . . . , zn, z


σ
1 , . . . , z


σ
n),


{z1, . . . , zn}δ = (z1, . . . , zn, z
σ
1 , . . . , z


σ
n)A2n .


Note that the canonical involution σ induces an involution σ on C(Z/Z0), which
maps each section ω to its complement Z\ω. We may view C(Z/Z0) as a covering of
degree 2 of the set of orbits C(Z/Z0)/σ, and thus consider the Clifford construction
as a functor


(2.4) C : Cov
2/n
Γ → Cov


2/2n−1


Γ .


Proposition 2.5. For sections ω, ω′ ∈ C(Z/Z0), we have ωδ = (ω′)δ if and only if
|ω∩ω′| ≡ n mod 2. Moreover, denoting by ι the nontrivial automorphism of ∆(Z),
we have


σ ◦ δ =


{


δ if n is even,


δ ◦ ι if n is odd.


Proof. Let ω = {z1, . . . , zn} and ω′ = {z1, . . . , zr, z
σ
r+1, . . . , z


σ
n}, so r = |ω ∩ ω′|,


ωδ = (z1, . . . , zn, z
σ
1 , . . . , z


σ
n)A2n


and


(ω′)δ = (z1, . . . , zr, z
σ
r+1, . . . , z


σ
n , z


σ
1 , . . . , z


σ
r , zr+1, . . . , zn)A2n .


The permutation σ′ that interchanges zi and zσ
i for i = r + 1, . . . , n satisfies


(z1, . . . , zn, z
σ
1 , . . . , z


σ
n)σ′


= (z1, . . . , zr, z
σ
r+1, . . . , z


σ
n , z


σ
1 , . . . , z


σ
r , zr+1, . . . , zn);
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it is in A2n if and only if n − r is even, which means |ω ∩ ω′| ≡ n mod 2. For
ω′ = ωσ the complement of ω we have |ω ∩ ωσ| = 0, hence ωσδ = ωδ if and only if
n ≡ 0 mod 2. �


Oriented Γ-sets. An oriented Γ-set is a pair (Z, ∂Z) where Z is a Γ-set and ∂Z


is a fixed isomorphism of Γ-sets 2
∼−← ∆(Z). In particular the Γ-action on ∆(Z)


is trivial. There are two possible choices for ∂Z . A choice is an orientation of Z.
Oriented Γ-sets with n elements form a groupoid (Set


n
Γ)+ whose morphisms are


isomorphisms Z2
f←− Z1 such that ∆(f) ◦ ∂Z2


= ∂Z1
. Similarly oriented coverings


are pairs (Z/Z0, ∂Z) where Z0 ← Z is a Γ-covering and ∂Z is an orientation of Z.


We denote by (Cov
d/n
Γ )+ the groupoid of oriented coverings of degree d of Γ-sets


with n elements. Changing the orientation through the twist 2
ι←− 2 defines an


involutive functor


κ : (Cov
d/n
Γ )+ → (Cov


d/n
Γ )+.


Proposition 2.6. If n is even the functor C : Cov
2/n
Γ → Cov


2/2n−1


Γ of (2.4) restricts
to a pair of functors


C1, C2 : (Cov
2/n
Γ )+ → Cov


2/2n−2


Γ .


Moreover two sections ω and ω′ of the oriented Γ-covering (Z/Z0, ∂Z) lie in the
same set C1(Z/Z0, ∂Z) or C2(Z/Z0, ∂Z) if and only if |ω ∩ ω′| ≡ 0 mod 2.


Proof. Let Z/Z0 be a 2/n-covering. Proposition 2.5 implies that the covering


∆(Z)
δ←− C(Z/Z0) factors through C(Z/Z0)/σ, where σ is the canonical involu-


tion of C(Z/Z0):


∆(Z)← C(Z/Z0)/σ ← C(Z/Z0).


Thus, if Z/Z0 is oriented, we may use the given isomorphism 2
∂Z←−− ∆(Z) to define


the Γ-sets


C1(Z/Z0, ∂Z) = {ω ∈ C(Z/Z0) | ωδ∂Z = 1}


and


C2(Z/Z0, ∂Z) = {ω ∈ C(Z/Z0) | ωδ∂Z = 2}.
Obviously, we have C(Z/Z0) = C1(Z/Z0, ∂Z) ⊔ C2(Z/Z0, ∂Z), and Proposition 2.5
shows that σ restricts to involutions on C1(Z/Z0, ∂Z) and C2(Z/Z0, ∂Z). The last
claim also follows from Proposition 2.5. �


We call the two functors C1 and C2 the spinor functors. Note that when n is even
an orientation ∂Z on Z/Z0 can also be defined by specifying whether a given section
ω ∈ C(Z/Z0) lies in C1(Z/Z0, ∂Z) or C2(Z/Z0, ∂Z). Indeed, ω ∈ C1(Z/Z0, ∂Z) if
and only if ωδ ∈ ∆(Z) is mapped to 1, which determines ∂Z uniquely. We shall


avail ourselves of this possibility to define orientations on coverings in Cov
2/4
Γ in §4.


Basic constructions on étale algebras. We now consider analogues of the func-
tors ∆ and C for étale algebras and étale extensions.
For S an étale F -algebra of dimension n ≥ 2, the discriminant ∆(S) is a quadratic
étale F -algebra such that


X
(


∆(S)
)


= ∆
(


X(S)
)


.
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We thus have a functor


∆: Ét
n


F → Ét
2


F for n ≥ 2.


If the field F has characteristic different from 2, it is usual to represent ∆(S) as
F [x]/


(


x2 − Disc(S)
)


, Disc(S) ∈ F×, and the class of Disc(S) in F×/(F×)2 is the
usual discriminant. We refer to [11, p. 291–293] and [12, §3.1] for details.


Let S
ε−→ T be an étale extension of degree 2 of (étale) F -algebras, with dimF S = n,


dimF T = 2n. In [12, §3.2]3 we define an étale F -algebra C(T/S) such that


X
(


C(T/S)
)


= C
(


X(T )/X(S)
)


.


Example 2.7. If dimF T = 2 and S = F , we have C(T/S) = T .
For S1, S2 étale algebras of arbitrary dimension, and for arbitrary étale extensions
T1/S1 and T2/S2 of degree 2, there is a canonical isomorphism


P : C
(


(T1 × T2)/(S1 × S2)
)


∼−→ C(T1/S1)⊗ C(T2/S2).


We call the 2n-dimensional algebra C(T/S) the Clifford algebra of T/S. It admits a
canonical involution σ. If dimF S is even σ is the identity on ∆(T ). The canonical
morphism δ of (2.3)


∆
(


X(T )
) δ←− C


(


X(T )/X(S)
)


yields a canonical F -algebra homomorphism which we again denote by δ,


∆(T )
δ−→ C(T/S),


so that C(T/S) is an étale extension of degree 2n−1 of a quadratic étale F -algebra.


Oriented étale algebras. As for oriented Γ-sets we define oriented étale algebras
as pairs (S, ∂S) where S is an étale algebra and ∂S : ∆(S) ∼−→ F × F is an iso-
morphism of F -algebras. Oriented extensions of étale algebras are pairs (S/S0, ∂S)
where S/S0 is an extension of étale algebras and ∂S : ∆(S) ∼−→ F ×F is an isomor-


phism of F -algebras. We have corresponding groupoids (Ét
n


F )+, (Étex
d/n


F )+ and
anti-equivalences


(Set
n
Γ)+ ≡ (Ét


n


F )+ and (Cov
d/n
Γ )+ ≡ (Étex


d/n


F )+.


Switching the orientation induces an involutive functor κ on these groupoids.
The Clifford functor C restricts to a pair of spinor functors


(2.8) C1, C2 : (Étex
2/n


F )+ → Étex
2/2n−2


F


if n is even.


Remark 2.9. The terminology used above owes its origin to the fact that the
Clifford functor is related to the theory of Clifford algebras in the framework of
quadratic forms and central simple algebras with involution. We refer to [13] for
details and more properties of the Clifford construction.


