SIGNATURES OF HERMITIAN FORMS
VINCENT ASTIER AND THOMAS UNGER

AsstrAcT. Sighatures of quadratic forms have been generalized toitian forms
over algebras with involution. In the literature this is @oria Morita theory, which
causes sign ambiguities in certain cases. The main restiiiopaper consists of a
method for resolving this problem, using properties of thelarlying algebra with
involution.

1. INTRODUCTION

Signatures of quadratic forms over formally real fields hbeen generalized in
[BP2] to hermitian forms over central simple algebras witoiution over such fields.
This was achieved by means of an application of Morita theoiy a reduction to the
guadratic form case. A priori, signatures of hermitian fercan only be defined up
to sign, i.e., a canonical definition of signature is not gaesn this way. In [BP2]
a choice of sign is made in such a way as to make the signatutedbrm which
mediates the Morita equivalence positive. A problem anglen that form actually
has signature zero or, equivalently, when the rank one ti@mform represented by
the unit element over the algebra with involution has sigretero, for it is not then
possible to make a sign choice.

In this paper, after introducing the necessary prelimag(Section 2), we review
the definition of signature of hermitian forms and study sarhiés properties, before
proposing a method to address the problem mentioned abeetédBs 3 and 4). Our
main result (Theorem 4.6) shows that there exists a finitebaumof rank one hermitian
forms over the algebra with involution, having the propehat at any ordering of the
base field at least one of them has nonzero signature. Thelsema forms are used
in an algorithm for making a sign choice, resolving the peobfformulated above.

In Section 5 we show that the resulting total signature mapa@ated to any hermit-
ian form is continuous. Finally, in Section 6 we show, usiiggatures, that in general
there is no obvious connection between torsion in the Wadtigrof an algebra with
involution and sums of hermitian squares in this algebra.
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2. PRELIMINARIES

2.1. Central Simple Algebras with Involution. The general reference for this sec-
tion is [KMRT, 2.A, 2.C]. LetF be a field of characteristic not two and l&tbe a
central simple F-algebra.e.,Z(A) = F andA has no nontrivial two-sided ideals. We
always assume that digfA) is finite. It can be shown that diggA) is a square. We
call deg@) := vdimg(A) thedegreeof A. Letm = deg@).

An involutiono on A is an anti-automorphism @ of period two. Throughout the
paper we assume thatis F-linear, i.e., the restriction af to F is the identity onF.
Such involutions are also said to bethe first kind Let

Sym@A, o) ={ac Al o(a) = a} and Skewd, o) ={ac A|o(a) = —a}.

Then o is eitherorthogonal(or, of type+1) if dimg Sym@A, o) = m(m+ 1)/2, or
symplectiqor, of type-1) if dimg Sym(A, o) = m(m - 1)/2. By the Skolem-Noether
theorem, twd--linear involutionso- andr on A differ by an inner automorphism:

T=Int(u)o o

for someu € A* such thato(u) = +u. Here Int()(X) := uxu? for x € A. The
involutionst ando- are of the same type if and onlydf(u) = u.

We denote by Syn#, o)* and Skewd, o)* the sets of invertible elements in Sy ()
and Skewd, o), respectively.

Examples 2.1.

(1) (F,idg): the fieldF is trivially a central simpld=-algebra. The identity map gds
an orthogonal involution.

(2) (My(F),1t): the algebra oh x n-matrices with entries fronk is a central simple
F-algebra. The transposition mas an orthogonal involution.

(3) ((@ b)g, -): the quaternion algebra determineddyy € F* with F-basis{1,1, j, k}
satisfyingi? = a, j2 = bandij = —ji = kis a central simplé=-algebra. It
is a division algebra if and only if the (quadratic) norm fotth —a, —b, ab) is
anisotropic oveF. Quaternion conjugation, determined by = —i, j = —j, and
thusk = —k is the unique symplectic involution om, (). Quaternion conjugation
is often denoted by instead of-.

(4) ((a b)g,¥): the involution? defined on the quaternion algebealy)r by 9(i) = —i,
?(j) = j, HK) = kis orthogonal.

2.2. e-Hermitian Spaces and Forms.The general reference for this section is [K,
Chap. I]. Treatments of the general and division cases &anbad found in [G-B] and
[L2], respectively.

Let A be a central simpl&-algebra, equipped with aR-linear involutiono. Let
e € {-1,1}. An e-hermitian spacever (A, o) is a pair (M, h), whereM is a finitely
generated righA-module andh : M x M — A'is a sesquilinear form such that
h(y, X) = eo(h(x,y)) for all x,y € M. We call (M, h) ahermitian spacevhens = 1 and
a skew-hermitian spac#hene = —1. Consider the lefA-moduleM* = Homx(M, A)
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as a rightA-module via the involutiorr. The formh induces am-linear maph* :
M — M* X +— h(x,-). We call M, h) nonsingularif h* is an isomorphism. All
spaces occurring in this paper are assumed to be nonsinfutas clear whatM is,
we simply writeh instead of M, h) and speak of éorminstead of a space.

Witt cancellation and Witt decomposition hold ferhermitian spacesM, h) over
(A, o). Furthermore, ifA = D is a division algebra (so thdl = D" for some integer
n) such thatD, o, &) # (F, idg, —1), thenh can be diagonalized: there exist elements
a,...,a, € SymD, o)* such that

n
h(x.y) = » o(x)ay. Yxye D"
i=1
In this case we use the shorthand notation

h:<al7---’an>0"

which resembles the notation used for diagonalized quadi@ims. If A is central
simple we can certainly consider diagonal hermitian forefingd on freeA-modules
of finite rank, but some hermitian forms ove, ¢-) may not be diagonalizable.

Let S.(A, o) denote the commutative monoid of isometry classes-bérmitian
spaces overA, o) under orthogonal sum. In this paper we consiermitian spaces
(M, h) up to isometry, and so identify them with their classS{{A, o). Let W, (A, o)
denote the Witt group (or, more precisely, A§F)-module) of Witt classes of-
hermitian spaces oveA(o). Whene = 1 we drop the subscript and simply write
S(A, o) andW(A, o).

2.3. Adjoint Involutions. The general reference for this section is [KMRT, 4.A]. Let
A be a central simplE&-algebra, equipped with d#-linear involutiono-. Let (M, h) be
ane-hermitian space oveA( o). The algebra EngM) is again central simple ovér
sinceM is finitely generated [KMRT, 1.10]. The involution @dn Endy(M), defined
by

h(x, f(y)) = h(ad,(f)(X).y), Yx.y € M, ¥f € End\(M)
is called theadjoint involutionof h. The involution agd is F-linear and

type(ad) = ¢ type().
Furthermore, every-linear involution on Eng(M) is of the form ag for somee-
hermitian formh over (A, o) and the correspondence betweep addh is unique up
to a multiplicative factor ifF* in the sense that ad ad, for everya € F*.

By a theorem of Wedderburn there exists Radivision algebraD (unique up to
isomorphism) and a finite-dimensional righivector spac#/ such thatA = Endy (V).
ThusA = M(D) for some positive integem. Furthermore, if there is aR-linear
involutiono on A, then there is af-linear involution— on D and angyg-hermitian form
@o over D, —) with g € {-1, 1} such thatQ, o) and (Eng(V), ad,,) are isomorphic as
algebras with involution. In matrix form gglis described as follows:

ad, (X) = GoX Dy, VX € Mn(D),
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where®, € GL(D) is the Gram matrix ofo. Thus®y = gy®o.

