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Abstract. Let X be the variety of Borel subgroups of a simple and strongly
inner linear algebraic group G over a field k. We prove that the torsion part
of the second quotient of Grothendieck’s γ-filtration on X is a cyclic group of
order the Dynkin index of G.


As a byproduct of the proof we obtain an explicit cycle θ that generates this
cyclic group; we provide an upper bound for the torsion of the Chow group of
codimension-3 cycles on X; we relate the cycle θ with the Rost invariant and
the torsion of the respective generalized Rost motives; we use θ to obtain a
uniform lower bound for the essential dimension of (almost) all simple linear
algebraic groups.


Grothendieck’s celebrated γ-filtration of the ring K0(X) gives a way to estimate
the Chow group CH∗(X) of algebraic cycles on X modulo rational equivalence
when X is a smooth projective variety over a field k. Namely, by the Riemann-
Roch theorem without denominators [8, §15.3] the i-th Chern class provides a
well-defined group homomorphism


ci : γ
i/i+1(X) → CHi(X), i ≥ 0


from the i-th quotient of the γ-filtration to the Chow group of codimension-i cycles
onX . Observe that for i = 0 it is the identity map and for i = 1 it is an isomorphism
identifying CH1(X) with the Picard group of X .


In the present paper we study these homomorphisms in the cases i = 2, 3 and X
is a generically split projective homogeneous variety under a semisimple linear alge-
braic group G. Our core determines and bounds respectively the torsion subgroup
of γ2/3(B) and γ3/4(B) for the variety of Borel subgroups B of strongly inner G
(Theorem 3.1). For instance, we show that the torsion subgroup Torsγ2/3(B) is
cyclic of order the Dynkin index ofG and exhibit a generator θ for it (Definition 3.3).


This fact together with the Riemann-Roch theorem imply (see §4) that the sur-
jection


〈θ〉 = Tors γ2/3(B)
c2 // // TorsCH2(B)


can be viewed as a substitute of the key map Q(V ) → H3(k,Q/Z(2)) in the
definition of the Rost invariant [10, pp. 126-127]. Indeed, a theorem of Peyre-
Merkurjev [27] shows that TorsCH2(B) can be identified with the kernel of the
restriction H3(k,Q/Z(2)) → H3(k(B),Q/Z(2)). Furthermore, the order of c2(θ)
in TorsCH2(B) equals to the order of the Rost invariant of G (see Prop. 3.2).


Our result gives bounds for the torsion in CH3 for generically split X (see §5)
and provides explicit generators of torsion subgroups of CH2 of certain generalized
Rost-Voevodsky motives. Note that typically, one does not even know a priori if
the torsion subgroup of CHi(X), i ≥ 3, is finitely generated. However, determining


the torsion subgroup determines CHi(X) as an abelian group, since the dimension


of its free part CHi(X)⊗Q can be easily computed.
1
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In section 6, we study the behaviour of the image of c2 under field extensions. In
particular, we show that this image is non-trivial if G has Tits algebras of index 2
(Prop. 6.5). Using this fact we prove (Prop. 7.1) that the essential dimension ed(G)
of any absolutely almost simple linear algebraic group not of type A nor isomorphic
to Sp2n is greater or equal than 3.


1. Preliminaries


We now provide several facts and observations concerning Chow groups, charac-
teristic maps, invariants, Dynkin indices and filtrations on K0 for varieties of Borel
subgroups of split simple linear algebraic groups.


§1A. Two filtrations on K0. All facts provided here can be found in [17, §2], [8,
§15] and [9, Ch. 3,5]. Let X be a smooth projective variety over a field k. Consider
the γ-filtration on K0(X). It is given by the subgroups


γi(X) = 〈cK0


n1
(b1) · · · c


K0


nm
(bm) | n1 + · · ·+ nm ≥ i and b1, . . . , bm ∈ K0(X)〉,


where cK0


n denote the n-th Chern class with values in K0. For example, for the


class of a line bundle we have cK0


1 ([L]) = 1− [L∗]. Let γi/i+1(X) = γi(X)/γi+1(X)
denote the respective quotient. Consider the topological filtration on K0(X) given
by the subgroups


τ i(X) = 〈[OV ] | V →֒ X and codim V ≥ i〉,


where [OV ] is the class of the structure sheaf of a closed subvariety V . Let
τ i/i+1(X) = τ i(X)/τ i+1(X) denote the corresponding quotient.


There is an obvious surjection pr : CHi(X) ։ τ i/i+1(X) from the Chow group of
codimension i cycles given by V 7→ [OV ]. By the Riemann-Roch Theorem without
denominators the i-th Chern class induces the map in the opposite direction


ci : τ
i/i+1(X) → CHi(X)


and the composite ci ◦ pr is the multiplication by (−1)i−1(i − 1)! which is an iso-
morphism for i ≤ 2 [8, Ex.15.3.6]. For example, by the very definition we have


ci(


i∏


j=1


cK0


1 ([Lj ])) = (−1)i−1(i− 1)!


i∏


j=1


cCH
1 (Lj),


where Lj is a line bundle. Observe also that ci becomes an isomorphism after
tensoring with Q.


There is an embedding γi(X) ⊂ τ i(X) for all i. Moreover, γi(X) = τ i(X) for
i ≤ 2. Observe that γ1/2(X) = τ1/2(X) = CH1(X) is the Picard group and by [17,
Cor. 2.15] there is an exact sequence


(1.1) 0 → τ3(X)/γ3(X) → Torsγ2/3(X)
c2−→ TorsCH2(X) → 0,


where we have written c2 for the composition γ2/3(X) → τ2/3(X)
c2−→ CH2(X).
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§1B. Characteristic maps and invariants. Let Gs be a split simply connected
simple linear algebraic group of rank n over a field k. We fix a split maximal torus
T and a Borel subgroup B such that T ⊂ B ⊂ Gs. Let Bs denote the variety of
Borel subgroups of Gs and let T ∗ denote the group of characters of T . We fix a
basis of T ∗ given by the fundamental weights ω1, . . . , ωn.


Let S(T ∗) be the symmetric algebra of T ∗. Its elements are polynomials in the
fundamental weights ωi with coefficients in Z. Let Z[T ∗] be the integral group ring
of T ∗. Its elements are integral linear combinations


∑
i aie


λi , λi ∈ T ∗. Consider
the characteristic maps for CH and K0 (see [5, §8, 9] and [6, §1.5, 1.6])


c : S(T ∗) → CH(Bs) and c
′ : Z[T ∗] → K0(Bs)


given by


c : ωi 7→ cCH
1 (L(ωi)) and c


′ : eλ 7→ [L(λ)]


where L(λ) is the line bundle over Bs associated to the character λ.
There are obvious augmentation maps S(T ∗) → Z and aug : Z[T ∗] → Z given by


ωi 7→ 0 and eλ 7→ 1 respectively. The Weyl group acts naturally on T ∗, hence also
on S(T ∗) and Z[T ∗]. Consider the subrings of invariants S(T ∗)W and Z[T ∗]W . Let
I (resp. I ′) be the ideal generated by the elements of S(T ∗)W (resp. Z[T ∗]W ) from
the kernel of the augmentation map. Then we have


ker c = I and ker c′ = I ′.