3The notation Ω is used for C in [12].
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3. Cohomology


For any integer n ≥ 1, we consider the Γ-set n = {1, . . . , n} with the trivial Γ-action
and let Sn denote the symmetric group on n, i.e., the automorphism group of n,


Sn = Aut(n).


Recall from [11, §28.A] that the cohomology set H1(Γ,Sn) (for the trivial action
of Γ on Sn) is the set of continuous group homomorphisms Γ → Sn (“cocycles”)
up to conjugation.
Letting Iso(Set


n
Γ) denote the set of isomorphism classes in Set


n
Γ, we have a canonical


bijection of pointed sets


(3.1) Iso(Set
n
Γ) ∼−→ H1(Γ,Sn).


Cohomology sets can also be used to describe isomorphism classes of Γ-coverings:
for any integers n, d ≥ 1, the group of automorphisms of the Γ-covering with trivial
Γ-action d/n is the wreath product (of order (d!)nn!)


Aut(d/n) = Sd ≀Sn (= S
n
d ⋊ Sn).


The same construction as above yields a canonical bijection


(3.2) Iso(Cov
d/n
Γ ) ∼−→ H1(Γ,Sd ≀Sn),


where the Γ-action on Sd ≀ Sn is trivial; see [12, §4.2]. The automorphism group
of the oriented Γ-covering (d/n, ∂n×d) is the group


(Sd ≀Sn)+ = (Sd ≀Sn) ∩Adn


so that


(3.3) Iso
(


(Cov
d/n
Γ )+


)


∼−→ H1
(


Γ, (Sd ≀Sn)+
)


.


We now assume that Γ is the absolute Galois group Γ = Gal(Fs/F ) of a field F


and use the notation H1(F,Sn) for H1(Γ,Sn). The anti-equivalence Set
n
Γ ≡ Ét


n


F


and the bijection (3.1) induce canonical bijections


Iso(Ét
n


F ) ∼= Iso(Set
n
Γ) ∼= H1(F,Sn)


The bijection Iso(Ét
n


F ) ∼= H1(F,Sn) may of course also be defined directly since


AutF -alg(F
n) ∼= Sn,


see [11, (29.9)]. Similarly, it follows from (3.2), (3.3), and the anti-equivalence


of groupoids Étex
d/n


F ≡ Cov
d/n
Γ , (Étex


d/n


F )+ ≡ (Cov
d/n
Γ )+, that we have canonical


bijections of pointed sets:


(3.4) Iso(Étex
d/n


Γ ) ∼= Iso(Cov
d/n
Γ ) ∼= H1(F,Sd ≀Sn)


and


(3.5) Iso
(


(Étex
d/n


Γ )+
) ∼= Iso


(


(Cov
d/n
Γ )+


) ∼= H1
(


F, (Sd ≀Sn)+
)


.


Remark 3.6. Any group homomorphism ϕ : G→ H , where G and H are automor-
phism groups of finite sets or of finite double coverings, induces a map on the level
of cocycles ϕ∗ : (γ : Γ → G) 7→ (ϕ ◦ γ : Γ → H). Thus ϕ associates in a “canonical
way” an étale algebra (or an étale algebra with involution) Eϕ, whose isomorphism
class belongs to H1(F,H), to an étale algebra E (or an étale algebra E with invo-
lution), whose class belongs to H1(F,G). We say that the algebra Eϕ is a resolvent
of E. For example the discriminant ∆(E) is the resolvent of E associated to the
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parity map Sn → S2. Other examples of resolvents will be discussed in relation
with triality.


4. Triality and Γ-coverings


Recall the functor C, which associates to any double covering its set of sections.
For oriented 2/4-coverings of Γ-sets, it leads to two functors


C1, C2 : (Cov
2/4
Γ )+ → Cov


2/4
Γ ,


see Proposition 2.6. The functors C1 and C2 together with the functor κ, which
changes the orientation, give an explicit description of an action of the group S3


on the pointed set Iso
(


(Cov
2/4
Γ )+


)


.


Theorem 4.1. The functors C1, C2 : (Cov
2/4
Γ )+ → Cov


2/4
Γ factor through the for-


getful functor F : (Cov
2/4
Γ )+ → Cov


2/4
Γ , i.e., there are functors


C+
1 , C


+
2 : (Cov


2/4
Γ )+ → (Cov


2/4
Γ )+


such that F ◦C+
i = Ci for i = 1, 2. These functors satisfy natural equivalences:


(C+
1 )3 = Id, (C+


1 )2 = C2, C+
1 κ = κC+


2 .


Proof. Let (Z/Z0, ∂) be an object in (Cov
2/4
Γ )+ and let σ denote the involution of


Z/Z0. Consider a real vector space V with basis (e1, e2, e3, e4). Fixing a bijection
ϕ between a section ω ∈ C1(Z/Z0, ∂) and {e1, . . . , e4}, we identify Z with a subset
of V by


z 7→
{


zϕ if z ∈ ω,


−zσϕ if z /∈ ω.


Thus, Z = {±e1,±e2,±e3,±e4} and σ acts on Z by mapping each element to its
opposite. The action of Γ on Z extends to a linear action on V since it commutes
with σ. We also identify C(Z/Z0) with a subset of V by the map


ω′ 7→ 1
2


∑


z∈ω′


z.


The set C(Z/Z0) then consists of the following vectors and their opposite:


f1 = 1
2 (e1 + e2 + e3 + e4) g1 = 1


2 (e1 + e2 + e3 − e4),
f2 = 1


2 (e1 + e2 − e3 − e4) g2 = 1
2 (e1 + e2 − e3 + e4),


f3 = 1
2 (e1 − e2 + e3 − e4) g3 = 1


2 (e1 − e2 + e3 + e4),


f4 = 1
2 (−e1 + e2 + e3 − e4) g4 = 1


2 (e1 − e2 − e3 − e4).
Since ω ∈ C1(Z/Z0, ∂), we have (see Proposition 2.6


C1(Z/Z0, ∂) = {±f1,±f2,±f3,±f4}


and


C2(Z/Z0, ∂) = {±g1,±g2,±g3,±g4}.
The canonical involutions on C1(Z/Z0, ∂) and C2(Z/Z0, ∂) map each vector to
its opposite. Note that these identifications are independent of the choice of the
section ω in C1(Z/Z0, ∂) and of the bijection ϕ.
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Let ∂1 be the orientation of C1(Z/Z0, ∂) such that C1(C1(Z/Z0, ∂), ∂1) contains
the section {f1, f2, f3, f4}. Thus, by Proposition 2.6, C1(C1(Z/Z0, ∂), ∂1) consists
of the following sections:


±{f1, f2, f3, f4}, ±{f1, f2,−f3,−f4}, ±{f1,−f2, f3,−f4}, ±{−f1, f2, f3,−f4}.
They are characterized by the property that for each i = 1, . . . , 4 they contain
a section ±fj containing ei and a section ±fk containing −ei. Identifying these
sections to vectors in V as above, we obtain


C1(C1(Z/Z0, ∂), ∂1) = {± 1
2 (f1 + f2 + f3 + f4),± 1


2 (f1 + f2 − f3 − f4),
± 1


2 (f1 − f2 + f3 − f4),± 1
2 (−f1 + f2 + f3 − f4)}.


Likewise, let ∂2 be the orientation of C2(Z/Z0, ∂) such that


C1(C2(Z/Z0, ∂), ∂2) = {± 1
2 (g1 + g2 + g3 + g4),± 1


2 (g1 + g2 − g3 − g4),
± 1


2 (g1 − g2 + g3 − g4),± 1
2 (−g1 + g2 + g3 − g4)}.


Define the functors C+
1 , C+


2 : (Cov
2/4
Γ )+ → (Cov


2/4
Γ )+ by


C+
1 (Z/Z0, ∂) = (C1(Z/Z0), ∂1) and C+


2 (Z/Z0, ∂) = (C2(Z/Z0), ∂2).