2.4. Hermitian Morita Theory. We refer to [BP1,§1], [FM], [G-B, Chap. 2-3],
[K, Chap. I,§9], or [L1] for more details. Letl, h) be ane-hermitian space over
(A,o). One can show that the algebras with involution (KiMi), ad,) and @A, o)
are Morita equivalent. for every € {-1,1} there is an equivalence between the
categories’Z,(Enda(M), ad,) and.sZ;, (A, o) of non-singulag-hermitian forms over
(Enda(M), ad,) and non-singulasu-hermitian forms overA, o), respectively (where
the morphisms are given by isometry), cf. [K, Thm. 9.3.5]isTéquivalence respects
isometries, orthogonal sums and hyperbolic forms. It imdusomorphisms

S,(Endi(M), ad,) = S.,(A o) andW,(Enda(M), adh) = W, (A, o)

of commutative monoids and/(F)-modules, respectively. The Morita equivalence
and the isomorphisms are not canonical. One of the reastimatiagl = ad,, for any
A € F*, as observed above.

The algebras with involution4, o) and O, —) are also Morita equivalent. For fu-
ture use, it will be convenient to decompose this Morita egjence into three non-
canonical equivalences of categories, the last two of whiehwill call scalingand
collapsing For computational purposes later on, we describe them trinfiarm. We
follow the approach of [LUZ2]:

scaling collapsing

H (A7) — H:(Mn(D), ad,)) —— H0e(Min(D), =) ——— H0(D, -).
Scaling: Let (M, h) be ans-hermitian space oveM(D), ad,,). Scaling is given by
(M, h) — (M, ®5*h). (1)

Note thatd;* is only determined up to a scalar factorfii since ag, = ad,,, for any
e F*.

Collapsing: Recall thatM,(D) = Endy(D™) and that we always hawd = (DM =
My m(D) for some integek. Leth: M x M — My(D) be ansoe-hermitian form with
respect to-'. Then

h(X, y) = )_(tBy’ VX,y € Mk,m(D),

whereB € My(D) satisﬁes§t = goeB, so thatB determines agge-hermitian formb
over D, -). Collapsing is then given by

(M, h) — (DX, b).

3. SGNATURES OF HERMITIAN FORMS

In order to introduce signatures of hermitian forms, we da#l a special case first.
Let F be a real closed field and [Et = (-1, —1)r denote Hamilton’s quaternion divi-
sion algebra oveF. Let — be quaternion conjugation difi and leth ~ (ay, ..., a,)_
be a hermitian form oveiH, —-). Now, a,, ..., a, € Sym(, —) = F and so we can con-
sider the quadratic form = (a, .. ., a,). We define thesignature of hdenoted sigh,
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to be the signature of the quadratic fognNote that this definition is independent of
the choice of elements, ... ., a, by a theorem of Jacobson [J].

For the general case we follow the approach of [Bf23§3.4]: letF be a formally
real field and let &, o) be a central simpl&-algebra withF-linear involution. Leth
be a hermitian form overX, o). Consider an ordering € Xg, the space of orderings
of F. In order to define the signature lofat P we do the following: Extend scalars to
the real closur&p of F atP. The extended algebra with involutioA®r Fp, o ®idg,)
is then Morita equivalent to aRp-division algebra withFp-linear involution Op, ),
whereo ®idg, is adjoint to arep-hermitian formpp over Op, 9p) andep € {-1, 1}. By
a famous theorem of Frobenius the only division algebrak wgnter the real closed
field Fp areFp itself andHp, Hamilton’s quaternions ové¥p. Furthermore, we may

choosedr = idg, (often simply denoted id) in the first case af¢l= — in the second
case by Morita theory (scaling). Thus we may take
(Dp, ﬁp) = (Fp, ide) or (Dp, ﬁp) = (Hp, —). (2)

The Morita equivalence induces an isomorphism

Mo S(A®E Fp,0 ®idg,) — S,.(Dp, ) (3)

which is not canonical (for instance, the fogn is only determined up to a nonzero
scalar factor). Since Morita equivalence preserves isoesedf hermitian forms, we
may define the signature bfat P to be equal to the signature o#p(h ® Fp).

Whenep = 1, the form.#p(h ® Fp) is either quadratic ovefp, in which case its
signature is obtained in the usual way, or hermitian o¥&y, £), in which case the
signature is computed as in the special case above.

Whenep = -1, the formspp and.Zp(h ® Fp) are both skew-hermitian ovefif, —)
or alternating oveFp. Since skew-hermitian forms ovei§, —) are always torsion
[S2, Thm. 10.3.7] and alternating forms oV&r are always hyperbolic, it makes sense
to define sigp .Zp(h®Fp) = sign, ¢p = 0 in those cases. We call the orderifiys X
for whichep = —1 the @, o)-nil orderingsof F, or simply thenil orderingsof F if the
context is clear. We denote the set &f §)-nil orderings ofF by Nil(A, o).

A different choice of Morita equivalence betwed(z Fp, o ® idg,) and Op, J7),
say, may at most result in a sign change for the signatures fbiows from the
computations in [G-B, pp. 54-55]. (Note that such a sign gleamay occur, cf.
Remark 3.3 below.) We fix a Morita equivalence for each oragf € Xg.

In light of these remarks we now make the following

Definition 3.1. We define thesignature of h at Pdenoted sighh, as follows:

Slgl’]p %P(h@ Fp) if ep=1

gt h :=
SIgrk {o if ep = —1°

where the superscript indicates the dependence on the choice of Morita equivalenc
discussed earlier.
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Remark 3.2. An attempt to make this definition canonical is more probleécrnitan
suggested in [BP&3.3,§3.4], see Section 4.

The following table summarizes all the possibilities:

(Dp. 99) 7 orthogonal symplectic

ep=-1 ep=1

op, #p(h® Fp): skew-hermitian | ¢p, #p(h® Fp): hermitian

(Hp, _)
signsh:=0 signg h := signs #p(h ® Fp)
ep=1 ep=-1
¢p, #p(h® Fp): quadratic ¢p, #p(h® Fp): alternating
(Fp,idr;)
signg h := signs .#p(h ® Fp) signkh:=0

By the properties of Morita equivalence, the signature of@ehnbolic form will be
zero and

sigrg(hy L hy) = sigrp hy + sigrg h,

for all hermitian formshy, h, over (A, o). Thus sigl induces a homomorphism of
additive groupWW(A, o) — Z for eachP € Xg.

Remark 3.3. Leth be a hermitian form overX, o), letP € Xr and letip € F5. If we
replacepp by Appp in the computation of sighh above, the final result is multiplied by
the sign of1p. This follows from considering the scaling part of Moritau@glence,
cf. (1).

Let h be a hermitian form overA, o) and letP € Xg \ Nil(A, o) (so thatep = 1).
Let # be anF-basis ofA. The isomorphism#p in (3) can be decomposed into three
isomorphisms as follows:

scaling collapsing

. &
S(A®k Fp,0 ®idr,) — S(Mm(Dp), ad,;) — S(Mm(Dp), 9p') —— S(Dp, Ip)

h® Fpt f;(h@ FP)I—>(DE,1f*P(h® Fp)l—>%p(h® Fp)
(4)

Hereéy, is the commutative monoid isomorphism induced by the isqinism

é:p . (A®F Fp,o® idFP) ; (Mm(DP)’ aCLP)

discussed in the context of Wedderburn’s theorerfdr8. The scaling matri®p is
the matrix of the formpp with respect to the basis (%) of My (Dp).
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Example 3.4.We describe how to compute the signature of a diagonal hiamddrm
h over (A, o) at an ordering? € Xg. Assume thah = (a,,..., a,), with respect to
someF-basis# of A. Note thata,,...,a, € SymA, o)*. By the properties of the
signature we have

SiIgNE(@u, ..., e = ) SIgNK@),
i=1
so it sutices to do the computation for a fora),. of rank 1 (witha € Sym(A, o)*).
If ep = —1, the orderindP is (A, o)-nil and sigr§(a),, = O for that ordering. Thus
we assume thatp = 1.
We puska),. through the sequence (4). The first step gives us:

(@® Dgsid F &p((@® D)ysia) = (§p(A® 1))ag,,»

where
£p(a® 1) € SymMu(Dp), ad,,).