Therefore we have embeddings


c : S(T ∗)/I →֒ CH(Bs) and c
′ : Z[T ∗]/I ′


≃
−→ K0(Bs),


where the second map is surjective since Gs is simply connected (see [28]).
By [5, §2 and Cor.2] the kernel I of c consists of elements g such that


(1.2) m · g =
∑


i


gi · fi,


for m ∈ Z, fi the basic polynomial invariants, and gi ∈ S(T ∗).
There is a W -invariant quadratic form q on T ∗ ⊗Q that is uniquely determined


up to a scalar multiple [2, §VI.1.1–2]. We normalize q so that it takes the value 1
on every short coroot; as q is indivisible, it can be taken as the generator of I of
degree 2. To say it differently, each element of I of degree 2 is a multiple of q by
an integer.


The form q should be familiar. Its polar bilinear form bq amounts to the re-
striction of the “reduced Killing form” to the Cartan subalgebra of the Lie algebra
of Gs as described in [15, §5]. In the case where the roots are all one length, an
explicit formula for bq is well known: its Gram matrix is the Cartan matrix of the
root system.


§1C. Degree 3 elements of I. If Gs is not of type An (n ≥ 2), then there is no
basic invariant of degree 3 [16, p. 59]. Then by (1.2) and the indivisibility of q,
every g ∈ I of degree 3 can be written as g = (


∑
aiωi)q for some ai ∈ Z.


If Gs is of type An for some n ≥ 2, then S(T ∗)W has a basic generator f3 of degree
3. We view the weight lattice as in [2], meaning that it is contained in a lattice
with basis ε1, . . . , εn+1 so that the embedding is defined by ε1 = ω1, εn+1 = −ωn,
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and εi = ωi−ωi−1 for 2 ≤ i ≤ n, and W is the permutation group of the ε’s. Then
q and


f3 := (ε31 + · · ·+ ε3n+1)/3 =


n∑


i=2


ω2
i−1ωi − ωi−1ω


2
i


are members of a set of basic invariants [16, §3.12].
For g ∈ I of degree 3, we have mg = g2q + g3f3 for some g3,m ∈ Z and


g2 =
∑
aiωi with ai ∈ Z. On the right side, the monomial ω3


i occurs only in g2q
and has coefficient ai, hence m divides ai for all i, hence m divides g2 and also g3.
In summary, g = (g2/m)q + (g3/m)f3 for some g2/m, g3/m ∈ S(T ∗).


§1D. The γ-filtration on the variety of Borel subgroups. Consider the γ-
filtration on the variety Bs of Borel subgroups of Gs. Let γ


m denote the subgroup
of Z[T ∗] generated by products of at least m elements of the form (1−e−ωi), where
ωi is a fundamental weight. Then the isomorphism c


′ induces an isomorphism


γm/m+1(Bs) ≃ γm/(γm+1 + I ′) for each i.


For example γ1/2(X) ≃ γ1/(γ2 + I ′) is a free abelian group with a basis given by
the classes of the elements


(1− e−ωi) ∈ γ1, i = 1, . . . , n.


Indeed, cK0


1 ([L(ωi)]) = 1 − [L(−ωi)], the map c1 : γ
1/2(Bs) → CH1(Bs) is an


isomorphism and the elements c1(L(ωi)) for i = 1, . . . , n form a basis of the Picard
group CH1(Bs).


Since K0(Bs) is generated by classes of line bundles (see [28]), so is γi(Bs).
Therefore, we have


γi(Bs) = 〈cK0


1 ([L1]) · · · c
K0


1 ([Lm]) | m ≥ i and Lj is a line bundle over Bs〉.


Let λ =
∑


i aiωi be a presentation of a character λ in terms of the fundamental
weights. Then L(λ) = ⊗iL(ωi)


⊗ai . Since for any two line bundles L1 and L2 we
have


cK0


1 ([L1 ⊗ L2]) = cK0


1 ([L1]) + cK0


1 ([L2])− cK0


1 ([L1])c
K0


1 ([L2])


applying this formula recursively we can express any element of γi/i+1(Bs) as a
linear combination of the products of the first Chern classes of the bundles L(ωi),
i = 1 . . . n. For instance, any element of γ2/3(Bs) can be written as a class of


n∑


i=1


n∑


j=1


aij(1 − e−ωi)(1 − e−ωj ) ∈ γ2 mod γ3 + I ′, where aij ∈ Z.


§1E. The Dynkin index. Let N denote the map Z[T ∗]W → Z defined by fixing
a long root α and setting


N
(∑


i
aie


λi


)
:=


1


2


∑
i
ai〈λi, α


∨〉
2
.


This does not depend on the choice of α and takes values in Z (and not merely in
1
2Z), cf. Lemma 2.5 below. The number N(χ) is called the Dynkin index of χ. Note


that for m ∈ Z, we have N(m) = N(me0) = 0, so N(χ) only depends on the image
of χ in the kernel of the augmentation map.
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In case Gs has two root lengths, it is natural to wonder what one would find if
one used a short root, say, δ in the definition of N instead of the long root α. We
claim that


(1.3)
1


2


∑
ai〈λi, δ


∨〉
2
= q(δ∨)


[
1


2


∑
ai〈λi, α


∨〉
2
]
,


where q is the form introduced in §1B. In other words, one obtains something that
differs by a factor of q(δ∨). (We will use this observation later.) To prove it, define


quadratic forms nα and nδ on T
∗ via nα(λ) =


∑
w∈W 〈wλ, α∨〉


2
and similarly for δ∨.


For example, nδ(α) = q(δ∨)2nα(δ). But nα is a W -invariant quadratic form on T ∗,
hence it is a scalar multiple of q. As q(α) = q(δ∨)q(δ), we have nα(α) = q(δ∨)nα(δ).
But nδ is also a scalar multiple of q, so we conclude that nδ = q(δ∨)nα, proving
the claim.


The Dynkin index N(Gs) is defined to be the gcd of N(χ) as χ varies over
the characters of finite-dimensional representations of Gs. The number N(Gs) is
calculated in [10], [18], or [19]:


type of Gs A or C Bn (n ≥ 3), Dn (n ≥ 4), G2 F4 or E6 E7 E8


N(Gs) 1 2 6 12 60


If G is a simple and strongly inner group, then, for the purposes of this paper,
we define the Dynkin index N(G) of G to be the Dynkin index N(Gs) of the split
simply connected group of the same Killing-Cartan type.


2. Dynkin indices and the map φ


Let Gs denote a split simply connected simple linear algebraic group of rank n
over a field k. We fix a pinning for Gs and in particular a split maximal torus T and
fundamental weights ω1, . . . , ωn. As Gs is simply connected, T∗ (= Hom(Gm, T ))
and T ∗ are canonically identified with the coroot and weight lattices respectively.