By definition, it is clear that F ◦ C+
i = Ci for i = 1, 2. To establish the natural


equivalences, consider the linear map µ : V → V defined by µ(ei) = fi for i = 1,
. . . , 4. Using this map, we may rephrase the definition of C+


1 as follows: for
Z = {±e1,±e2,±e3,±e4} with the orientation ∂ such that C1(Z/Z0, ∂) ∋ µ(e1),
we have


C+
1 (Z/Z0, ∂) = {±µ(e1),±µ(e2),±µ(e3),±µ(e4)}


with the orientation such that


C1


(


C+
1 (Z/Z0, ∂)


)


∋ 1
2


(


µ(e1) + µ(e2) + µ(e3) + µ(e4)
)


.


Note that 1
2


(


µ(e1)+µ(e2)+µ(e3)+µ(e4)
)


= µ(f1) = µ2(e1). Therefore, substituting
µ(ei) for ei, for i = 1, . . . , 4, we obtain


(C+
1 )2(Z/Z0, ∂) = {±µ2(e1),±µ2(e2),±µ2(e3),±µ2(e4)},


endowed with an orientation such that


C1


(


(C+
1 )2(Z/Z0, ∂)


)


∋ µ3(e1).


Computation shows that µ2(ei) = gi for i = 1, . . . , 4, and µ3 = Id. Since 1
2 (g1 +


g2 + g3 + g4) = e1, it follows that (C+
1 )2(Z/Z0, ∂) = C+


2 (Z/Z0, ∂). Similarly, we
have


(C+
1 )3(Z/Z0, ∂) = {±µ3(e1),±µ3(e2),±µ3(e3),±µ3(e4)} = Z,


endowed with an orientation such that


C1


(


(C+
1 )3(Z/Z0, ∂)


)


∋ µ4(e1) = f1,


hence (C+
1 )3(Z/Z0, ∂) = (Z/Z0, ∂). Finally, we have


κ(Z/Z0, ∂) = {±e1,±e2,±e3,±e4}
with an orientation such that C1κ(Z/Z0, ∂) ∋ µ2(e1), hence


C+
1 κ(Z/Z0, ∂) = {±µ2(e1),±µ2(e2),±µ2(e3),±µ2(e4)}


endowed with an orientation such that


C1


(


C+
1 κ(Z/Z0, ∂)


)


∋ µ4(e1) = f1.
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Therefore, C+
1 κ(Z/Z0, ∂) = κC+


2 (Z/Z0, ∂). �


Remark 4.2. The decomposition C(Z/Z0) = C1(Z/Z0, ∂) ⊔ C2(Z/Z0, ∂) can also
be viewed geometrically on a hypercube: suppose V = R


4 and let (e1, e2, e3, e4) be
the standard basis. The set


C(Z/Z0) = { 1
2 (±e1 ± e2 ± e3 ± e4)}


is the set of vertices of a hypercube K (see Figure 1), and the set


Z = {±e1,±e2,±e3,±e4}
is in bijection with the set of 3-dimensional cells of K.


Figure 1


We identify
Z = {A, Ā,B, B̄, C, C̄,D, D̄}


where A, . . . , C̄ are as in Figure 1, D is the big cell and D̄ the small cell inside.
The involution permutes a cell with its opposite cell and the set Z0 is obtained by
identifying pairs of opposite cells


Z0 = {{A, Ā}, {B, B̄}, {C, C̄}, {D, D̄}}.
To obtain a corresponding identification of C(Z/Z0) with the set of vertices of K,
observe that a section of Z/Z0 consists of a set of four cells which are pairwise not
opposite. Four such cells intersect in exactly one vertex and conversely each vertex
lies in four cells. With the notation in Figure 1 we have the following identification:


1 = {A, B̄, C,D} 1̄ = {Ā, B, C̄, D̄} 2 = {A, B̄, C̄,D} 2̄ = {Ā B,C, D̄}
3 = {A,B, C̄,D} 3̄ = {Ā, B̄, C, D̄} 4 = {A,B,C,D} 4̄ = {Ā, B̄, C̄, D̄}
5 = {Ā, B,C,D} 5̄ = {A, B̄, C̄, D̄} 6 = {Ā, B, C̄,D} 6̄ = {A, B̄, C, D̄}
7 = {Ā, B̄, C̄,D} 7̄ = {A,B,C, D̄} 8 = {Ā, B̄, C,D} 8̄ = {A,B, C̄, D̄}


This set of vertices decomposes into two classes, two vertices being in the same
class if the number of edges in any path connecting them is even. One class is


X = {1, 1̄, 3, 3̄, 5, 5̄, 7, 7̄}
and the other


Y = {2, 2̄, 4, 4̄, 6, 6̄, 8, 8̄}.
We get coverings X/X0 and Y/Y0 by identifying opposite vertices v and v̄. If
∆(Z) ≃ 2, the decomposition of C(Z/Z0) as the disjoint union X/X0 ⊔ Y/Y0 is
Γ-compatible; the functors C1 and C2 are given (up to a possible permutation) by
the rule


C1(Z/Z0, ∂) = X/X0 and C2(Z/Z0, ∂) = Y/Y0.


A section of X/X0 is a set of four vertices in X which are pairwise not opposite.
Four such vertices either lie on a 3-dimensional cell or are adjacent to exactly one
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vertex in the complementary set Y . A similar claim holds for a section of Y/Y0.
This leads to identifying:


(4.3)


A = {1, 3, 5̄, 7̄} = {2, 4, 6̄, 8̄} Ā = {1̄, 3̄, 5, 7} = {2̄, 4̄, 6, 8}
B = {1̄, 3, 5, 7̄} = {2̄, 4, 6, 8̄} B̄ = {1, 3̄, 5̄, 7} = {2, 4̄, 6̄, 8}
C = {1, 3̄, 5, 7̄} = {2̄, 4, 6̄, 8} C̄ = {1̄, 3, 5̄, 7} = {2, 4̄, 6, 8̄}
D = {1, 3, 5, 7} = {2, 4, 6, 8} D̄ = {1̄, 3̄, 5̄, 7̄} = {2̄, 4̄, 6̄, 8̄}


and


(4.4)


1 = {A, B̄, C,D} = {2, 4, 6̄, 8} 1̄ = {Ā, B, C̄, D̄} = {2̄, 4̄, 6, 8̄}
3 = {A,B, C̄,D} = {2, 4, 6, 8̄} 3̄ = {Ā, B̄, C, D̄} = {2̄, 4̄, 6̄, 8}
5 = {Ā, B,C,D} = {2̄, 4, 6, 8} 5̄ = {A, B̄, C̄, D̄} = {2, 4̄, 6̄, 8̄}
7 = {Ā, B̄, C̄,D} = {2, 4̄, 6, 8} 7̄ = {A,B,C, D̄} = {2̄, 4, 6̄, 8̄}
2 = {A, B̄, C̄,D} = {1, 3, 5̄, 7} 2̄ = {Ā, B,C, D̄} = {1̄, 3̄, 5, 7̄}
4 = {A,B,C,D} = {1, 3, 5, 7̄} 4̄ = {Ā, B̄, C̄, D̄} = {1̄, 3̄, 5̄, 7}
6 = {Ā, B, C̄,D} = {1̄, 3, 5, 7} 6̄ = {A, B̄, C, D̄} = {1, 3̄, 5̄, 7̄}
8 = {Ā, B̄, C,D} = {1, 3̄, 5, 7} 8̄ = {A,B, C̄, D̄} = {1̄, 3, 5̄, 7̄},


hence the existence of decompositions C(X/X0) = Y/Y0 ⊔ Z/Z0 and C(Y/Y0) =
Z/Z0 ⊔X/X0 which, in fact, are decompositions as Γ-sets.