For the second step, lét, be the matrix of the fornpe with respect ta&p(%). It is
easy to see that

DpHEp(@® 1))ag, = (Dpép(a® 1))y,

For the third step, note thai;'ép(@a ® 1) € SymMm(Dp), 9p'). Since Dp, Jp) is
either Fp, idr,) or (Hp, —), the matrixd;'£p(a®1) is either symmetric or hermitian and
thus corresponds to a quadratic or a hermitian fggnof dimensionm over Dp, Jp).
We then have

sigrs(@), = sign, yp.

We give a simple illustration of this method (more elaboetamples will be given
later in Propositions 6.4 and 6.5):

Example 3.5. Let F be the Laurent series fiel®l(X). ThenXg = {Pi, P,}, where
X >p, 0 andx <p, 0. Consider the quaternion algedba= (-1,-X)¢. This is a
division algebra oveF since its norm form(1, 1, x, X) is anisotropic oveF. Let A :=
M,(D) be equipped with the conjugate transpose involutioa —!, where— denotes
guaternion conjugation. Then is a symplectic involution. Consider the hermitian
formh = ((}9)), over (A, o). Now A®r Fp, = M,(Hp,) sincexis a square ifFp, and
A®r Fp, = My(Fp,) since—-xis a square irFp,. We see that the orderiri®, is (D, —)-
nil, so that sig, h = 0. Following the steps in Example 3.4 we get gign= +2
sincec becomes adjoint to the hermitian forgs, = (1)_« over Ma(Hp,), -') after
scalar extension to the real closurefofat P,. (As observed in Remark 3.3, only
knowing ¢p, up to sign only gives us the signature up to sign. In Sectiored4mi
explain how a choice of sign can be made.)

Lemma 3.6. Let Pe Xr and letyp be as above. Thesigrg(1), = signs ¢p.
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Proof. This is trivially true for the A, o)-nil orderings ofF. Thus assume th& € X
is not nil. We extend scalars to the real closureFoét P, (1), +— (1), ® Fp =
(1®1),sig and pusR1® 1),iq through the sequence (4), as illustrated in Example 3.4:

(1® Dosia — Ep(1® Losia) = (€p(1® ag,, = (Imdag,, > PpImdaq,, = (Pp1)get.
(Note thatép(1® 1) = I, them x mridentity matrix inM,(Dp) Sinceép is an algebra
homomorphism.) The matriso;* now corresponds to a quadratic form owgr or a
hermitian form over§p, —). In either cas&;' is congruent tabp. Thus sigi(1), =
Signs ¢p. ]

In [LT], Lewis and Tignol defined thsignature of the involutiow at P € Xg as

follows:
Signs o = +/signs T,

whereT,, is theinvolution trace formof (A, o) which is a quadratic form ovet defined
by T,(X) := Trda(c(X)x), for all x € A. Here Trd\ denotes the reduced trace/f

Examples 3.7.

(1) Let (A, o) = (My(F),t). ThenT, =~ n? x (1). Hence sigpo = nforall P € X¢.

(2) Let (A, o) = ((& b)g, —). ThenT,, ~ (2) ® (1, —a, —b, ab). Hence sigpo = 2 for
all P € Xg such that <p 0,b <p 0 and sign = O for all otherP € Xg. Note that
N = (1, —a, —b, ab) is the norm form ofA.

Remark 3.8. Let (A,0) and B, 1) be two central simpld--algebras withF-linear

involution.

(1) Consider the tensor produ&®r B, c®7). ThenT,s, = T,® T, and so sigp(c®
7) = (signs o)(signs 7) for all P € Xg.

(2) If (A,0) = (B, 1), thenT, ~ T, so that sigpo = sign. 7 for all P € X¢.

Remark 3.9. Pfister’s local-global principle holds for algebras witkafution (A, o)

and also for hermitian formis over such algebras, [LU1]:

signno =0, YP € Xg © (A, o) is weakly hyperbolic
(i.e.,o is the adjoint involution of a torsion form) and
sigrkh =0, VP € Xg & the class ohin W(A, o) is torsion

Remark 3.10. The map sigior is continuous fromXg (equipped with the Harrison
topology, see [Lam, Chapter VIII 6] for a definition) #(equipped with the discrete
topology). Indeed: define the mag onZ by setting vk = -1 if k is not a square in
Z. SinceZ is equipped with the discrete topology, this map is contusudinceT,, is

a quadratic form, the map sigp is continuous fromXg to Z (by [Lam, Proposition

6.6]). Thus, by composition, sign= +/signT,, is continuous fronXg to Z.

Lemma 3.11.Let Pe Xg. Then
signs o = Ap [Signs e,
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Where/lp =1if (Dp,ﬂp) = (Fp, ide) and Ap = 2 if (Dp, ﬁp) = (Hp, —). (If we
want to indicate the dependenceafon (A, o) we will write Apa,.) In particular, if
P e Nil(A, o), thensign, o = signs ¢p = 0.

Proof. This is a reformulation of [KMRT, 11.11] or of [LT, Theorem &jd part of its
proof. ]

Lemma 3.12. Let (M, h) be a hermitian space ov€A, o). Let Pe Xg. Then
sign, ad, = Ap[sigr§ hl,
with Ap as defined in Lemma 3.11. In particular,
signsh =0 & sign,ad, = 0.

Proof. Assume first thaP € Nil(A, o). Then sigi h = 0. Consider the adjoint invo-
lution ad, on Endy(M). After extension of scalars #©p we have Morita equivalences

%(EndA(M) Qe Fp, adq ® ide) — %(A Qe Fp,o® ide) —> %_1(DP, ﬁp)

and ad ® idg, is adjoint to a skew-hermitian form oveDg, Jp). Note that agando
are of the same type sintds hermitian. Thus adanddp are of opposite type since
P € Nil(A, o). ThereforeP € Nil(Enda(M), ad,). By Lemma 3.11 we conclude that
sign, ad, = 0.

Next, assume thd € Xg \ Nil(A, o). Without loss of generality we may replaEe
by its real closure a®. Consider the Morita equivalence

JAA, o) — FAD, )
with (D,9) = (H, -) or (D, ) = (F,id). Let (N, b) be the hermitian space oveDd ()
corresponding toN, h) under this Morita equivalence. Then sfgm = signb. By
[BP1, Remark 1.4.2] we have (Ex@),ad,) = (End(N),ad,) so that signagd =
signag. By [LT, Theorem 1] or [KMRT, 11.11] we have signgé A |signb| with
A=1if(D,9) = (F,id) anda = 2 if (D,®) = (H,-). We conclude that sign ad=
Alsign® h. n

Remark 3.13. Since by Remark 3.10 the total signature of an involutioras con-
tinuous, it follows from Lemma 3.12 that Ifis any hermitian form overA, o), then
the sefP € Xg | sign, h = O} is clopen.

Corollary 3.14. Let (M, h) be a hermitian space ovéA, o) and let ac Sym(A, o)*.
Consider the hermitian spa¢#l, ah) over (A, Int(a) o o). Let Pe Xg. Then

sigrg(ah) = £ sigrg h.