2.1.Definition. Put Z[T ∗] := Z[eω1 , . . . , eωn ], the integral group ring, and S(T ∗) :=
Z[ω1, . . . , ωn], the symmetric algebra of T ∗. We define a ring homomorphism


φm : Z[T ∗]/γm+1 → S(T ∗)/(Sm+1(T ∗)), m ≥ 2,


via φm


(
e
∑n


i=1
aiωi


)
=


n∏


i=1


(1− ωi)
−ai .


In particular, φm(eωi) = 1+ωi+ · · ·+ωm
i and φm(e−ωi) = 1−ωi. (Note that Z[T


∗]
can be viewed as Laurent polynomials in the variables ω1, . . . , ωn, and from this
perspective it is clear that the formula for φ gives a well-defined ring homomorphism
on Z[T ∗] and φm(γm+1) is zero in S(T ∗)/(Sm+1(T ∗)).)


The homomorphism φm is an isomorphism. To see this, define a homomorphism
S(T ∗) → Z[T ∗]/γm+1 via ψm(ωi) = 1− e−ωi for all i; it induces a homomorphism


S(T ∗)/(Sm+1(T ∗)) → Z[T ∗]/γm+1 that we also denote by ψm. As the compositions
φmψm and ψmφm are both the identity on generators, the claim is proved.


The goal of this section is to give a formula for φ2 on I ′.


2.2. Proposition. If Gs is simple, then for χ ∈ Z[T ∗]W , we have:


φ2(χ) = aug(χ) +N(χ) · q ∈
(
S(T ∗)/(S3(T ∗))


)W
,


where q is the invariant form introduced in §§1B.
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The proof would be much easier if we already knew that φ2 takes W -invariant
elements toW -invariant elements, but this only comes as a consequence of the proof
of the proposition. We give some preliminary material before the proof.


2.3. Example (SL2). In case Gs = SL2, write ω for the unique fundamental weight.
For n > 0, we have:


φ2(e
nω + e−nω) = (1 + ω + ω2)n + (1− ω)n = 2 + n2ω2,


which verifies Prop. 2.2 for this group.


2.4. Example (SL2 × SL2). In case Gs = SL2 × SL2 there are two fundamental
weights ω1, ω2 and the Weyl group W is the Klein four-group; it acts by flipping
the signs of ω1 and ω2. The definition of φ2 above makes sense here even though
Gs is not simple. We find:


φ2(Wea1ω1+a2ω2) = 4 + 2
[
a21ω


2
1 + a22ω


2
2


]
.


One final observation about Weyl group actions. We write Wλ for the W -orbit
of λ ∈ T ∗.


2.5. Lemma. For every root α and weight λ ∈ T ∗, the map Wλ → Z defined by
π 7→ 〈π, α∨〉 hits x and −x the same number of times, for every x ∈ Z. If α, β are
orthogonal roots, then for every weight λ ∈ T ∗, the map Wλ → Z × Z defined by
π 7→ (〈π, α∨〉, 〈π, β∨〉) hits (x, y), (−x, y), (x,−y), and (−x,−y) the same number
of times, for every x, y ∈ Z.


Sketch of proof. It is an exercise to show the analogous statements for the map
W → Z defined by w 7→ 〈wλ, α∨〉 and similarly for the second claim. The lemma
follows. �


Proof of Prop. 2.2. We may assume that χ =
∑
eλj where λ1, . . . , λr is the Weyl


orbit of some λ ∈ T ∗. Put λj =
∑n


i=1 aijωi, so φ(χ) =
∑r


j=1


∏n
i=1(1 − ωi)


−aij .


Obviously, the degree 0 component of φ(χ) is r = aug(χ).


The degree 1 component of φ(χ) is
∑


j


∑
i aijωi =


∑
i


(∑
j aij


)
ωi. Here the


claim is that
∑


j aij = 0 for each i. The aij ’s are the images of Wλ in Z under


the map λj 7→ 〈λj , α
∨
i 〉 where αi denotes the simple root corresponding to the


fundamental weight ωi, hence the claim follows from Lemma 2.5.
The crux is to check the claim on the degree 2 component q1 of φ(χ); it is an


integer-valued quadratic form on the coroot lattice T∗ and we check that it equals
q2 := N(χ)q. We write out for ℓ = 1, 2:


(2.6) qℓ(
∑


diα
∨
i ) =


∑
i
d2i qℓ(α


∨
i ) +


∑
i<j


didjbqℓ(α
∨
i , α


∨
j ),


where bqℓ is the polar bilinear form of qℓ. We will check that the value of this
expression is the same for ℓ = 1, 2.


First suppose that δ∨ :=
∑
diα


∨
i is a coroot and every di is 0 or 1. Then it


defines a homomorphism η : SL2 → Gs so that, roughly speaking, the simple coroot
α∨ of SL2 (viewed as a map Gm → T1 := η−1(T )) satisfies η(α∨) = δ∨. We check
that the diagram


(2.7)


Z[T ∗]
φ2


−−−−→ S(T ∗)/(S3(T ∗))


η∗


y
yη∗


Z[T ∗
1 ]


φ2


−−−−→ S(T ∗
1 )/(S


3(T ∗
1 ))
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commutes. Since ωj(δ
∨) = dj , we have η


∗(ωj) = djω for ω the fundamental weight
of SL2 dual to α∨. We find:


η∗φ2(e
∑


cjωj ) =
∏


j
(1− djω)


−cj = (1 − ω)−
∑


cjdj ,


because the dj are all 0 or 1. As this is φ2(e
(
∑


djcj)ω) = φ2η
∗(e


∑
cjωj ), we have


confirmed the commutativity of (2.7).
Put φ2 for the composition of φ2 with the projection onto the degree 2 component


S2, so q1 = φ2(χ). Then q1(δ
∨) = (η∗φ2(χ))(α∨) obviously, which is (φ2η∗(χ))(δ∨)


by commutativity of (2.7). We have η∗(χ) =
∑


j e
∑


i aijω and by Lemma 2.5, the


multiset of the j integers
∑


i aijdi is symmetric under multiplication by −1, hence
by Example 2.3 we find:


q1(δ
∨) =


1


2


(∑
j


(∑
i
aijdi


)2)
=


1


2


∑
j
〈λj , δ


∨〉
2
.


By (1.3) this equals q(δ∨)N(χ) = q2(δ
∨).


Returning to equation (2.6), this shows that the term qℓ(α
∨
i ) does not depend on


ℓ. Similarly, if α∨
i and α∨


j are not orthogonal coroots, then α∨
i and α∨


j are adjacent
in the Dynkin diagram and α∨


i +α∨
j is a coroot [2, VI.1.6, Cor. 3b]. The preceding


two paragraphs show that the value of


bqℓ(α
∨
i , α


∨
j ) = qℓ(α


∨
i + α∨


j )− qℓ(α
∨
i )− qℓ(α


∨
j )


does not depend on ℓ.
It remains to consider bqℓ(α


∨
i , α


∨
j ) where α


∨
i and α∨


j are orthogonal (relative to


the polar form of q – it follows that they are orthogonal relative to bq2 . We use α∨
i


and α∨
j to define a homomorphism τ : SL2 × SL2 → Gs and – as we did for SL2


above – we fix a torus T2 = T1×T1 ⊂ SL2×SL2 such that τ(T2) = im(α∨
i ×α


∨
j ) ⊂ T .