Remark 4.5. In the proof of Theorem 4.1, µ is not the unique linear map that can
be used to describe the C+


1 and the C+
2 construction. An alternative description


uses Hurwitz’ quaternions. Choosing for V the skew field of real quaternions H and
for (e1, e2, e3, e4) the standard basis (1, i, j, k), we have


Z = {±1, ±i, ±j, ±k}, C(Z/Z0) = { 1
2 (±1± i± j ± k)},


so the union Z ∪ C(Z/Z0) ⊂ H is the group H
1 of Hurwitz integral quaternions of


norm 1. The element


ρ = − 1
2 (1 + i+ j + k)


is of order 3 in H
1 and conjugation by ρ permutes i, j and k cyclically. The set Z


is in fact the underlying set of the quaternionic group Q8 and


H
1 = Q8 ⋊ C3


where the cyclic group of three elements C3 operates on Q8 via conjugation with ρ.
If ∂ is the orientation of Z/Z0 such that ρ ∈ C1(Z/Z0, ∂), we have C+


1 (Z/Z0, ∂) =
ρ · Z with the orientation such that ρ2 ∈ C1


(


C+
1 (Z/Z0, ∂)


)


, and C+
2 (Z/Z0, ∂) =


(C+
1 )2(Z/Z0, ∂) = ρ2 ·Z with the orientation such that 1 ∈ C1


(


C+
2 (Z/Z0, ∂)


)


. Note
that, with respect to the standard basis, multiplication by ρ is given by the matrix


(4.6) ρ =
1


2














−1 1 1 1
−1 −1 1 −1
−1 −1 −1 1
−1 1 −1 −1














whereas the matrix of µ is


(4.7) µ =
1


2














1 1 1 −1
1 1 −1 1
1 −1 1 1
1 −1 −1 −1














.
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5. The Weyl group of D4


The Dynkin diagram D4


(5.1)


α3


α4


c


α1


c


α2


c


c


��


@@


has the permutation group S3 as a group of automorphisms. The vertices of the dia-
gram are labeled by the simple roots of the Lie algebra of typeD4. Let (e1, e2, e3, e4)
be the standard orthonormal basis of the Euclidean space R


4. The simple roots are


α1 = e1 − e2, α2 = e2 − e3, α3 = e3 − e4 and α4 = e3 + e4


(see [3]). The permutation α1 7→ α4, α4 7→ α3, α3 7→ α1, α2 7→ α2 is an automor-
phism of order 3 of the Dynkin diagram. Its extension to a linear automorphism of
R


4 is given by the orthogonal matrix µ of (4.7). The matrix


(5.2) ν =














1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1














extends the automorphism α1 7→ α1, α4 7→ α3, α3 7→ α4, α2 7→ α2. The set {µ, ν}
generates a subgroup of O4 isomorphic to S3, which restricts to the automorphism
group of the Dynkin diagram. The group


W (D4) = (S2 ≀S4)
+ = S


3
2 ⋊ S4


is the Weyl group of the split adjoint algebraic group PGO+
8 , which is of type D4.


The group W (D4) = S3
2 ⋊ S4, as a subgroup of the orthogonal group O4, is


generated by the reflections with respect to the roots of the Lie algebra of PGO+
8 .


Elements of S2 ≀S4 can be written as matrix products


(5.3) w = D · P (π),


where D is the diagonal matrix Diag(ε1, ε2, ε3, ε4), εi = ±1, and P (π) is the per-
mutation matrix of π ∈ S4. The group S2 ≀S4 fits into the exact sequence


(5.4) 1→ S
4
2 → S2 ≀S4


β→ S4 → 1


where β maps w = D ·P (π) to π. Elements of W (D4) have a similar representation,
with the supplementary condition


∏


i εi = 1.
In relation with the geometric description of C1 and C2 at the end of §4, note that
the group S2 ≀S4 = S4


2 ⋊ S4 is the group of automorphisms of the hypercube K.
The subgroup W (D4) = (S2 ≀S4)


+ = S3
2 ⋊ S4 consists of the automorphisms of K


respecting the decomposition of the set of vertices as X ⊔ Y , i.e., automorphisms
of the half-hypercube.


Automorphisms of W (D4). We view W (D4) as a subgroup of O4 as in (5.3).
Conjugation x 7→ µxµ−1 with the matrices µ and ν on O4 induce by restriction
outer automorphisms µ̃ and ν̃ of W (D4). The set {µ̃, ν̃} generates a group of
automorphisms of W (D4) isomorphic to S3 (see already [5, p. 368]). The center of
W (D4) is isomorphic to S2 and is generated by


(5.5) w0 = Diag(−1,−1,−1,−1) = −1.







TRIALITY AND ÉTALE ALGEBRAS 13


Thus W (D4)/〈w0〉 acts on W (D4) as the group of inner automorphisms. Let ψ be
the automorphism of order 2 of W (D4) given by


ψ : D · P (π) 7→ D · P (π) · (w0)
sgn(π),


or equivalently by x 7→ xdet(x), x ∈ W (D4) ⊂ O4. A proof of the following result
can be found in [8, Theorem 31,(5)] or in [7, Prop. 2.8,(e)]:


Proposition 5.6.


Aut
(


W (D4)
)


≃
(


(W (D4)/〈w0〉) ⋊ S3


)


× 〈ψ〉.
For any w ∈ W (D4), we let Int(w) : x 7→ wxw−1 be the inner automorphism
of W (D4) defined by conjugation by w, and by Int


(


W (D4)
)


the group of inner
automorphisms of W (D4). As an immediate consequence of Proposition 5.6, we
have


Corollary 5.7.


Aut
(


W (D4)
)


/ Int
(


W (D4)
)


≃ S3 × 〈ψ〉.
We call trialitarian the outer automorphisms of order 3 of W (D4). As observed
above, the automorphisms µ̃ and µ̃2 are trialitarian. Conjugation by the matrix ρ
of (4.6) also yields a trialitarian automorphism ρ̃: indeed, we have ρ3 = 1 and


ρµ−1 = −1 ·














0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0














∈ W (D4);


hence, letting w be the matrix on the right side, we have ρ̃ = Int(w) ◦ µ̃.


Proposition 5.8. Any trialitarian automorphism of W (D4) is conjugate in the
group Aut


(


W (D4)
)


to either µ̃ or ρ̃.


Proof. Explicit computation (with the help of the algebra computational system
Magma [2]) shows that the conjugation class of ρ̃ contains 16 elements and the con-
jugation class of µ̃ contains 32 elements. In view of Proposition 5.6 any trialitarian
automorphism of W (D4) is the restriction to W (D4) of conjugation by an element
u ∈ O4 of the form u = µ · w or u = µ2 · w, with w ∈ W (D4) and u3 = 1. There
are 48 elements u of this form, hence the claim. �


Corollary 5.9. There are up to isomorphism two types of subgroups of fixed points
of trialitarian automorphisms of W (D4), those isomorphic to Fix(µ̃) and those
isomorphic to Fix(µ̃) .


Proof. Trialitarian automorphisms which are conjugate in Aut
(


W (D4)
)


have iso-
morphic groups of fixed points. �


Proposition 5.10. 1) The 2-dimensional subspace of R
4 generated by the set of


elements {e1 + e3, e2 − e3} is fixed under µ.
2) The set {e1+e3, e2−e3} generates a root system of type G2 and the group Fix(µ̃)
is the corresponding Weyl group, which is the dihedral group D6 of order 12.


Proof. By explicit computation. �


Proposition 5.11. The group Fix(ρ̃) is isomorphic to the group of order 24 of
Hurwitz quaternions H


1 = Q8⋊C3. This group is isomorphic to the double covering
Ã4 of A4.
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Proof. Recall that the matrix ρ is obtained by choosing (1, i, j, k) as basis of R
4


and letting − 1
2 (1 + i + j + k) operate by left multiplication in H. The group H


1


has a representation in W (D4) by right multiplication which obviously commutes
with the action of ρ. Hence Fix(ρ̃) contains a copy of H


1. The claim then follows
from the fact that Fix(ρ̃) has 24 elements. �


Cohomology with W (D4) coefficients. Each automorphism α ∈ Aut
(


W (D4)
)


acts on H1
(


Γ,W (D4)
)


by


α∗ : [ϕ] 7→ [α ◦ ϕ],


where ϕ : Γ → W (D4) is a cocycle with values in W (D4). If α′ = Int(w) ◦ α for
some w ∈ W (D4), then for all cocycles ϕ : Γ→W (D4) we have


w · α
(


ϕ(γ)
)


· w−1 = α′
(


ϕ(γ)
)


for all γ ∈ Γ,


hence [α ◦ϕ] = [α′ ◦ϕ] and therefore α∗ = α′
∗. Thus, the action of Aut


(


W (D4)
)


on


H1
(


Γ,W (D4)
)


factors through Aut
(


W (D4)
)


/ Int
(


W (D4)
)


≃ S3×〈ψ〉. In particu-


lar the symmetric group S3 acts on H1
(


Γ,W (D4)
)


. Under the bijections (3.5), the


symmetric group S3 also acts on Iso
(


(Cov
2/4
Γ )+


)


and Iso
(


(Étex
2/4


Γ )+
)


. The action
of the outer automorphism ν̃ associates to the oriented 2/4-covering (Z/Z0, ∂Z) the


oriented covering κ(Z/Z0, ∂) = (Z/Z0, ∂Z ◦ ι) where 2
ι←− 2 twists the orientation.