Proof. An easy computation shows that the involutiongaad ad;, coincide on Eng(M).
Hence they have the same signaturd®at Xr. The conclusion now follows from
Lemma 3.12. [

In other words, scaling by an invertible element at most gearthe sign of the
signature. Scaling by1 gives an instance where a sign change of the signaturesoccur
This is contrary to what is claimed in [BP2, p. 662].
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Lemma 3.15. Let ae Sym(A, o)*. For any Pe Xg we have

1
sigrns(a), = = signs(Int@@™) o o),
P
with Ap as defined in Lemma 3.11.

Proof. The involution (Inté™?) o o) ® idg, oNA®f Fp is adjoint to some fornpp. We
have

. , 1 _
SIgE( D er = SigMH e = 27— signs(Int@™) o ),
by Lemmas 3.6 and 3.11. By Corollary 3.14, we have

Sigrfxa)a' == Sigr\:<1>lnt(a*1)oo--
The result now follows. ]
Lemma 3.16. Let (A, o) and (B, r) be central simple F-algebras, equipped with F-

linear involutions. Let ac Sym(A, o)* and b e Sym@®B, r)*. For any P € Xg we
have

Sign(a® b)yer = +up SIgNE(a), Signs(b)-,
whereup = 4 if A®r Fp and B®g Fp are both non-split, angp = 1 otherwise.

Proof. By Lemma 3.15 and the fact that the signature of involutien®ultiplicative
we have

sign(a® by,er = +; signp(lnt((a@) b)) o (c® T))

Ap AsB,cor

s sign((nta) o o) @ (Int(b™) 0 7))

Ap AsB,cor

+; signs(Int(@™) o o) signs(Int(b™) o 7)

Ap AsB,cor

_ s AeacdeBr Gon ey, signu(b)..

/lP,A®B,(J'®T

Lettingup = Apasdper/ApasBosr IS Value can be determined by a case analysis.

4. AN ALGORITHM FOR CHOOSING THE SIGN OF THE SIGNATURE

In quadratic form theory the signature of the foth) is always 1 at any ordering of
the ground field. In contrast, the signature of the hermitiam (1), over (A, o) may
not even always be positive and could very well be zero, cinia 3.6.

In order to pursue the analogy with the quadratic forms cisgems natural to
require of the signature map Btfrom W(A, o) to Z that the signature ofl), be
positive. This is precisely the approach taken in [B§23, §3.4], where the form in
{ep, —pp} IS chosen, whose signatureRats nonnegative, cf. Remark (3.3). Thiext
of this choice is to make the signature(@j, positive by Lemma 3.6.
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However, it is possible that the signaturgdf, atP (i.e. sign ¢p) is zero, in which
case the approach taken in [BP2] no longer works and the tsignanap atP from
W(A, o) to Z remains defined only up to sign.

In order to fill this gap, our approach consists of replachmgform(1), by a finite
number of rank one hermitian forngb, )., ..., (b;), over A, o), having the property
that at any orderindg® € Xg at least one of them has nonzero signature. We start by
proving the existence of the elemels. .., b,. As our proof makes use of Merkur-
jev’'s theorem [Me] we will deal with the case of multi-quat&m algebras with de-
composable involution first.

Remark 4.1.

(1) Let (A, 0), (B,7) and C, v) be central simplé&-algebras withH--linear involution
such that, o) = (B, 7) & (C,v), then

type() = type() - typef), ()

cf. [KMRT, 2.23].

(2) Assume thaA is a biquaternion algebra with decomposable involutiorif o is
orthogonal, then it is not dicult to see that there exist quaternion algebras with
orthogonal involution Q, o1), (Q., 02) and gquaternion algebras with symplectic
involution (Q7, y1), (Q5, v2) such that

(A, o) = (Q1,01) ® (Q2,02) = (QF, v1) ®F (Q5, ¥2),

cf. [ST, §2]. On the other hand, i~ is decomposable symplectic, then it fol-
lows from (5) that one of the quaternion components has tandeweed with the
canonical (symplectic) involution, and the other with athogonal involution.

Lemma 4.2. Let (A, o) = (Q1,01) ® - - - ® (Qn, o) be a multi-quaternion algebra
with decomposable F-linear involution. LetdP Xr \ Nil(A, o). Then the number of
indices i€ {1,...,n} such that P Nil(Q;, o) is even.

Proof. Recall thatP € Nil(Q;, o) if and only if Q; ® Fp = Hp (resp. Mx(Fp)) in
caseo; is orthogonal (resp. symplectic). The statement now fatlfom an easy, but
tedious, case analysis depending on the type aihd the parity oh. [

Proposition 4.3. Let(A, o) = (Q1, 071)®k - - -®¢ (Qn, o) be a multi-quaternion algebra
with decomposable F-linear involution. There exists adisiibset S= {ay, ..., a;} of
Sym(A, o)* such that for every R Xg \ Nil(A, o) there is an index e {1,..., £} such
that

signs(Int(a;) o o) # 0.

Proof. We will carry out the proof in three steps.
(1) Assume thah = 1, so thatA = (a, b)r for certain elementg,b € F*. For a
positive integet anday, . .., & € F*, recall the Harrison set notation

H(al,...,a() ={PeXr|a >po,...,a{ >p0}.
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Observe that

Xrg = H(a,b) UH(a, —b) UH(-a, -b) U H(-a, b).

If o is symplectic, theXg \ Nil(A, o) = H(-a, —b) and thus sigpo = 2 for all

P € H(-a, —b) sinceT, is the norm form ofA (up to a factork2)). Thus we may take
> &({e}(}t.assume that is orthogonal. In this case

Xe \ Nil(A, o) = H(a, b) UH(a, —b) U H(-a, b).
Consider the orthogonal involutiah defined by

H(1) =1, (i) = —i, 9()) = |, 9(k) =k

where{1, 1, j, k} denotes the usu&l-basis ofA. Since any two involutions éer by an
inner automorphism, there existgj& Sym(A, o’)* such that? = Int(q) o o-. Consider
also the involutions = Int(j) o ¥ andw = Int(k) o . After computing the involution
trace forms of}, r andw we see that
sign, ¥ = 2 for all P € H(-a, b),
sign.7 = 2 for all P € H(a, b),
sign.w = 2 for all P € H(a, —b).
Thus we may tak& = {q, jq, kg}. This settles the case= 1.
(2) Next assume that = 2, so thatA = (a b)r ®¢ (c,d)e for certain elements
ab,cde F*ando =01 ® 0.
o orthogonal (n = 2). We may assume that; is orthogonal orQ, = (a, b)r and

thato, is orthogonal orQ, = (c, d)g, cf. Remark 4.1(2). We have € Xg \ Nil(A, o)
if and only if AQr Fp = My(Fp). Hence P € Xg \ Nil(A, o) if and only if

Q1 ®r Fp = M(Fp) and Q. ®r Fp = My(Fp)

or
Qi@ Fp=Hp and Q,®r Fp = Hp.
Thus

Xe \ Nil(A, o) = |(H(a.b) UH(a, -b) U H(-a, b)) n (H(c. d) U H(c, —d) U H(-c. d))|
U [H(-a,—b) n H(-c, -d)|
= |(Xe \ Nil(Q1, 072)) 0 (Xe \ Nil(Qz, 2)) |
U (Nil(Qy, or1) N Nil(Qz, 072))-

We first considefxp \ Nil(Qu, 0'1)) N (XF \ Nil(Q,, 0-2)). By then = 1 case there exist
involutionsr; 1, 7t 2, i3 ON Q; for i = 1, 2 such that

ik = Int(a k) o o for someg;x € Sym@;, oi)*
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for k = 1,2,3 and for everyP € Xg \ Nil(Q;, o), one of sigR 7 1, Signs 7i 2, SIQNs 71 3
is equal to 2. We consider all possible products

Oke = M1k ® Mo = INt(ayx ® Az) © (071 ® 072)
for k,¢ € {1,2,3}. Note thata;x ® a,, € Sym@A, o)*. Then for eachP ¢ (XF \
Nil(Qu. o1)) N (X \ Nil(Qz, 072)), one of

Signs oke = (SIgNs 1)(SIgNs 2,¢)
is equal to 4.