Arguing using a commutative diagram analogous to (2.7), it suffices to check that
the simple roots of SL2×SL2 are orthogonal relative to τq1 = φ2τ(χ), which follows
from Example 2.4 and Lemma 2.5. �


In view of §§1E, Prop. 2.2 gives:


2.8. Corollary. φ2(I
′) = Z ·N(Gs) · q. �


2.9. Example. Suppose G has type An for some n ≥ 2. We continue the notation
of §1C, and we compute:


φ3(Weω1) = φ3(e
ω1 + e−ωn +


n∑


i=2


eωi−ωi−1)


= (n+ 1) + q +
n∑


j=1


ω3
i −


n∑


i=2


ωi−1ω
2
i .


The element ∆ :=Weω1 −Weωn is in I ′, and by symmetry we see that φ3(∆) = f3.


3. Torsion in the γ-filtration


Let B denote the variety of Borel subgroups of a strongly inner simple linear
algebraic group G over k. Recall that G is strongly inner if the simply connected
cover of G is isomorphic to Gs twisted by a cocycle ξ ∈ H1


ét(k,Gs), where Gs


denotes the simply connected split group of the same Killing-Cartan type as G.
Observe that the variety B is always defined over k by [7, Cor. XXVI.3.6]; it is a







8 SKIP GARIBALDI AND KIRILL ZAINOULLINE


twisted form of the variety of Borel subgroups Bs of Gs, i.e., B and Bs become
isomorphic over the algebraic closure of k.


In the present section we determine and bound respectively the torsion parts of
the second and the third quotients of the γ-filtration on the variety B. The main
result is the following.


3.1. Theorem. Let B be the variety of Borel subgroups of a strongly inner simple
linear algebraic group G over a field k. Then


(i) Tors γ2/3(B) is a cyclic group of order the Dynkin index N(G) and gener-
ated by c


′(θ) for θ as in Def. 3.3.
(ii) The subgroup τ3(B)/γ3(B) of Torsγ2/3(B) is generated by o(r(G)) c′(θ);


it is cyclic of order N(G)/o(r(G)).
(iii) 2 Torsγ3/4(B) is a quotient of (Z/N(G))⊕(rankG).


There is some new notation in the statement of the theorem. The Rost invariant
r is a map H1(k,Gs) → H3(k,Q/Z(2)), and for our G, the element r(ξ) depends
only on G and not on the choice of ξ by [11, Lemma 2.1]; we write simply r(G) for
this element and o(r(G)) for its order in the abelian group H3(k,Q/Z(2)).


Philippe Gille pointed out to us that pasting together two results in the literature
gives a description of TorsCH2(X) for some X .


3.2. Proposition. Let X be a projective homogeneous variety under G. If G is
split by k(X), then TorsCH2(X) is a cyclic group whose order is the same as the
order of r(G) in H3(k,Q/Z(2)); in particular its order divides N(G).


Proof. We view ξ as a principal homogeneous Gs-variety. The kernel of the scalar
extension map H3(k,Q/Z(2)) → H3(k(ξ),Q/Z(2)) is the cyclic group generated by
r(G) by [10, p. 129]. For every extension L/k, ξ has an L-point if and only if G
is split, if and only if X has an L-point. Therefore, this kernel is the same as the
kernel of H3(k,Q/Z(2)) → H3(k(X),Q/Z(2)). A theorem of Peyre-Merkurjev [27]
shows that this kernel is isomorphic to TorsCH2(X). �


Obviously, one can take X = B in the proposition. Furthermore, the same proof
shows that the proposition still holds if one replaces “G is strongly inner” and “G
is split by k(X)” with “G has trivial Tits algebras” and “G becomes quasi-split
over k(X)”.


Also, statement 3.1(i) makes use of the following definition.


3.3. Definition. Write the form q from subsection §1B (relative to the split group
Gs) as q =


∑
i≤j cijωiωj ∈ S(T ∗). We call the element


θ :=
∑


i≤j


cij(1− e−ωi)(1− e−ωj ) ∈ Z[T ∗]


the special cycle. Its image in Z[T ∗]/γm+1 is ψm(q) for all m ≥ 2.


Proof of Theorem 3.1. By the result of Panin [25, Thm. 2.2.(2)] since G is strongly
inner, the restriction map


(3.4) res: K0(B) → K0(B× kalg) ≃ K0(Bs × kalg) ≃ K0(Bs)


is an isomorphism, where kalg denotes an algebraic closure of k. Since the γ-
filtration is defined in terms of Chern classes and the latter commute with restric-
tions, it induces an isomorphism between the γ-quotients, i.e.,


res : γi/i+1(B)
≃
−→ γi/i+1(Bs).
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Therefore, we may reduce to the split case G = Gs. Let T , T ∗, etc., be as in
subsection §1B.


There is a commutative diagram


(3.5) γm/m+1(Bs)
cm // CHm(Bs)


γm/γm+1


c
′


OOOO


(−1)m−1(m−1)!·φm // Sm(T ∗)/(Sm+1(T ∗))


c


OO


First take m = 2 and suppose that x ∈ γ2/3 maps to a torsion element in
γ2/3(Bs). As CH2(Bs) has zero torsion, the commutativity of (3.5) shows that
φ2(x) is in the kernel I of c. Writing x =


∑
i,j aij(1 − eωi)(1 − eωj) mod γ3, we


have φ2(x) =
∑
aijωiωj of degree 2 in I, hence φ2(x) = aq for some a ∈ Z. Then


modulo γ3, we have x ≡ ψ2φ2(x) ≡ aθ, so Tors γ2/3(Bs) is a cyclic group generated
by the class of the special cycle θ modulo γ3 + I ′.


By Corollary 2.8 there exists χ ∈ I ′ such that φ2(χ) = N(Gs) · q. Applying ψ2


we obtain that


0 ≡ χ ≡ N(Gs) · θ mod γ3 + I ′,


hence, the order of θ modulo γ3 + I ′ divides the Dynkin index N(Gs). This shows
that Tors γ2/3(B) is a cyclic group of order dividing N(G) with generator c′(θ).


Let ξ′ ∈ H1(k′, Gs) be a versal Gs-torsor for some extension k′ of k, and write
B


′ for the Borel variety (over k′) of the group Gs twisted by ξ′. The element
r(ξ′) has order N(Gs) in H3(k′,Q/Z(2)) by [10, pp. 31, 133]. But Torsγ2/3(B′)
is cyclic of order dividing N(Gs), hence Prop. 3.2 and the exactness of (1.1) give
that Tors γ2/3(B′) also has order N(Gs). Now take K to be an algebraically closed
field containing k′. The restriction maps for k → K and k′ → K give isomorphisms
Torsγ2/3(B/k) ≃ Tors γ2/3((Bs)/K) ≃ Tors γ2/3(B′


/k′ ), which is itself Z/N(G),


completing the proof of (i). Claim (ii) follows from the exactness of (1.1).