The proof of Theorem 4.1 shows that the action of µ̃ maps the class of an oriented
covering (Z/Z0, ∂Z) to the class of C+


1 (Z/Z0, ∂Z).


6. Triality and étale algebras


We next investigate triality on isomorphism classes of étale algebras using Galois
cohomology. Oriented extensions of étale algebras S/S0 with dimF S = 8 and
dimF S0 = 4 correspond to cocycles, i.e., continuous homomorphisms Γ→W (D4),
and isomorphism classes of such algebras correspond to cocycles up to conjugation.
If the cocycle factors through a subgroup G of W (D4), the conjugacy class of G
in W (D4) is determined by the isomorphism class of the algebra. Thus it makes
sense to classify isomorphism classes of algebras according to the conjugacy classes
of the subgroups G of W (D4).
We give in Table 1 a list of all conjugacy classes of subgroups of W (D4). We still
consider W (D4) as a subgroup of O4 (see (5.3)) and use the following notation.
The group W (D4) fits into the split exact sequence:


(6.1) 1→ S
3
2 →W (D4)


β→ S4 → 1.


where β is as in (5.4). For each subgroup G of W (D4) we denote by G1 the
restriction G ∩ S3


2 and by G0 the projection β(G). The center of W (D4), gen-
erated by w0 = Diag(−1,−1,−1,−1) = −1 is denoted by C and we set w1 =
Diag(1,−1, 1,−1), w2 = Diag(1,−1,−1, 1) and w3 = Diag(−1,−1, 1, 1) for special
elements of the subgroup S3


2 ⊂ W (D4) given by diagonal matrices. We denote by
Sn the permutation group of n elements, An is the alternating subgroup, Cn is
cyclic of order n, Dn is the dihedral group of order 2n, V4 is the Klein 4-group,
and Q8 is the quaternionic group with eight elements. In Column S we summarize
the various possibilities for étale algebras of dimension 8 associated to the class of
a cocycle α : Γ → W which factors through G and in Column S0 étale algebras of
dimension 4 associated to the class of the induced cocycle β ◦ α : Γ → S4 which
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factors through G0. The entry K in one of the columns S or S0 denotes a qua-
dratic separable field extension. We use symbols E, respectively E0 for separable
field extensions whose Galois closures have Galois groups G, respectively G0. The
symbol R(E) stands for the cubic resolvent of E if E is a quartic separable field
extension and λ2E stands for the second lambda power of E (see [12], where it
is denoted Λ2(E) or [9], where it is denoted E(2)4). If dimF E = 4, λ2E admits
an involution σ and for any quadratic étale algebra K with involution ι we set
K ∗ λ2E = (K ⊗F λ


2E)ι⊗σ. We write E0 for the Galois closure of E0. The sym-
bol ℓ gives the number of subgroups in the conjugacy class of G, MS refers to the
maximal subgroups of G and in column T we give the two conjugacy classes which
are the images of the class of G under the trialitarian automorphisms µ̃ and µ̃2.
Entries N, |G|, ℓ and MS in the table were generated with the help of the Magma
algebra software [2]. The computation of the entry T , the explicit representation
of the group G as an exact sequence and the decomposition of the étale algebras as
products of fields were checked case by case.
Explicit computations of trialitarian triples were made in [1] and [19] using the
description of the trialitarian action given in the proof of Theorem 4.1.


4The corresponding Γ-set λ2X is obtained by removing the diagonal from X ×X and dividing
by the involution (x, y) 7→ (y, x).
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N S0 S G1 → G → G
0


|G| ℓ MS T


1 F 4 F 8 1 → 1 → 1 1 1 1 1, 1
2 F 4 K4 C → S2 → 1 2 6 1 2, 2
3 K2 K4 1 → S2 → S2 ⊂ V4 2 6 1 3, 5
4 K2 K4 1 → S2 → S2 ⊂ V4 2 6 1 4, 3
5 F 4 F 2 × K2 〈w1〉 → S2 → 1 2 6 1 5, 4
6 F 2 × K F 2 × K2 1 → S2 → S2 6⊂ V4 2 12 1 6, 6
7 F 2 × K F 2 × K2 1 → S2 → S2 6⊂ V4 2 12 1 7, 7
8 F × E0 F 2 × S2


0
1 → C3 → C3 3 16 1 8, 8


9 F 4 K2


1
× K2


2
〈C, w1〉 → S2


2
→ 1 4 3 2 5 11, 10


10 K2 K ⊗K2


1
C → S2


2
→ S2 ⊂ V4 4 3 2 3 9, 11


11 K2 K ⊗K2


1
C → S2


2
→ S2 ⊂ V4 4 3 2 4 10, 9


12 K1 ⊗K2 K1 ⊗K2


2
1 → S2


2
→ V4 4 4 4 14, 13


13 F 4 K2


1
× K2


2
〈w1, w2〉 → S2


2
→ 1 4 4 5 12, 14


14 K1 ⊗K2 K1 ⊗K2


2
1 → S2


2
→ V4 4 4 3 13, 12


15 F 2 × K F 4 × K1 ⊗K 〈w1〉 → S2


2
→ S2 6⊂ V4 4 6 5 6 18, 17


16 K1 × K2 K1 ⊗K2


2
1 → S2


2
→ S2


2
4 6 4 7 21, 19


17 K1 × K2 K2


1
× K2


2
1 → S2


2
→ S2


2
4 6 3 6 15, 18


18 K1 × K2 K2


1
× K2


2
1 → S2


2
→ S2


2
4 6 4 6 17, 15


19 F 2 × K K2


1
× K1 × K 〈w1〉 → S2


2
→ S2 6⊂ V4 4 6 5 7 16, 21


20 K2 E2 C → C4 → S2 ⊂ V4 4 2 2 20, 20
21 K1 × K2 K1 ⊗K2


2
1 → S2


2
→ S2


2
4 6 3 7 19, 16


22 K1 × K2 K2


1
× K1 ⊗K2 1 → S2


2
→ S2


2
4 12 4 6 7 23, 27


23 K1 × K2 K2


1
× K1 ⊗K2 1 → S2


2
→ S2


2
4 12 3 6 7 27, 22


24 K2 K2 × K ⊗K1 〈w1〉 → S2


2
→ S2 ⊂ V4 4 12 3 4 5 24, 24


25 F 2 × K F 4 × E 〈w1〉 → C4 → S2 6⊂ V4 4 12 5 26, 28
26 E0 E2


0
1 → C4 → C4 4 12 4 28, 25


27 F 2 × K K2


1
× K1 ⊗K 〈−w1〉 → S2


2
→ S2 6⊂ V4 4 12 5 6 7 22, 23


28 E0 E0 × E0 1 → C4 → C4 4 12 3 25, 26
29 F 2 × K K2 × K ⊗K1 C → S2


2
→ S2 6⊂ V4 4 12 2 6 7 29, 29


30 F × E0 F 2 × E0 ⊗∆(E0) 1 → S3 → S3 6 16 7 8 30, 30
31 F × E0 F 2 × E C → C6 → C3 6 16 2 8 31, 31
32 F × E0 F 2 × E2


0
1 → S3 → S3 6 16 6 8 32, 32


33 E0 E C → S3


2
→ V4 8 1 11 12 34, 35


34 E0 E C → S3


2
→ V4 8 1 10 14 35, 33


35 F 4 K1 × K2 × K3 × K123 S3


2
→ S3


2
→ 1 8 1 9 13 33, 34


36 E0 E C → Q8 → V4 8 2 20 36, 36
37 K2 E1 × E2 〈C, w1〉 → S2 × C4 → S2 ⊂ V4 8 3 3 20 38, 40
38 E0 E0 ⊗K C → S2 × C4 → C4 8 3 11 20 40, 37
39 K2 K ⊗K1 × K ⊗K2 〈C, w1〉 → S3