Secondly, we consider Nilf;,01) N Nil(Q,,05). Fori = 1,2, lety; denote the
unique symplectic involution 0,. Then there exist; € Skew@Q, o;)* such that
Yi = Int(a,-) ocij. Let

Yy=71®72 = Int(a1 ® &) o (01 ® 072).

Thena; ® a; € Sym(A, o)*. Furthermore,

signy y = (signs y1)(signs y2) = 4
for all P € Nil(Qq,01) N Nil(Q2,03%). Thus we may tak& = {a;x Q@ ax, | k¢ =
1,2 3lU{a; ® ay}.

o symplectic (h = 2). We may assume that; is orthogonal orQ; = (a, b)r and
thato, = vy, is the unique symplectic involution o, = (c,d)g, cf. Remark 4.1(2).
We haveP € Xg \Nil(A, o) ifand only if AQr Fp = My(Hp). HenceP € Xg \Nil(A, o)
if and only if

Qi ®F Fp= My(Fp) and Q. ®r Fp=Hp
or

Qi®r Fp=Hp and Q:®r Fp = Mx(Fp).
Thus

Xe \ Nil(A, o) = |(H(a,b) UH(a, —b) UH(-a, b)) N H(-c, -d)|
U [H(-a,-b) n (H(c.d) UH(c, -d) UH(-c,d))]
= |(Xe \Nil(Qu. 00)) 1 (Xe \ Nil(Qz. 72))|
U (Nil(Qu, 1) N Nil( Q2. 72))-

We first conside(XF \ NiI(Ql,al)) N (XF \ NiI(Qz,yz)). By then = 1 case there exist
involutionsry, o, 73 0N Q; such that
mk = Int(ay) o o for somea, € Sym(@Qy, o1)*

for k = 1,2,3 and for everyP € Xg \ Nil(Qq, 01), one of sigR x1, Signs 712, Signs 713
is equal to 2. Also, sighy, = 2 for everyP € Xg \ Nil(Qz,v2). Fork = 1,2,3 we
consider, as before, all possible products

T ®y2 = Int(a ® 1) o (071 ® y2).
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Note thata, ® 1 € Sym(A, o’)*. We have that for each € (X \ Nil(Qy, o1)) N (Xe \

Nil(Qz. 72)), one of
signs(mk ® y2) = (signe mo)(signs v2)
is equal to 4.

Secondly, we consider N{ll;, o1)NNil( Q., v2). Lety; denote the unique symplectic
involution onQ;. Then there exista; € SkewQq, o1)* such thaty; = Int(ay) o 0.
Hence sigpy; = 2 for all P € Nil(Q1, 071) = Xg \ Nil(Q1, y1).

Let 7, be an orthogonal involution 0@,. Note that NilQ>, v2) = Xg \ Nil(Q2, 72).
There exists an elemenat € SkewQ>, y»)* such thatr, = Int(ay) o y,. By the case
n = 1, there ardoy, by, bs € Sym(@Qy, 72)* such that for every € Nil(Q,,y>) one of
signs Int(by) o 7, is equal to 2. Fok = 1, 2, 3, let

nx = Int(by) o 2 = Int(by) o Int(ay) o y, = Int(bkay) o y»
and note thaba, € Skew@Q>, y»)*. We consider all possible products
v1 ® mx = Int(a; ® beay) o (071 ® ¥2).

Observe thab; ® bya, € Sym(@A, o). We have that for eacP € Nil(Qq,01) N
Nil(Q.,v2), one of

signs(y1 ® ) = (Signs y1)(Signe i)
isequal to 4. Thuswe may tal&e={ay® 1| k=1,23}U{a; ®bya, | k= 1,2, 3}.

(3) Assume finally thah > 3.

o orthogonal (n > 3). We may assume that, is orthogonal orQ; fori =1,...,n,
cf. Remark 4.1(2). We havi&r \ Nil(A,0) = {P € Xg | A® Fp = Mx(Fp)}. For
Pe XF, let

op=|{i e{l,....,n} | Qi@ Fp = Hp}|.

ThenXg \ Nil(A,0) = {P € Xg | dpis even. SinceXg \ Nil(A, o) is a finite union
of sets of the form{P € Xg | 6p = 2m} for certainm € N, it suffices to prove the
theorem for a fixean € N and for the set of orderind® € Xg | 6p = 2m}. The general
statement will then follow by taking the union of thefférent sets$S obtained in this
way. Therefore we only consider orderings¥n= {P € Xg | 6p = 2m} for a fixed
m € N. After relabeling indices we may assume tkater Fp = Hp if and only if
1 <i < 2m. After regrouping we can thus write

(Ao)=(Q1® Q2,01 ®02) ® - B (Qom-1 O Qom, T2m-1 ® T72m)
®F (Qome1, 02me1) ® - - - ®f (Qn, o).

Observe now thalP € Y implies thatP € Xg \ Nil(Qui11 ®F Qais2, 02ir1 ® 02i42) fOr
i=0,...,m=-21andP € Xg \ Nil(Q, o) for £ =2m+1,...,n. We now use the cases
n =1 andn = 2 and products of involutions to settle this case.

o symplectic (n = 3). We may assume that is orthogonal or®); fori = 1,...,n-1
and thator, = vy, is symplectic orQ,, cf. Remark 4.1(2). We hav¥: \ Nil(A, o) =
{P € Xg | AQF Fp = Mzn—l(Hp)}. ForP € Xg, let

op=|lie{l,....,n}| Qi@ Fp = Hpl|.
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ThenXg \ Nil(A, o) = {P € Xg | 6p is 0dd. By an argument similar to the one in the
previous case, it stices to successively consider the following two sets of ander
Case a{P € Xg \ Nil(A, 0) | Q, ®F Fp = Hp}.
Case b{P € Xg \ Nll(A, O') | Qn ® Fp = Mz(Fp)}
In Case a, after relabeling, we may assume Qakr Fp = Hp if and only if
i €{l,...,2m} U {n}. After regrouping we may write

(A, o) = (A1, 71) ®F (Qamr1, 02mr1) ®F - - - O (Qn, o),

where @1, 71) = (Q1 ® Q2,01 ® 02) & -+ & (Qom-1 O Qom, Tom-1 ® oom). We
conclude by using the orthogonal= 2 case for A;, 0;) and the case = 1 for the
other components together with products of involutions.

In Case b, after relabeling, we may assume Qa®r Fp = Hp if and only if
i €{l,...,2m+ 1}. After regrouping we may write

(A, o) = (A1, 71) ®F (Qamr1, 02mr1) ®F - - - O (Qn, o),

where @, 71) = (Q1 ®F Q2,01 ® 02) ® -+ O (Qom-1 O Qom, Tom-1 ® 02m). We
conclude by using the orthogomal= 2 case for A, o1), the symplectian = 2 case
for (Qami1 ® Qn, 02mi1 ® o) and the orthogonal = 1 case for the other components
together with products of involutions. ]

Proposition 4.4. Let (A, o) be a central simple F-algebra equipped with an invo-
lution of the first kind. There exists an integer k and a finilbset{b,, ..., b,} of
Sym(M(A), o ® t)* such that for every E Xg \ Nil(Mg(A), o ® t) there is an index
ref{l,...,¢}suchthat

signs(Int(by) o (c® 1)) # 0.