Now take m = 3 and suppose that x ∈ γ3/4 maps to a torsion element in
γ3/4(Bs). As CH


3(Bs) has zero torsion, diagram (3.5) shows that 2φ3(x) is in the
kernel I of c. As in the m = 2 case, 2φ3(x) has degree 3.


Suppose Gs is not of type An for n ≥ 2. Then by §§1C, 2φ3(x) = q · f , where
f =


∑n
i=1 aiωi. Applying ψ3 we obtain that 2x = θ · f ′, where f ′ =


∑n
i=1 ai(1 −


e−ωi). In other words, the torsion part of 2γ3/4(Bs) is generated by the elements
c
′(θ · (1− e−ωi)) for i = 1, . . . , n.
By Corollary 2.8 there exists χ ∈ I ′ such that φ3(χ · (1− e−ωi)) ≡ N(Gs) · q · ωi


mod (S4(T ∗)). Applying ψ3 we obtain that


0 ≡ χ · (1 − e−ωi) ≡ N(Gs) · θ · (1− e−ωi) mod γ4 + I ′,


hence, the torsion part of 2γ3/4(Bs) is a product of n cyclic groups of orders dividing
the N(Gs).


It remains to consider the case m = 3 and Gs of type An for n ≥ 2; the claim is
that 2x is in I ′. As in the preceding paragraph, §§1C and Example 2.9 show that
2φ3(x) = q · f + bφ3(∆) for some b ∈ Z. Applying ψ3, we find 2x = θ · f ′ +∆ · b.
As θ and ∆ belong to I ′, the proof of (iii) is complete. �
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3.6. Remark. Observe that in the proof we used the structure of the ideal of
invariants I in degrees 2 and 3. In principle it is possible to extend the proof to
higher degrees, but then one must extend the arguments of §§1C and Example 2.9.


The next lemma can be used to extend the bounds obtained in Th. 3.1 to the
case of a semisimple group.


3.7. Lemma. Let G1, . . . , Gm be simple and strongly inner groups and write Bj


for the Borel variety of Gj . The Borel variety for
∏
Gj is


∏
Bj, and we have:


Tors γ2/3(
∏


Bj) ≃
⊕


Tors γ2/3(Bj),


and


Tors γ3/4(
∏


Bj) ≃


m⊕


j=1


(
Tors γ3/4(Bj)⊕ Tors γ2/3(Bj)


)
.


Proof. Apply the Künneth decomposition and the fact that γi/i+1(Bj) has no tor-
sion for i = 0 and 1. �


4. Examples of torsion in CH2


We now make a few remarks regarding torsion in CH2. We maintain the notation
of the previous section.


Using Prop. 3.2, one can view the the assignment G 7→ TorsCH2(B) as a re-
placement for the Rost invariant of G. Furthermore, the group TorsCH2(B) is
generated by the image of the special cycle θ ∈ Z[T ∗] which is defined in purely
combinatorial terms.


The next two examples show that the image of θ generates the torsion in CH2


for certain (generalized) Rost motives.


4.1. Example. Assume that the motive ofB splits as a direct sum of twisted copies
of the Rost motive R2 corresponding to a 3-fold Pfister form. According to [26, §7]
this can happen for G of type Bn, Dn, G2, F4, or E6. Then we have


(TorsCH2(B)) ⊗ Z/2Z ≃ Ch2(R2),


where Ch denotes the Chow group with Z/2Z-coefficients and the image of the
special cycle θ generates (TorsCH2(B))⊗ Z/2Z and, hence, the group Ch(R2).


4.2. Example. Suppose G is an anisotropic group of type F4 over k that is split
by a cubic extension of k. (Such a group exists if and only if H3(k,Z/3Z(2)) is
not zero.) By [24, Rem. 4.5] and the main theorem of [26] the motive of the Borel
varietyB splits as a direct sum of generalized Rost motivesR3 corresponding to the
Rost-Serre invariant g3 (the mod-3 portion of the Rost invariant) of G. Therefore,
we have


(TorsCH2(B)) ⊗ Z/3Z ≃ Ch2(R3),


where Ch denotes the Chow group with Z/3Z-coefficients.
By the recent results of Merkurjev-Suslin [23] and Yagita [34, Thm. 10.5, Cor. 10.8]


we have Ch2(R3) ≃ Z/3Z. On the other hand, the image of the special cycle θ gen-


erates (TorsCH2(B))⊗ Z/3Z and, hence, the group Ch2(R3).
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5. Torsion in CH3


Let X be a projective homogeneous G-variety such that G is split over k(X).
(“X is generically split.”) Thanks to Proposition 3.2, we may view TorsCH2(X)
as known, so we now investigate TorsCH3(X). We retain the meaning of G and B


from the previous section. Let n denote the rank of G and let r denote the rank of
the Picard group of X over an algebraic closure of k.


We remark that the results in this section only use the fact that TorsCH2(X) is
cyclic of order dividing N(G), which follows from our Theorem 3.1(i) and Eq. (1.1).
They do not need the finer result of Prop. 3.2, hence also do not need material from
[10] and [27].


For an abelian group A and a prime p, write Torsp A for the subgroup of A
consisting of elements of order a power of p.


5.1. Lemma. The restriction of the m-th Chern class gives a surjection


Tors τm/m+1(X) ։ (m− 1)! TorsCHm(X)


and for each prime p not dividing (m− 1)!, cm is an isomorphism


Torsp τ
m/m+1(X)


≃
−→ Torsp CH


m(X).


Proof. By Riemann-Roch (see subsection §1A), the composition


CHm(X)
pr // // τm/m+1(X)


cm // CHm(X)


is multiplication by (−1)m−1(m− 1)!, hence cm(τm/m+1(X)) is (m− 1)! CHm(X).
For x ∈ TorsCHm(X), we have (m − 1)! · x = cm(pr(x)), where pr(x) is in
Tors τm/m+1(X). This proves the first claim, from which the second claim follows
immediately. �


5.2. Proposition. If τ3(B) = γ3(B), then Tors 4 · CH3(B) is a quotient of the
direct sum (Z/N(G)Z)⊕n. In particular, the torsion part of CH3(B) can consist
only of subgroups Z/2sZ for s ≤ 4, Z/3Z, or Z/5Z.


Theorem 3.1(ii) gives a way to check the hypothesis on the filtration.


Proof. By the hypothesis, the map γ3/4(B) → τ3/4(B) is surjective. Now combine
Lemma 5.1 and Theorem 3.1(iii). �


As an alternative to making a hypothesis on the filtrations, we may control the
torsion on CH3(X) based on information about the torsion in CH2(X) and the
motivic decomposition of X , as we now illustrate.