2
→ S2 ⊂ V4 8 3 9 10 11 24 39, 39


40 E0 E0 ⊗K C → S2 × C4 → C4 8 3 10 20 37, 38
41 K2K E2 〈C, w2〉 → D4 → S2 ⊂ V4 8 6 9 11 20 49, 45
42 F 2 × K K1 × E 〈C, w1〉 → S2 × C4 → S2 6⊂ V4 8 6 9 25 44, 47
43 K1 × K2 K ⊗K1 × K ⊗K2 C → S3


2
→ S2


2
8 6 10 17 21 23 29 48, 46


44 E0 E C → S2 × C4 → C4 8 6 11 26 47, 42
45 K2 E2 〈C, w2〉 → D4 → S2 ⊂ V4 8 6 9 10 20 41, 49
46 K1 × K2 K ⊗K1 × K ⊗K2 C → S3


2
→ S2


2
8 6 11 16 18 22 29 43, 48


47 E0 E0 ⊗K C → S2 × C4 → C4 8 6 10 28 42, 44
48 F 2 × K K2


1
× K ⊗K2 〈C, w1〉 → S3


2
→ S2 6⊂ V4 8 6 9 15 19 27 29 46, 43


49 E0 E C → D4 → V4 8 6 10 11 20 45, 41


Table 1
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N S0 S G1 → G → G
0


|G| ℓ MS T


50 F 2 × K K2 × E 〈w1, w2〉 → D4 → S2 6⊂ V4 8 6 13 19 25 55, 51
51 E0 E 1 → D4 → D4 8 12 14 21 28 50, 55
52 E0 E2


0
1 → D4 → D4 8 12 14 17 28 54, 57


53 K1 × K2 K ⊗K1 × K ⊗K2 〈w1〉 → S3


2
→ S2


2
8 12 16 19 21 22 23 24 27 53, 53


54 F 2 × K F 2 × K × E 〈w1, w2〉 → D4 → S2 6⊂ V4 8 12 13 15 25 57, 52
55 E0 Ē0 1 → D4 → D4 8 12 12 16 26 51, 50
56 K1 × K2 K2


1
× E 〈w1〉 → S3


2
→ S2


2
8 12 15 17 18 22 23 24 27 56, 56


57 E0 E2


0
1 → D4 → D4 8 12 12 18 26 52, 54


58 E0 E2


0
1 → A4 → A4 12 4 8 14 59, 60


59 F × E0 F 2 × E2


0
〈w1, w2〉 → S2


2
⋊ C3 → C3 12 4 8 13 60, 58


60 E0 E2


0
1 → A4 → A4 12 4 8 12 58, 59


61 F × E0 K × K ⊗E0 C → S2 × S3 → S3 12 4 29, 30, 31, 32 61, 61
62 K1 × K2 E2 〈C, w1〉 → [22]4 → S2


2
16 3 39 42 66, 63


63 E0 E 〈C, w1〉 → [22]4 → C4 16 3 39 47 62, 66
64 K2 E1 × E2 S3


2
→ S2 × D4 → S2 ⊂ V4 16 3 35 37 39 41 45 68, 67


65 K1 × K2 K1 ⊗K3 × K2 ⊗K4 〈C, w1〉 → S4


2
→ S2


2
16 3 39 43 46 48 53 56 65, 65


66 E0 E 〈C, w1〉 → [22]4 → C4 16 3 39 44 63, 62
67 E0 E 〈C, w1〉 → S2 × D4 → V4 16 3 34 39 40 45 49 64, 68
68 E0 E 〈C, w2〉 → S2 × D4 → V4 16 3 33 38 39 41 49 67, 64
69 K1 × K2 E2 〈C, w1〉 → [22]4 → S2


2
16 6 37 42 48 73, 72


70 E0 E 〈C, w1〉 → Q8 : 2 → V4 16 6 36 37 38 40 41 45 49 70, 70


71 F 2 × K K2


1
× E S3


2
→ S2 × D4 → S2 6⊂ V4 16 6 35 42 48 50 54 75, 74


72 E0 E 〈C, w1〉 → [22]4 → V4 16 6 40 43 47 69, 73
73 E0 E C → [22]4 → D4 16 6 38 44 46 72, 69
74 E0 E0 ⊗K C → S2 × D4 → D4 16 6 34 43 47 51 52 71, 75
75 E0 E0 ⊗K C → S2 × D4 → D4 16 6 33 44 46 55 57 74, 71
76 E0 E2


0
1 → S4 → S4 24 4 32 52 58 79, 81


77 F × R(E) ∆(E) × λ2E 〈w1, w3〉 → S2


2
⋊ S3 → S3 24 4 30 50 59 84, 82


78 F × E0 ∆(E) × λ2E S3


2
→ S3


2
⋊ C3 → C3 24 4 31 35 59 83, 80


79 F × R(E) F 2 × λ2E 〈w1, w3〉 → S2


2
⋊ S3 → S3 24 4 32 54 59 76, 81


80 E0 E0 ⊗K C → S2 × A4 → A4 24 4 31 34 58 78, 83
81 E0 E2


0
1 → S4 → S4 24 4 32 57 60 76, 79


82 E0 E0 ⊗∆(E0) 1 → S4 → S4 24 4 30 51 58 77, 84
83 E0 E C → S2 × A4 → A4 24 4 31 33 60 78, 80
84 E0 E0 ⊗∆(E0) 1 → S4 → S4 24 4 30 55 66 82, 77


85 E0 E S2 → Ã4 → A4 24 4 31 36 85, 85
86 E0 E S3


2
→ S3


2
⋊ V4 → V4 32 1 64 67 68 70 86, 86


87 E0 E 〈C, w1〉 → S2


2
⋊ D4 → D4 32 3 63 65 67 72 74 92, 90


88 E0 E S3


2
→ S3


2
⋊ C4 → C4 32 3 63 64 66 91, 89


89 E0 E 〈C, w1〉 → S3


2
⋊ C4 → D4 32 3 62 66 67 88, 91


90 E0 E 〈C, w1〉 → S2


2
⋊ D4 → D4 32 3 65 66 68 73 75 92, 87


91 E0 E 〈C, w1〉 → S3


2
⋊ C4 → D4 32 3 62 63 68 89, 88


92 K1 × K2 E1 × E2 S3


2
→ S2


2
⋊ D4 → S2


2
32 3 62 64 65 69 71 87, 90


93 F × R(E) ∆(E) × K ∗ λ2E S3


2
→ S2 × S4 → S3 48 4 61 71 77 78 79 94, 95


94 E0 E0 ⊗K C → S2 × S4 → S4 48 4 61 75 81 83 84 95, 93
95 E0 E0 ⊗K C → S2 × S4 → S4 48 4 61 74 76 80 82 93, 94
96 E0 E S3


2
→ S3


2
⋊ D4 → D4 64 3 86 87 88 89 90 91 92 96, 96


97 E0 E S3


2
→ S3


2
⋊ A4 → A4 96 1 78 80 83 85 86 97, 97


98 E0 E S3


2
→ S3


2
⋊ S4 → S4 192 1 93 94 95 96 97 98, 98


Table 1


Trialitarian triples and fixed points. Let α be any trialitarian automorphism


of W (D4). The subset H1
(


Γ,W (D4)
)C3


of cohomology classes that are fixed under
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α∗ is independent of the particular choice of α. Clearly, the image in H1
(


Γ,W (D4)
)


of any cohomology class in H1
(


Γ,Fix(α)
)


is fixed under α∗, hence this image lies


in H1
(


Γ,W (D4)
)C3


. Thus, we have a canonical map


(6.2) H1
(


F,Fix(α)
)


→ H1
(


F,W (D4)
)C3


for any trialitarian automorphism α of W (D4).