Proof. Sinceo is of the first kind, the exponent & in the Brauer group oF is at
most 2. Thus, by Merkurjev’s theorem [Me], there eXdsin € N such thatM(A) =
Mn(Q) = Q ® Mp(F), whereQ = Q; ® --- ® Q, is a multi-quaternion algebra.
Extendo to the involutiono ® t on My(A), wheret denotes transposition. Then®

t = Int(u) o (r ® t) for an involutionr of the same type as on Q and an invertible
elementu € Sym@Q ®r My(F), T ®t). Without loss of generality we may assume that
T=01Q---Q® 0y Whereoi is an involutiononQ, fori=1,...,n.

Consider the elements, . . ., a, € Qwhose existence is asserted by Proposition 4.3.
Fori = 1,...,¢letb; be the element iV (A) which is mapped tog®1,,)u~! under the
isomorphismM(A) = Q ® Mpy(F), wherel,, denotes the identity matrix iM,(F).
Then eaclb, € SymM(A), o ® t)*.

Let P € Xg \ Nil(M(A), o ® t). Observe that Nilyk(A), - ® t) = Nil(Q, 1) since
My(A) = M (Q) ando ® t andr are of the same type. By Proposition 4.3 there exists
anindexr € {1,...,{} such that

signs(Int(a;) o 7) # 0.
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Thus by Remark 3.8(2) we have

sigrp(Int(br) o (o @ 1)) = signs(Int((a ® Imu™) o (It(u) o (r & 1))
= signs(Int(a; ® Iyy) o Int(u™) o Int(u) o (r ® 1))
= signs(Int(a; @ Iy) o (1 ®1))
= sign,((Int(a) o 1) ® 1)
= signs(Int(ar) o 7) - signs(t)
= msigns(Int(ar) o 7)
#0,

which concludes the proof. [
Corollary 4.5. The set ofA, o)-nil orderings of F is clopen.

Proof. We have Nil@, o) = Nil(Mk(A), o ® t) for anyk € N sinceo ando ® t are of
the same type. By Proposition 4.4

4
Nil( M(A), o @) = ﬂ{P € X | signu(Int(by) o (o ®1)) = 0},
r=1
which is clopen by Remark 3.10. [

Theorem 4.6.Let (A, o) be a central simple F-algebra equipped with an involution of
the first kind. There exists a finite subfgt . . ., b,} of Sym(A, o)* such that for every
P e X \ Nil(A, o) there is an index e {1, ..., £} such that

signs(Int(by) o o) # 0.

Proof. Assume first thaf\ is split, i.e.A = M,(F). If o is symplectic then Nil§, o) =
Xg and there is nothing to prove. df is orthogonal, then there exisass Sym(A, o)*
such thatr = Int(a) o t, wheret is the transpose involution. It follows that

signs(Int(@™) o o) = signet=n#0

forall P € Xg.

Secondly assume thatis not split, so thalA = M,(D) for somen € N and some
division algebraD. Sinceo is anF-linear involution onA, there exists arfr-linear
involution ¢ on D. We first show that for everf? € Xg \ Nil(A, o) there exists a
bp € Sym(A, o)* such that sigg(Int(bp) o o) # 0.

Let P € Xg \ Nil(A, o). Assume for the sake of contradiction that sign= 0 for
everyF-linear involutionw on A. Since such involutions are adjointedimensional
hermitian forms over, ¢) and this correspondence is one-to-one (up to a nonzero
scalar factor), all hermitian forms of dimensiarover D, ) have signature zero at
P by Lemma 3.12. Led € SymD,¥)* be arbitrary, then th@-dimensional her-
mitian form n x (d)y has signature zero &. This implies siga(d), = O for all
d € SymD,¥)*. Hence all hermitian forms oveD() have signature zero &.
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However, by Proposition 4.4 (witD in the role ofA) there existk € N and an invo-
lution 7 on My(D) such that sigat # 0. Butt is adjoint to some hermitian form over
(D, ) which should have zero signatureRta contradiction with Lemma 3.12. We
conclude that there existdoa € Sym(A, o)* such that sigp(Int(bp) o o) # 0.
Fora e Sym(A, o)* define
U(a) :={P € Xg | signs(Int(a) o o) # 0}.
By Remark 3.10 the sdii(a) is clopen inXg. By the previous part of the proof we
have
Xe \Nil(A.0) = |_] U(be).
PEXF

SinceXg \ Nil(A, o) is compact by Corollary 4.5, there exigt&€ N andby,..., b, €
Sym(A, o)* such that

4
Xe \ Nil(A, o) = U U(o).
i=1

Corollary 4.7. An ordering Pe X is (A, o)-nil if and only if sigrg h = O for every
hermitian form h ove(A, o) if and only ifsigri(a), = O for every ac Sym(A, o)™ .

Proof. By Theorem 4.6,
¢
Nil(A, o) = ()P € Xe | signs(Int(by) o ) = 0}.
i=1
The result then follows from the definition of nil-orderingdaLemma 3.15 (since
sigrp(Int(hy) o o) = | sigrs(y ). .

The Algorithm. Fix some tuple of elementsy, ..., b,) with properties as described
in Theorem 4.6. Observe that for edele Xg we have

. 1 .
|sigrs(bi),| = " signs(Int(by) o o) (6)

by Lemma 3.15 sincgb ), =~ (b),. By Theorem 4.6 this implies that for each
P e Xg \ Nil(A, o) at least one of sigi(by),, . . ., sigr¢by),- is nonzero.

Therefore, for eacl® € Xg \ Nil(A, o) we decide if the signature computation is
performed withpp or —pp as follows:

(i) Leti be the least element id, .. ., ¢} such that siggb;) # 0.
(i) If signs(b), >p O, we keep usingp for the signature computation at this order-
ing. If signs¢bi), <p 0, we replacep by —pp in the computation of signatures at
P (which then makes sigib; ), >p 0).
Note that we may assunte = 1, in which case our algorithm extends the algorithm
in [BP2,§3.3,§3.4].
This algorithm depends on the choice of the tuplg (. ., b;) in Theorem 4.6. Once
such a choice is made for the algebra with involutidn) we can consider properties
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such as the continuity of the total signature function $iyn(Xr — Z associated to
a hermitian formh over (A, o).

Notation. In the remainder of the paper when writing signstead of sigh we mean
that we use the above algorithm for some fixed choice of a fimle. ., by).
5. CoNTINUITY OF THE TOTAL SIGNATURE M AP OF HERMITIAN FORMS

Lemma 5.1. There is a finite partition of Xinto clopens
s
Xe = Nil(A o) U )2,
i=1

and there arexy, ..., as € Sym(A, o)* such thasigr(«a;),- is constant non-zero on.Z
Proof. Letby,...,b, be asin Theorem 4.6 and, foe=1,...,¢, let
Y, :={P e Xg |sign(b), =0,i=1,...,r}.