Fix a prime p. In the category of Chow motives with Z/pZ-coefficients, the
motive of X is a direct sum of shifts of an indecomposable motive R, see [26,
Th. 5.17], where R depends on G but not the choice of X (ibid., Th. 3.7). We write
Chm(R) for the m-th Chow group of R with Z/pZ coefficients.


5.3. Lemma. We have:


(i) (Torsp CH
2(X))⊗ Z/pZ ≃ Ch2(R);


(ii) (Torsp CH
3(X))⊗ Z/pZ ≃ (Ch2(R))⊕r ⊕ Ch3(R).


(iii) TorsCH3(B) ≃ (TorsCH2(X))⊕(n−r) ⊕ TorsCH3(X).
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Proof. The expression of the motive of X from [26] gives:


(Torsp CH
m(X))⊗ Z/pZ ≃ Ch


m
(R) ⊕ (Ch


m−1
(R))⊕r ⊕ (Ch


m−2
(R))⊕... ⊕ . . .


where Ch
m
(R) denotes the kernel of the restriction Chm(R) → Chm(R×k k̄) to the


algebraic closure k̄. By the formula for the generating function [26, Thm. 5.13(3)]


and table 4.13 in ibid., we have Ch
0
(R) = Ch


1
(R) = 0 and Ch


i
(R) = Chi(R) for


i = 2, 3. This implies claims (i) and (ii).
Claim (iii) is proved similarly, but using the integral motivic decomposition from


[26, Th. 3.7] with Y = B. �


5.4. Proposition. Fix an odd prime p. If Torsp CH
2(X) 6= 0, then


(1) p = 3 or 5;
(2) Ch2(R) ≃ Z/pZ and Ch3(R) = 0.
(3) Torsp CH


2(X) ≃ Z/pZ and Torsp CH
3(X) ≃ (Z/pZ)⊕r.


Proof. By Prop. 3.2 (or [26, Th. 3.7]), CH2(X) and CH2(B) have the same p-
torsion. As TorsCH2(B) has order dividing N(G) by Theorem 3.1(i), the list of
Dynkin indexes in §1E gives that p = 3 or 5 and Torsp CH


2(B) ≃ Z/pZ. Combining


this with Lemma 5.3(i), it only remains to prove the claims about Ch3(R) and
CH3(X).


Tensoring sequence (1.1) with Z/pZ, we find that


γ3(B)⊗ Z/pZ = τ3(B)⊗ Z/pZ.


Combining Lemma 5.1 and Theorem 3.1(iii) gives that Torsp CH
3(B) is a product


of at most n copies of Z/pZ. By Lemma 5.3(ii) applied to X = B we obtain


(Torsp CH
3(B)) ⊗ Z/pZ ≃ (Z/pZ)⊕n ⊕ Ch3(R).


Since the right hand side already contains n copies of Z/pZ, Torsp CH
3(B) =


(Z/pZ)⊕n and Ch3(R) is zero. The second part of (3) now follows by Lemma
5.3(iii). �


6. Cohomological invariants and the Tits algebras


So far, we have studied the case where G is strongly inner and we constructed the
special cocycle c′(θ) in K0(B), cf. Example 6.3 below. We now relax our hypothesis
on G and ask if c′(θ) is still defined over k.


In the present section Gs denotes an adjoint split simple linear algebraic group
over a field k. As it is adjoint, the character group T ∗ of a split maximal torus of
Gs is naturally identified with the root lattice Λr.


We fix a pinning for Gs, which includes a set of simple roots ∆ = {α1, . . . , αn}
in Λr. Write ωi for the fundamental weight corresponding to αi and si for the
reflection of the weight lattice Λ in the hyperplane orthogonal to α.


The Steinberg basis. For each element w of the Weyl group W (of T ) we define


ρw :=
∑


{i∈1...n|w−1(αi)<0}


w−1(ωi) ∈ Λ.


Let Z[Λ]W denote the subring of W -invariant elements. Then the integral group
ring Z[Λ] is a free Z[Λ]W -module with the basis {eρw | w ∈ W} by [32, Th. 2.2].
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Let Bs denote the variety of Borel subgroups of Gs. Consider the characteristic
map for the simply connected cover of Gs


c
′ : Z[Λ] ։ K0(Bs).


Since the kernel of the surjection c
′ is generated by elements x ∈ Z[Λ]W in the


kernel of the augmentation map, there is an isomorphism


Z[Λ]⊗Z[Λ]W Z ≃ Z[Λ]/ ker(c′) ≃ K0(Bs).


The elements


{gw := c
′(eρw ) = [L(ρw)] | w ∈ W}


form a free Z-basis of K0(Bs) called the Steinberg basis.
Observe that the quotient group Λ/Λr coincides with the group of characters


of the center of the simply connected cover of Gs. Consider the surjective ring
homomorphism induced by the restriction Z[Λ] → Z[Λ/Λr]. Since W acts trivially
on Λ/Λr, we obtain that


ρ̄w =
∑


{i∈1...n|w−1(αi)<0}


ω̄i,


where ρ̄ means the restriction to Λ/Λr.


6.1. Example. (a) For a simple reflection sj we have


ρsj =
∑


{i∈1...n|sj(αi)<0}


sj(ωi) = sj(ωj) = ωj − αj .


(b) More generally, let w := si1si2 . . . sim be a product of m distinct simple
reflections such that the simple roots αij , αiℓ are orthogonal for all j 6= ℓ.
Then


ρsi1si2 ...sim = ρsi1 + ρsi2 + . . .+ ρsim .


because w−1(αi) is negative if and only if i = ij for some j.
(c) For a product of two simple reflections sisj such that cij = α∨


i (αj) < 0 we
obtain


ρsisj = ρsi + cijαj .


The Tits algebras and the base change. Let G be a twisted form of Gs, i.e.
G is obtained by twisting Gs by a cocycle ξ ∈ Z1(k,Aut(Gs)). More specifically,
our choice of pinning for Gs defines a section s of the quotient map π : Aut(Gs) →
Aut(∆). Twisting Gs by ξ′ := sπ(ξ) gives a quasi-split group Gq and we pick
ξ′′ ∈ Z1(k,Gq) that maps via twisting to ξ—i.e., we pick ξ′′ so that G is isomorphic
to ξ′′Gq.


Let B = ξBs be the variety of Borel subgroups of G. Let Γ denote the absolute
Galois group of k; it acts on the weight lattice Λ via the cocycle ξ′.


Following [33] (see also [25, §3.1, §11.7] and [22, §2]) we associate with each
χ ∈ Λ/Λr the field of definition kχ of χ and the central simple algebra Aχ,ξ over
kχ called the Tits algebra. Here kχ is a fixed subfield for the stabilizer


Γχ = {τ ∈ Γ | τ(χ) = χ}.