Theorem 6.3. Any class in H1
(


F,W (D4)
)C3


lies in the image of the map (6.2)
for α = µ̃ or α = ρ̃ as in (5.8).


Proof. If the class [ϕ] of a cocycle ϕ : Γ→W (D4) belongs to H1
(


Γ,W (D4)
)C3


, the
cocycle factors through a subgroup G whose conjugacy class is invariant under µ̃.
We get from Columns N and T of Table 1 a list of all triples of conjugate classes of
subgroups W (D4) which are permuted by a trialitarian automorphism of W (D4) .
A triple consists of three identic labels (for example (70, 70, 70)) if there exists
a ∈W (D4) such that


µGµ−1 = aGa−1,


where µ is as in (4.7). A cocycle factoring through such a group G does not
necessarily correspond to a triple of isomorphism classes of étale algebras fixed under
triality. For a triple consisting of isomorphic algebras we must have a ∈ W (D4)
such that


(6.4) µxµ−1 = axa−1


for all x ∈ G, since isomorphic classes of algebras are given by homomorphisms
γ : Γ → G up to conjugation. Thus a necessary condition to get a triple of fixed
isomorphism classes of algebras is that the conjugacy classes of all subgroups H of
G are invariant under triality. Thus the conjugacy classes N = 24, 39, 53, 56, 65,
70, 86, 96, 97 and 98 do not correspond to triples of isomorphism classes of algebras
invariant under triality. The conjugacy classes left over in Table are N= 1, 2, 6, 7,
8, 20, 29, 30, 31, 32, 36, 61 and 85. They give rise to triples of isomorphism classes
of étale algebras fixed under triality, since they correspond to subgroups contained
in Fix(µ̃) (N = 61) or contained in Fix(ρ̃) (N=85). �


Observe that fixed étale algebras in class N = 61 are of the form K × (E0⊗K),
where K is quadratic and E0 is cubic. Hence they are not fields over F , in contrast
to algebras in class N = 85.


7. Trialitarian resolvents


Trialitarian triples of étale algebras can be viewed as one étale algebra with two
attached resolvents (see Remark 3.6). For example, let E be a quartic separable
field with Galois group S4. The field E⊗∆(E) is octic with the same Galois group
S4 and the extension E⊗∆(E)/E corresponds to Class N = 82 in Table 1. Class
N = 77 in the same trialitarian triple corresponds to the extension


(


∆(E)× λ2E
)


/
(


F ×R(E)
)


,


where ∆(E) is the discriminant, R(E) is the cubic resolvent of E and λ2E is the
second lambda power of E, as defined in [12].
In this section we consider the situation where one étale algebra in the triple is
given by a separable polynomial and compute polynomials for the two other étale
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algebras. We assume that the base field F is infinite and has characteristic different
from 2.


Proposition 7.1. Let S/S0 be an étale algebra with involution of dimension 2n
over F .
1) There exists an invertible element x ∈ S such that x generates S and x2 generates
S0.
2) There exists a polynomial


fn(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.


with coefficients in F such that S0
∼−→ F [x]/


(


fn(x)
)


and S ∼−→ F [x]/
(


f2n(x)
)


, where


f2n(x) = fn(x2).
3) The algebra S has trivial discriminant if and only if (−1)na0 is a square in F .


Proof. To prove 1) we are looking for invertible elements x of S such that TrS/S0
(x) =


0 and such that the discriminant of the characteristic polynomial of x2 is not zero.
Any such element generates S and x2 ∈ S0 generates S0. These elements form an
Zariski open subset of the space of trace zero elements. One checks that this open
subspace is not empty by going to an algebraic closure of F .
2) follows from 1) and 3) follows from a discriminant formula (see [4, p. 51]) for the
discriminant D(f2n) of f2n:


D(f2n) = (−1)na0 ·
(


2nD(fn)
)2


(recall that ∆(S) ∼−→ F [x]/
(


x2 −D(f2n)
)


). �


Theorem 7.2. Let S/S0, dimF S= 8, with trivial discriminant, be given as in
Proposition 7.1, by a polynomial


(7.3) f4(x) = x4 + ax3 + bx2 + cx+ e2.


The polynomials


f ′
4(x) = x4 + ax3 + (3


8a
2 − 1


2b+ 3e)x2 +


( 1
16a


3 − 1
4ab+ c+ 1


2ae)x+
(


1
16a


2 − 1
4b− 1


2e
)2


and


f ′′
4 (x) = x4 + ax3 + (3


8a
2 − 1


2b− 3e)x2 +


( 1
16a


3 − 1
4ab+ c− 1


2ae)x+
(


1
16a


2 − 1
4b+ 1


2e
)2


define extensions of étale algebras S′/S′
0, S


′′/S′′
0 such that the isomorphism classes


of S/S0, S
′/S′


0 and S′′/S′′
0 are in triality.


Proof. Let {y1, y2, y3, y4} be the set of zeroes of f4 in a separable closure Fs of F .
The set {±xi = ±√y


i
, i = 1, . . . 4} is the set of zeroes of f8. Let ξ be the column


vector [x1, x2, x3, x4]
T . If ϕ : Γ → W (D4) ⊂ O4 is the cocycle corresponding to


S/S0, the group ϕ(Γ) permutes the elements ±xi through left matrix multiplication
on ξ. The cocycle corresponding to S′/S′


0 is given by


ϕ′ : γ 7→ µϕ(γ)µ−1, γ ∈ Γ,


where µ is as in 4.7. Thus ϕ′(Γ) permutes the components of ±ξ′ = ±µξ =
±[x′1, x


′
2, x


′
3, x


′
4]


T and {±x′i, i = 1, . . . , 4} is the set of zeroes of f ′
8. It follows that


f ′
8(x) = f ′


4(x
2) =


∏


i


(x− x′i)(x+ x′i) =
∏


i


(x2 − x′i
2
).
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The x′i are the components of ξ′ = µξ. Thus the coefficients of f ′
8(x) can be


expressed as functions of the xi. Using that the symmetric functions in the xi can
be expressed as functions of the coefficients of f8 one gets (for example with Magma
[2]) the expression given in Proposition 7.2 for f ′


i . Similar computations with µ2


instead of µ lead to the formula for f ′′
4 . �


Remark 7.4. Observe that we move from f ′
8 to f ′′


8 by replacing e by −e, as it
should be.


8. Triality and Witt invariants of étale algebras


The results of this section were communicated to us by J-P. Serre, [15]. They are
based on results of [14] and [9]. Similar results can be obtained for cohomological
invariants of étale algebras instead of Witt invariants. Let k be a fixed base field
of characteristic not 2 and F/k be a field extension. Let WGr(F ) be the Witt-
Grothendieck ring and W (F ) the Witt ring of F , viewed as functors of F . We
recall that elements of WGr(F ) are formal differences q− q′ of isomorphism classes
of nonsingular quadratic forms over F and that the sum and product are those
induced by the orthogonal sum and the tensor product of quadratic forms. The
Witt ring W (F ) is the quotient of WGr(F ) by the ideal consisting of integral
multiples of the 2-dimensional diagonal form 〈1,−1〉.
Some of the following considerations hold for oriented quadratic extensions S/S0


of étale algebras of arbitrary dimension. To simplify notation we assume from now
on that dimF S = 8.


Let (Étex
2/4


)+ be the functor which associates to F the set
(


Étex
2/4


F


)+
of isomor-


phism classes of oriented quadratic extensions S/S0 of étale algebras over F such


that dimF S = 8. A Witt invariant on (Étex
2/4


)+, more precisely on W (D4), is a
map


H1
(


F,W (D4)
)


→W (F )


for each F/k, subject to compatibility and specialization conditions (see [9]). The
set of Witt invariants


Inv
(


W (D4),W
)


= Inv
(


(Étex
2/4


)+,W
)


is a module over W (k). The aim of this section is to describe this module and how
triality acts on it. A main tool is the following splitting principle, which is a special
case of a variant of the splitting principle for étale algebras (see [9, Theorem 24.9])
and which can be proved following the same lines.