Observe that eac¥ is clopen since

Y, = (){P € Xe | signs(Int() o o) = 0}.

i=1
We haveYy .= Xr 2 Y:2---2 Y1 2 Y, =Nil(A o) and therefore,
X|: = (YO \ Yl) U(Yl \ Yz) U v U(Yg_l \ Yg) U Nll(A, 0')

Letr € {0,...,¢ — 1} and considel, \ Y;,;. By (6) the map sig¢b;.1). is never 0 on
Y; \ Yr,1 and only takes a finite number of values. . ., kn.
Claim: There exists a € {1, 2} such that

. 1 .
signby;1)e = 1 sign(Int(by,1) o o)

on Yr \ Yr+l-

Proof of claim: If o is orthogonal and® ¢ Nil(A, o), then Op, ¥p) = (Fp, idg,).
By Lemma 3.11 together with the definition of signature of antnéan form (since
P e Y\ Y;;1) we have

Signs(br.1), = Signs(Int(br.1) o o).

If o is symplectic and® ¢ Nil(A, o), then Op,9p) = (Hp,-). By Lemma 3.11
together with the definition of signature of a hermitian fofgmceP € Y; \ Y;,1) we
have

. 1 .
signby;1)e = > sign(Int(by,1) o o).

So we simply takel = 2 if o is symplectic andl = 1 if o is orthogonal.
The claim gives us:

(SIgNBrs2)0) (k) N (Y \ Year) = (Sig(int(bra) o o)) (k) A (Y, \ Vo),
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which is clopen by Remark 3.10. It follows th4t\ Y;,; is covered by finitely many

disjoint clopen sets on which the map sibgn;), has constant non-zero value. The

result follows since the setg \ Y, forr = 0,...,¢ — 1 form a partition ofXg \

Nil(A, o). m

Proposition 5.2. Let h be a hermitian form ovéA, o). The total signature of h,
signh: Xg — Z, P+ sign h

is continuous.

Proof. We use the notation and the conclusion of Lemma 5.1. Sin¢@Ni) and the
setsz; are clopen, it sfiices to show that (sigm)|, is continuous for every=1,...,s.

Leti € {1,...,s} and letk; € Z \ {0} be such that siga;), = ki onZ. Letk € Z.
Then

((signh)lz) (K) = (P € Z | sign, h = k)
= (P e Z | k sign, h = kik}
={P € Z | ki sign, h = ksign(ai), }
={P € Z | sign(k x h L kX (-ai);) = O}.
It follows from Lemma 3.12 that

((signh)lz) (k) = (P € Z | Sign, adk xhicxc-an), = O
which is clopen by Remark 3.10. n

6. TorsioN IN Witt Groups AND SuMs OF HERMITIAN SQUARES

LetF be a formally real field. It is well-known that the Witt ring Bfis torsion-free
if and only if F is pythagorean (i.e., every sum of square§ irs a square irF), see
[Lam, VIII, Theorem 4.1].

Now let (A, o) be a central simpl€&-algebra equipped with aa-linear involution.
A hermitian squaren (A, o) is an element of of the formo-(X)x for somex € A. We
denote the set of hermitian squaresAnd) by (A, o)? and the set of sums of hermitian
squares inA, o) by X(A, o)?. Itis clear that

(A, 0)? C3(A 0)? C SymA, o).

We say thatA, o) is pythagorearif (A, o)? = (A, 0)?, i.e., if every sum of hermitian
squares inA, o) is a hermitian square irA( o).

We denote the torsion subgroup W(A, o) by Wi(A, o). A fundamental result of
Pfister is that\(F) is 2-primary. The torsion subgroMu (A, o) is 2-primary as well,
see [S1, Cor. 6.1] or [Ma, Thm. 4.1].

In this section we will show that there is in general no obsgiceiation between the
property ‘torsion-free Witt group’W;(A, o) = 0) and the property ‘pythagorean’.

An unsurprising exception is the following:

Proposition 6.1. Let D be a quaternion division algebra over a formally realdi€,
equipped with quaternion conjugatien Let N be the norm form of D.
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(1) If F is pythagorean, the(D, -) is pythagorean.

(2) (D, -) is pythagorean and N is strongly anisotropic if and only iesvweakly
isotropic hermitian form ove(D, —) is isotropic and is of dimension at least two.

(3) (D, -) is pythagorean and N is strongly anisotropic if and only {f/-) = 0.

(Note that N is strongly anisotropic if and only/ifx N is anisotropic for allf € N if

and only if every sum of nonzero hermitian squares is nongzero

Proof. (1) Follows from a computation with the norm forsof D.

(2) Leth = (ay,...,a,)_ be a hermitian form over}, -). Note thata,,...,a, €
Sym(@, -) = F. Assume thaf x h is isotropic for some positive integér Then there
existf vectors ki1, ..., Xin), - - . » (Xe1, . . ., Xen) iIn D", not all zero, such that

ar(XiiXas + -+ + XeaXe1) + -+ - + @n(XnXan + -+ + XenXen) = 0.
Thus, by the hypotheses oD,(-) there exisy;, ..., Yy, € D, not all zero, such that

a1y1y1+ -+ anynyn = 0,
i.e.,his isotropic. Note thamh > 2 sinceD is a division algebra.

Conversely, letr = Xx+ yywith x,y € D* and note thatr € F. Then the hermitian
form (1,1, —a,—a)_ = 2% (1, —a)_ is isotropic. By the assumption the forfh, —a)_
is isotropic, so that there existz& D* such thatr = zz Note thate # 0 sinceD is a
division algebra. Furthermore, the strong anisotropi dbllows at once.

(3) Assume that@, —) is pythagorean and that is strongly anisotropic. Léet be
a torsion hermitian form oveiY, —). Since the torsion iW(D, -) is 2-primary there
exists a minimal positive integérsuch that 2<h is hyperbolic. Letf be an anisotropic
hermitian form which is in the Witt class &fin W(D, -). Then 2 x f is hyperbolic,
and thus in particular isotropic, which implies tHa isotropic by (2), a contradiction.

Conversely, assume tha(D, —) = 0. Letxy,..., X, € D* and assume for the sake
of contradiction thatN(x;) + - -- + N(x,) = 0. Letk be an integer such that 2 n.
Then X x (1)_ is isotropic, and so the quadratic fomh® (2¢ x (1)) is isotropic and
thus hyperbolic since it is a Pfister form. By a theorem of Baoa [J] the hermitian
form 2¢ x (1)_ is hyperbolic. SincaV(D,-) = 0 we obtain that1)_ is hyperbolic,
which is impossible.

Now leta = Xx+ yywith x,y € D* and note thatr € F*. Then the hermitian form
(1,1, —a, —a)_ is isotropic. Hence the quadratic fol® (1, 1, —a, —a) is isotropic,
and thus hyperbolic since it is a Pfister form. But this implibat 2x (1, —a)_ =
(1,1, —a, —a)_ is hyperbolic by Jacobson’s theorem. TRds-a)_ is hyperbolic by
our assumption. Therefoteis a norm. n

Remark 6.2. The converse of Proposition 6.1(1) is not true. For examiple, Q is
not pythagorean, but{{, —1),, —) is pythagorean since every sum of four squares in
Q is again a square i@Q.

Proposition 6.3. Let F be a formally real field. Consider Hamilton’s quatemial-
gebraH = (-1, —1)r equipped with the orthogonal involutighfrom Example2.1(4).
Then:
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(1) W(H, 9) = W(H, 9) # 0.
(2) If F is real closed, theSym(H, 9) = (H, )? and (H, ¢) is pythagorean.

Proof. (1) Leth € W(H, #). Since Nil{H, ) = Xr we have that signh = 0 for alll
P € Xg. Thush s a torsion form by Pfister’s local-global principle (cf. iRark 3.9).
HenceW,(H, ) = W(H, ) # O.