There is a group homomorphism


β : (Λ/Λr)
Γχ → Br(kχ) with β(χ


′) = [Aχ′,ξ].
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By [27, Thm. 2.1] there is an isomorphism


TorsCH2(B) ≃
ker
(
H3(k,Q/Z(2)) → H3(k(B),Q/Z(2))


)
⊕


χ∈Λ/Λr
Nkχ/k


(
k∗χ ∪ β(χ)


) ,


where the numerator is the kernel of the restriction map to the field of fractions
k(B) of B and Nkχ/k is the norm map. Let H3


β(k,Q/Z(2)) denote the cohomology
quotient


H3
β(k,Q/Z(2)) = H3(k,Q/Z(2))/


⊕


χ∈Λ/Λr


Nkχ/k


(
k∗χ ∪ β(χ)


)


so that TorsCH2(B) ⊆ H3
β(k,Q/Z(2)).


Let l/k be a field extension. Since the Chern classes commute with restrictions,
there is the induced map


resl/k : γ
i/i+1(B) → γi/i+1(Bl),


where Bl = B×k l, with the image generated by the products


〈cK0


n1
(x1) · · · c


K0


nm
(xm) | n1 + · · ·+ nm = i, x1, . . . , xm ∈ resl/k


(
K0(B)


)
〉


and there is a commutative diagram


(6.2) Tors γ2/3(B)
c2 // //


resl/k


��


TorsCH2(B) ⊆ H3
β(k,Q/Z(2))


resl/k


��
Torsγ2/3(Bl)


c2 // // TorsCH2(Bl) ⊆ H3
β(l,Q/Z(2))


Observe that the image resl/k
(
K0(B)


)
can be computed using [25]. For instance,


if G is an inner group, i.e., ξ′ = 0, then Γ acts trivially on Λ/Λr, i.e. kχ = k for all
χ and by [25, Thm. 4.2] the image of the restriction map K0(B) → K0(Bs) from
(3.4) coincides with the sublattice


〈ind(Aρ̄w ,ξ) · gw | w ∈W 〉.


Using (6.2) one can provide a non-trivial element in H3
β(k,Q/Z(2)) as follows:


• Assume that we are given non-trivial elements over l, i.e. that there is a
non-trivial element θ ∈ Tors γ2/3(Bl) such that c2(θ) ∈ H3


β(l,Q/Z(2)) is
non-trivial.


• Assume that we know that θ is defined over k, i.e. that θ = resl/k(θ
′) for


some θ′ ∈ Tors γ2/3(B).


Then the image c2(θ
′) provides a non-trivial element in H3


β(k,Q/Z(2)).


6.3. Example (strongly inner case). If G is strongly inner—i.e., if G is inner and
β is the trivial homomorphism—then for any field extension l/k the left vertical
arrow in (6.2) is an isomorphism, hence, identifying Tors γ2/3(B) with the cyclic
group generated by the special cycle θ. As in Prop. 3.2 and its proof TorsCH2(B)
coincides with the usual unramified cohomology generated by the Rost invariant
r(G) of G and 〈c2(θ)〉 = 〈r(G)〉 in H3(k,Q/Z(2)).


6.4. Lemma. Assume that G is inner.
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(a) If a weight ω is such that β(ω) = 0, then [L(ω)] is in the image of


res: K0(B) → K0(Bs).


In particular, it holds for the classes [L(αi)] of simple roots αi.


Under the notation of Example 6.1(b) we have


(b)
∑


j c
K0


1 ([L(ωij )])− c
K0


1 ([L(αij )]) ≡ cK0


1


(∏
j gsij


)
≡ cK0


1 (gw) mod γ3(Bs);


(c) If β(
∑


j ωij ) = 0, then
∑


j c
K0


1 ([L(ωij )]) is in the image of


res : γ1/2(B) → γ1/2(Bs).


Proof. (a) follows by [14, Cor. 3.1]. (b) follows by the formula for the first Chern


class (inK0) of the tensor product of line bundles. According to (a) each c
K0


1 ([L(αij )])
is in the image of the restriction map which implies (c). �


6.5. Proposition (quaternionic inner case). Assume that G is inner. If every Tits
algebra of ξGs has index 1 or 2, then the special cycle θ is in the image of the
restriction map


res : γ2/3(B) → γ2/3(Bs).


In other words, if l/k is an extension that kills imβ, then the image of c2 over l
coincides with the subgroup generated by the respective Rost invariant, i.e. we have


im(c2)l = 〈r(Gl)〉 ⊆ H3(l,Q/Z(2)).


Proof of Prop. 6.5. We may assume that N(G) is not 1 (otherwise θ maps to zero
in γ2/3(Bs) by Th. 3.1) and Λ/Λr has even order (otherwise Example 6.3 applies),
i.e., we may assume that G has type B, C, D, or E7.


We first make a general observation. Mod γ3(Bs), we have:


cK0


1 ([L(ωi)])
2 ≡ (cK0


1 (gsi) + cK0


1 ([L(αi)]))
2


≡ cK0


1 (gsi)
2 + 2cK0


1 (gsi)c
K0


1 ([L(αi)]) + cK0


1 ([L(αi)])
2.


The Whitney Sum Formula gives that cK0


2 (2gsi) = cK0


1 (gsi)
2 and cK0


1 (2gsi) ≡


2cK0


1 (gsi) mod γ2(Bs). Our hypothesis on the Tits algebras gives that 2gsi is


in the image of K0(B) → K0(Bs), and it follows that cK0


1 ([L(ωi)])
2 is rational –


i.e., is in the image of γ2/3(B) → γ2/3(Bs) – for all i.


Type E7: Suppose that G has type E7. Then


q =


(
7∑


i=1


ω2
i


)
− ω1ω3 − ω3ω4 − ω4ω2 − ω4ω5 − ω5ω6 − ω6ω7


where we have numbered the roots following [2]. Each ω2
i contributes a term of the


form cK0


1 ([L(ωi)])
2 to the image of c′(θ) in γ2/3(Bs), and such a term is rational by


the preceding paragraph. The weights ω1, ω3, ω4, ω6 belong to the root lattice and
so the term ω1ω3 contributes a rational term cK0


1 ([L(ω1)])c
K0


1 ([L(ω3)]) to c
′(θ), and


similarly for the term ω3ω4. Next we observe that ω4ω2 + ω4ω5 contributes


cK0


1 ([L(ω4)])
(
cK0


1 ([L(ω2)]) + cK0


1 ([L(ω5)])
)


to c
′(θ). But ω4 and ω2 + ω5 both lie in the root lattice, so both terms in the


product are rational by Lemma 6.4. The same argument handles ω5ω6+ω6ω7, and
we are done with the E7 case.
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Type D: Suppose that G has type Dn. Then


q =


n∑


i=1


ω2
i −


n−2∑


i=1


ωiωi+1 − ωn−2ωn.


The terms ω2
i are treated as in the E7 case. For the terms in the second sum, we


collect around terms with even subscripts: for even i < n − 2, consider ωi(ωi−1 +
ωi+1). As ωi and ωi−1 + ωi+1 belong to the root lattice, we see as in the E7 case
that they contribute rational terms to c


′(θ).
Suppose now that n is even. Then we have not accounted for ωn−2(ωn−3 +


ωn−1+ωn) from q. As both terms in the product belong to the root lattice, we are
finished as in the E7 case.