Theorem 8.1. If a ∈ Inv
(


(Étex
2/4


)+,W
)


satisfies a(S/S0) = 0 for every product
of two biquadratic algebras


S = F
(√
x,
√
y
)


× F
(√
z,
√
t
)


, S0 = F
(√
xy


)


× F
(
√
zt


)


.


over every extension F of k, then a = 0.


Let G be an elementary abelian subgroup of W (D4) of type (2, 2, 2, 2). It belongs
to the conjugacy class N = 65 in Table 1. Theorem 8.1 can be restated in the
following form:


Theorem 8.2. The restriction map


Res: Inv
(


W (D4),W
)


→ Inv
(


G,W
)
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is injective.


Proof. G-torsors correspond to products of two biquadratic algebras. �


A construction of Witt invariants is through trace forms. Let S/S0 ∈ (Étex
2/4


)+


and let σ be the involution of S. We may associate two nonsingular quadratic trace
forms to the extension S/S0:


Q(x) = QS(x) = 1
8 TrS/F (x2)


Q′(x) = Q′
S(x) = 1


8 TrS/F


(


xσ(x)
)


, x ∈ S
The decomposition


S = Sym(S, σ) ⊕ Skew(S, σ)


leads to orthogonal decompositions


Q = Q+ ⊥ Q−, Q′ = Q+ ⊥ −Q−,


hence the forms Q+ and Q− define two Witt invariants attached to S/S0. The
étale algebras associated to S/S0 by triality lead to corresponding invariants. We
introduce following notations: S/S0 = S1/S0,1 and Si/S0,i, i = 2, 3, for the asso-
ciated étale algebras. We denote the corresponding Witt invariants by Q+


i = Q+
Si


and Q−


i = Q−


Si
, i = 1, 2 and 3.


Another construction of Witt invariants is through orthogonal representations.
Let On be the orthogonal group of the n-dimensional form 〈1, . . . , 1〉. Quadratic
forms over F of dimension n are classified by the cohomology set H1(F,On). Thus
any group homomorphism W (D4) → On gives rise to a Witt invariant. In par-
ticular we get a Witt invariant q associated with the orthogonal representation
W (D4) → O4 described in (5.3). Moreover the group W (D4) has three normal
subgroups Hi of type (2, 2, 2) (i.e., isomorphic to S3


2), corresponding to the classes
N = 33, 34, 35 of Table 1. Since the factor groups are isomorphic to S4, the
canonical representation S4 → O4 through permutation matrices leads to three
Witt invariants q1, q2, q3.


Proposition 8.3. 1) The Witt invariant q is invariant under triality and coincides
with Q−


i , i = 1, 2, 3.
2) We have qi = Q+


i , i = 1, 2, 3, and the three invariants q1, q2, q3 are permuted
by triality.


Proof. The fact that q is invariant under triality follows from the fact that triality
acts on W (D4) by an inner automorphism of O4. Moreover the trialitarian action
on W (D4) permutes the normal subgroups Hi, hence the invariants qi. For the
other claims we may assume by the splitting principle that S1 is a product of two
biquadratic algebras


(8.4) S1 = F
(√
x,
√
y
)


× F
(√
z,
√
t
)


, S0,1 = F
(√
xy


)


× F
(√
zt


)


.


An explicit computation, using for example the description of triality given in the
proof of Theorem 4.1 (see [1] and [19]) shows that one can make the following
identifications


S2 = F
(√
x,
√
z
)


× F
(√
y,
√
t
)


, S0,2 = F
(√
xz)× F (


√
yt


)


and


S3 = F
(√
x,
√
t
)


× F
(√
y,
√
z
)


, S0,3 = F
(√
xt


)


× F
(√
yz


)


.
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Observe that, with this identification, the 3-cycle (y, z, t) permutes cyclically the
algebras Si/S0,i. We get


Q−


i = 〈x, y, z, t〉
for i = 1, 2, 3, and


Q+
1 = 〈1, 1, xy, zt〉, Q+


2 = 〈1, 1, xz, yt〉, Q+
3 = 〈1, 1, xt, yz〉.


The equalities q = Q−


i and qi = Q+
i follow from the fact that the corresponding


cocycles are conjugate in O4. �


Further basic invariants are the constant invariant 〈1〉 and the discriminant


〈d〉 = Disc(q) = Disc(qi), i = 1, 2, 3,


which corresponds to the 1-dimensional representation det : W (D4) → O1 = ±1.
Since Q+


i (1) = 1, the quadratic forms qi = Q+
i represent 1 and one can replace


them by 3-dimensional invariants ℓi = (1)⊥ ⊂ qi, i = 1, 2, 3.
In the following result λ2q denotes the second exterior power of the quadratic form q
(see [9]). If q = 〈α1, . . . , αn〉 is diagonal, then λ2q is the n(n − 1)/2-dimensional
form λ2q = 〈α1α2, . . . , αn−1αn〉.


Theorem 8.5. 1) The W (k)-module Inv
(


W (D4),W
)


= Inv
(


(Étex
2/4


)+,W
)


is free
over W (k) with basis


(8.6)
(


〈1〉, 〈d〉, q, 〈d〉 · q, ℓ1, ℓ2, ℓ3
)


.


2) The elements 〈1〉, 〈d〉 , q, 〈d〉·q are fixed under triality and the elements ℓ1, ℓ2 and ℓ3
are permuted.
3) The following nonlinear relations hold among elements of (8.6):


〈d〉 = Disc(q) = Disc(qi),
λ2q = ℓ1 + ℓ2 + ℓ3 − 〈1, 1, 1〉


〈1, d〉 · q = q · (ℓi − 〈1〉), i = 1, 2, 3.


Proof. 1) The proof follows the pattern of the proof of [9, Theorem 29.2]. Let G
be an elementary subgroup of W (D4) of type (2, 2, 2, 2), i.e. isomorphic to S4


2. An


arbitrary element of H1(F,G) is given by a 4-tuple (α1, α2, α3, α4) ∈
(


F×/F×2
)4


.
For I a subset of [1, 4] = {1, 2, 3, 4}, we write αI for the product of the αi for
i ∈ I. By [9, Theorem 27.15] the set Inv(G,W ) is a free W (k)-module with basis
(αI)I⊂[1,4]. It then follows from Theorem 8.2 that the family of elements given in


(8.6) is linearly independent over W (k). Let a be an element of Inv
(


(Étex
2/4


)+,W
)


and let Sα be the algebra (8.4) for α1 = x, α2 = y, α3 = z, α4 = t. The
map α 7→ a(Sα) is a Witt invariant of G, hence by [9, Theorem 27.15] can be
uniquely written as a linear combination


(8.7)
∑


cI · 〈αI〉 with cI ∈W (k).


The claim will follow if we show that the invariant α is in fact a linear combination
of the elements given in (8.6). By [9, Prop. 13.2], the image of the restriction map
Inv


(


W (D4),W
)


→ Inv(G,W ) is contained in the W (k)-submodule of Inv(G,W )


fixed by the normalizer N = S3
2 ⋊ D4 of G in W (D4) (conjugacy class N = 96 in


Table 1). The group N acts on the set of isomorphisms classes of algebras Si by


acting in the obvious way on the symbols ±√x, ±√y, ±√z, ±
√
t. It follows that
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N acts trivially on this set of isomorphisms classes. This shows that only linear
combinations of elements in the family


B = {〈1〉, 〈x〉 + 〈y〉+ 〈z〉+ 〈t〉, 〈xy〉+ 〈zt〉, 〈xz〉+ 〈yt〉, 〈xt〉+ 〈yz〉,
〈xyz〉+ 〈xyt〉 + 〈xzt〉+ 〈yzt〉, 〈xyzt〉}


can occur in the sum (8.7). The family B and the family given in 8.6 are equiv-
alent bases. This implies the first claim of Theorem 8.5. Claim 2) follows from
Proposition 8.3 and 3) is easy to check for a product of biquadratic extensions. �
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Lie. Chapitres 4, 5 et 6.


[4] J. Brillhart. On the Euler and Bernoulli polynomials. J.Reine Angew. Math., 234:45–64, 1969.
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