(2) Letuy = ag + yo] + ok € Sym(H, ). Foru = a + Bi + y] + 6k € H we have

Hu)u = (@® + B% =y = 6%) + 2(ay + BS) ] + 2(-By + ad)k.
We will show that the equatiofi((u)u = up has a solutiond, 3,7, 6) # (0,0,0,0). Let
v = 0. An easy computation shows thfu)u = ug if and only if 206 = 6o, 286 = o
and 1
6 + @gd® — Z((sg +7v5) = 0.

The last equation is quadraticdf with discriminantA = o + 63 + v3. SinceF is real
closed (and thus pythagorean)js a square. Let be the positive square root af

Then
—Qp &

2
SinceA > ag, we haves > ap and so €ag + €)/2 > 0. Thus V(-aq + €)/2 exists,
sinceF is real closed.
Finally, (H, ©9) is pythagorean sincg(H, ) € Sym{, ). o

6% =

This proposition shows that already for algebras with iatioh over a real closed
base field, ‘pythagorean’ does not imply ‘torsion-free Witbup’. The following two
propositions describe examples which show that ‘torsree-\Witt group’ does not
imply ‘pythagorean’ either.

Proposition 6.4. Let F = R(X)(Y)(2)(w) be the iterated Laurent series field in the
unknowns xy, z, w over the field of real numbeRs Consider the quaternion algebras
D; = (X, ¥)r and D, = (z w)r and the biquaternion algebra B D; ® D,. For ¢ =
1,2, let{1,i,, . k;} be the usual F-basis for and leto, be the orthogonal involution
on D, that sends,ito —i, and that fixes the other basis elements. &et o; ® o, be
the resulting orthogonal involution on D. Then:

(1) D is a division algebra.

(2) W(D, o) = 0.

(3) (D, o) is not pythagorean.

Proof. (1) Letv be the standardx(y, z, w)-adic valuation or (see for instance [W,
§3]). Note thatF is Henselian with respect to An application of Springer’s theorem
shows that the Albert formx, y, —xy, —z, —w, zw) of D is anisotropic (we obtain six
residue forms of dimension 1 ov&, that are necessarily isotropic). Henbbeis a
division algebra, cf. [Lam, Chap. Ill, Thm. 4.8].

(2) SinceF is Henselian, the valuationextends uniquely to a valuation @ (see
[Mo, Thm. 2]), which we also denote by We now claim that the residue division
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algebraD is isomorphic t&R. The proof of this claim goes as follows: Since cigré&

0, the division algebra®; and D, are tame (in the sense of [JW6]). By [JW,
Corollary 6.7] we havéd's C I'p, + I'p, (this sum takes place in the divisible closure
of I'r). We first computdp,. Sincei? = x andv(x) = (1,0,0,0) we havev(i;) =
(1/2,0,0,0). Similarlyv(j,) = (0,1/2,0,0) andv(k,) = (1/2,1/2,0,0). Lety, be the
guaternion conjugation oD;. Sincev extends uniquely fronfr to D; andvo vy, is a
valuation onD; we havev(a) = v o y,(a) for everya € D;. In particularv(y,(a)a) =
2v(a). If we writea = ag + aui1 + a2j1 + agky We obtainy(a)a = a3 — xaf — ya + Xya;.
Since the four terms in this sum havdtdrent valuation we get

1 .
v(a) = > mMin{eg0, £1V(X), £2V(Y), £3V(XY)}

1 .
=5 min{eg0, £1(1, 0,0, 0), £2(0, 1, 0, 0), £3(1, 1, 0, O)},

whereg; = 0 if a = 0, and 1 otherwise (for = 0,..., 3; this is to account for the
presense or absence®y.

This yieldsI'p, = $Zx$ZxZXZ. A similar argument shows thlb, = ZXZx 3Zx
3Z. Sincelp C I'p, + I'p, we getlp = $(Z x Z x Z x Z). In particular [ : T'e] = 16
and by Drax/’s “Ostrowski Theorem” (see [JW, Equation 1.2J¢ obtain D : F] = 1,
i.e. D = F = R. This proves the claim.

Using now thatW,(R) = 0 and alsoW_,(R) = O, [Lar, Theorem 3.7] implies that
W(D, o) = 0.

(3) Consider the sum of two hermitian squares

a=0(j1®]2+101)(j1®j2+1®1)+0(i1® j2)(i1® ]»)
=(1®j2+1®1F - (i1® j2)°

in (D,o). We will show thata is not a hermitian square irD(o) by means of a
signature computation. L& € Xg be the ordering for whicl,y, z w >p 0 and letFp
be the real closure df atP. Then

D®g Fp = M4(FP)

If awere a hermitian square, then the hermitian fota)s and(1), over O, o-) would
be isometric. We will shortly see, however, that Si¢a), = +4, while sigri(1),, = 0.
Thus the forms are not isometric andas not a hermitian square.

In order to compute sig{a),, we follow the method of Example 3.4. The algebra
D is generated by the basic tensarg 1, j; ® 1, 1® i, and 1® j,. We extend scalars
to the real closure df atP, D — D ®¢ Fp, and then apply the splitting isomorphism

é‘:p . (D ®F Fp,0'® ide) ;) (M4(FP)’ adpp)
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induced by the algebra isomorphisms

7e - Dy ®F Fp — My(Fp)
1 O

0 -1
01
1 0)p

|g®1l—)[

je®1'—>[

for ¢ = 1, 2. A straightforward computation shows that

100

faon)=|0 1 2

2 1
2 0 0 1
Sinceo ® idg, is an orthogonal involutiongp is a quadratic form oveFp. Let Op

denote the Gram matrix @fp. Sinceép is an isomorphism of algebras with involution
we have that

gpo (O- ® idFP) = adpP o &p,
from which it follows (by easy, but tedious computationsjtttve may take

0 0 0 1
wesf) 0 2
1 00
Since®p = ®©;! we have
2 0 0 1
opée@n)=x[0 2 2 o
1 00 2

from which it follows thatyp ~ +(1, 1, 1, 1). We conclude that sigi{a), = +4.
On the other hand, singss is clearly hyperbolic, it follows from Lemma 3.6 that

Signp(1), = signs gp = 0. m

Proposition 6.5. We use the same notation as in the previous propositionpexcat
we leto = 01 ® y,, Wherey, denotes quaternion conjugation orn,[30 thato is a
symplectic involution on D. Then:

(1) D is a division algebra.
(2) W(D, o) = 0.
(3) (D, o) is not pythagorean.
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Proof. (1) & (2): identical to the proof of Proposition 6.4(1) & (2).
(3) The proof is similar to the proof of Proposition 6.4(3).e\WWxplain the main
differences. Consider the sum of three hermitian squares

a=0(j191+101)(j1®1+111)+ 20(i1 ®i,)(i1 ® )
= (j1®1+1®1)%+ 2(i1 ®i,)?
in (D, o). Let P € Xg be the ordering for whicl,y >p 0 andz w <p 0. Then
D ®r Fp = (D1 ® D,) ® Fp = My(Fp) ®¢, Hp = My(Hp).

Letn; be as before and leb be the isomorphis, ®F Fp = Hp defined by letting
n(i®1) =1andny(j.® 1) = j. Letép be the induced isomorphism

(D & Fp.o ®idr,) — (Ma(Hp), ad,,).
This time the formpp is hermitian overlflp, —) and a computation shows that we may

take®p = + [Cl) (1)] . Another computation shows thgt(a® 1) = [Cz) (2)] Hence
_ 20
(I)PlfP(a@ 1)=+ [0 2
from which it follows that sigp(a),, = +2. Since again sigi{1), = 0 it follows thata
cannot be hermitian square. ]
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