If n is odd, then we have not accounted for ωn−2(ωn−1 + ωn) in q. Here Λ/Λr


is isomorphic to Z/4 and ωn−2, ωn−1, ωn map to 2,±1,±3 respectively. In partic-
ular, β(ωn−2) = 2β(ωn), which is zero by our hypothesis on the Tits algebras, so
[L(ωn−2)] is in the image of res : K0(B) → K0(Bs). Similarly, β(ωn−1 + ωn) =
β(ωn−1) + β(ωn) = 0, and as in the E7 case, we see that c′(θ) is rational.


Type B or C: If G has type Bn or Cn, Λ/Λr equals Z/2. In either case,


q =


n∑


i=1


ciiω
2
i −


n−1∑


i=1


2ωiωi+1.


where the cii are 1 or 2.
For type Cn, the map Λ → Λ/Λr sends ωi to the class of i. Previous arguments


easily handle the n odd case. If n is even, previous arguments leave us to consider
the term 2ωn−1ωn. But


2cK0


1 ([L(ωn−1)]) ≡ 2(cK0


1 (gsn−1
) + cK0


1 ([L(αn−1)])) mod γ2(Bs)


≡ cK0


1 (2gsn−1
) + 2cK0


1 ([L(αn−1)]),


and again we find that c′(θ) is rational.
For type Bn, the map Λ → Λ/Λr sends ωn to 1 and all other fundamental weights


to zero. Consequently, it suffices to consider the term 2ωn−1ωn in q. For this we
can apply the argument in the preceding paragraph. �


7. Application to essential dimension


We now apply results from the previous section to give a lower bound on the
essential dimension ed(G) for some algebraic groups G. We refer to Reichstein’s
2010 ICM lecture [30] for a definition and survey of this notion. Roughly speaking,
it gives the number of parameters required to specify a G-torsor.


7.1. Proposition. Let G be an absolutely almost simple algebraic group. Then
ed(G) ≥ 3 unless G is isomorphic to Sp2n for some n ≥ 2 (in which case ed(G) = 0)
or G has type A.


The lower bound of 3 is in many cases very weak, but it has the advantage of
being uniform and having a proof that is almost as uniform. The existence of the
Rost invariant gives the same lower bound on ed(G) when G is simply connected,
so our proposition can be viewed as removing the hypothesis “simply connected”
from that result.
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7.2. Remark. For groups of type A, the lower bound is more complicated and
we do not know what the answer is in every case. Of course ed(SLn) = 0. Some
other known cases are: For n divisible by the square of a prime, we know that
ed(PGLn) ≥ 4 by [29, Th. 16.1(b)]; and for “intermediate” groups of type A in
good characteristic, the essential dimension is at least 4 by [31, Th. 8.13]. On the
other hand, A.A. Albert conjectured that central simple algebras of prime degree
are cyclic, which would imply that ed(PGLn) = 2 for square-free n. However, this
is only currently known for n = 2, 3, and 6.


Proof of Prop. 7.1. Main case: Suppose first that G is not of type A, C, nor E6.
As essential dimension only goes down with field extensions, we may assume that
k is algebraically closed and bound ed(Gs) where Gs is a split simple group not


of type A or C. Put G̃s for the simply connected cover of Gs. Fix a versal G̃s-


torsor ξ̃ ∈ H1(L, G̃s) for some extension L/k. Let K be a field between k and L of
minimal transcendence degree such that there is a ξ ∈ H1(K,Gs) whose image in


H1(L,Gs) is the same as the image of ξ̃.
For sake of contradiction, suppose that K has transcendence degree at most 2


over k. By the hypothesis on the type of G, the Tits algebras of ξG have exponent
a power of 2 and so are actually of index 1 or 2 over K by De Jong, see [4] or
[20, Th. 4.2.2.3]. By Proposition 6.5, there is a class ψ ∈ γ2(B) whose image
under restriction to L is c


′(θ). Now TorsCH2(BK) is zero by Prop. 3.2 because
H3(K,Q/Z(2)) is zero, and it follows that c′(θ) is zero in TorsCH2(BL). But c


′(θ)
has order N(Gs) 6= 1, a contradiction.


Type C: If G of type Cn (n ≥ 2) is simply connected, by hypothesis it is not
Sp2n, so the Rost invariant is not zero on a versalG-torsor and the claim follows. So
suppose G is adjoint. (We give an argument that is characteristic-free; if chark 6= 2,
then ed(G) ≥ n + 1 by [3, (1.1)].) If n is odd then we can construct a nonzero
normalized cohomological invariant of PSp2n of degree 4 as in [21, Th. 4.1] and
that case is settled.


It remains to show that ed(PSp2n) ≥ 3 when k is algebraically closed and n is
even. Let k′ be an extension of k that has a quaternion division algebra D and fix a
class ζ ∈ H1(k′,PSp2n) with image [D] ∈ H2(k′, µ2) under the natural connecting


homomorphism ∂k′ . Fix a versal torsor ξ̃ ∈ H1(L, ζ Sp2n) for some extension L/k′.
Let K be a field between k and L so that there is a class ξ ∈ H1(K,PSp2n) with


the same image as ξ̃ in H1(L,PSp2n). For sake of contradiction, suppose that K
has transcendence degree at most 2 over k.


By De Jong, ∂K(ξ) is the class of a quaternion algebra in H2(K,µ2). So we could
arrange from the beginning that k′ = K and [D] = ∂K(ξ). We have a well-defined
invariant


im
[
H1(∗, ζ Sp2n) → H1(∗, ζ PSp2n)


]
→ H3(∗,Z/2Z)


defined on extensions of K because the Rost invariant vanishes on H1 of the center
of every simply connected group of type Cn with n even [12]. On the other hand,
the class of ξ belongs to the domain of this map and the invariant does not vanish
on it; this contradicts the hypothesis that K has transcendence degree at most 2
over k.


The remaining case of type E6 is known by arguments as in [13, 9.5, 9.7]. Alter-
natively, one can repeat the “main case” argument focusing on essential 2-dimension
instead of essential dimension. �
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Although we stated the proposition for absolutely almost simple groups, it
quickly leads to the lower bound ed(G) ≥ 3 for more groups G. We mention:
(A) to obtain a lower bound on ed(G) for any linear group G, it suffices to give a
lower bound on the essential dimension of the identity component of G [1, 6.19],
so one needn’t assume that G is connected. (B) If k/k0 is a finite separable exten-
sion, one has ed(Rk/k0


(G)) ≥ ed(G), so the proposition immediately gives a similar
(but slightly more complicated to state) result for groups that are simple but not
absolutely simple. (C) If G ≃ G1 × G2, then ed(G) ≥ max{ed(G1), ed(G2)}, and
in this way we can weaken the hypothesis “simple” to “semisimple” at the cost of
demanding that G be adjoint or simply connected.
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