

HYPERBOLICITY OF UNITARY INVOLUTIONS


NIKITA A. KARPENKO


Abstract. We prove the so-called Unitary Hyperbolicity Theorem, a result on hyperbol-
icity of unitary involutions. The analogous previously known results for the orthogonal
and symplectic involutions are formal consequences of the unitary one. While the origi-
nal proofs in the orthogonal and symplectic cases were based on the incompressibility of
generalized Severi-Brauer varieties, the proof in the unitary case is based on the incom-
pressibility of their Weil transfers.


1. Inroduction


We refer to [14] for terminology and basic facts concerning central simple algebras with
involutions. We fix the following notation: F is a field, K/F a separable quadratic field
extension, A a central simple K-algebra, σ an F -linear unitary involution on A.


Precisely as in the orthogonal and in the symplectic case, a right ideal I of the algebra
A is isotropic (with respect to the involution σ), if σ(I) · I = 0. The involution σ is
hyperbolic, if there exists an isotropic ideal of reduced dimension (degA)/2. Note that
the reduced dimension of a right ideal (or, more generally, of a right A-module) is defined
as its dimension over K (not over F ) divided by the degree degA :=


√
dimK A of A.


In this note we prove (in Section 4)


Theorem 1.1 (Unitary Hyperbolicity Theorem). Assume that charF 6= 2. If σ is
not hyperbolic, then there exists a field extension F ′/F such that K ′ := K⊗F F ′ is a field,
the central simple K ′-algebra A′ := A⊗F F ′ is split, and the F ′-linear unitary involution
σ′ := σF ′ on A′ is still not hyperbolic.


Theorem 1.1 is the unitary analogue of the following result concerning orthogonal in-
volutions:


Theorem 1.2 (Orthogonal Hyperbolicity Theorem [12, Theorem 1.1]). Assume that
charF 6= 2. Let B be a central simple F -algebra with an orthogonal involution τ . If τ
is not hyperbolic, then there exists a field extension F ′/F such that the central simple
F ′-algebra B′ := B ⊗F F ′ is split and the orthogonal involution τF ′ on B′ is still not
hyperbolic.


In the case when the exponent of A is 2, Theorem 1.1 has been deduced from Theorem
1.2 in [18]. In our setting the exponent of A is arbitrary; our proof is a unitary adaptation
of the proof of Theorem 1.2.
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In fact, as we show in Section 5, Theorem 1.2 can be deduced from (the exponent 2
case of) Theorem 1.1. Since the symplectic analogue [18, Theorem 1] of these hyperbol-
icity results is a consequence of Theorem 1.2, Theorem 1.1 turns out to be the principle
hyperbolicity result. However, as the orthogonal and symplectic hyperbolicity results are
consequences of the corresponding isotropy results [6, Theorem 1] and [7, Theorem 1], the
most powerful result in this whole story would be the Unitary Isotropy Theorem (which
imply all the results mentioned above). But so far we are not able to prove the Unitary
Isotropy Theorem; the attempt to adopt to the unitary case the proof of the orthogonal
case (which succeeds for the hyperbolicity business in this paper) fails for the isotropy
business. So, we can only state


Conjecture 1.3 (“Unitary Isotropy Theorem”). If σ is anisotropic over any finite
odd degree field extension of F , then there exists a field extension F ′/F such that K ′ :=
K ⊗F F ′ is a field, the central simple K ′-algebra A′ := A⊗F F ′ is split, and the F ′-linear
unitary involution σ′ := σF ′ on A′ is still anisotropic.


Theorem 1.1 (as well as Conjecture 1.3) can easily be reduced to the case where the
index of A is a power of 2. Indeed, first of all, the index of an arbitrary A becomes a
power of 2 over an appropriate finite odd degree field extension L/F , for instance, over
the field extension of F corresponding to a Sylow 2-subgroup of the Galois groups of the
normal closure of E/F , where E is a separable finite odd degree field extension of K such
that ind(A⊗K E) is a power of 2. According to [14, Corollary 6.16], if [L : F ] is odd, the
involution σL is still non-hyperbolic (and K ⊗F L is a field). So, if Theorem 1.1 is proved
for A⊗F L, we get it also for the original A.
Because of the above reduction, we always assume below that the index of A is a power


of 2.
We will prove that Theorem 1.1 holds for F ′ being the function field of the Weil transfer


RK/F (X) of the Severi-Brauer K-variety X of A. Clearly, K ′ is a field and A′ is split for
such F ′, so that we only need to check the non-hyperbolicity of σ′.
We start our work by writing down in Section 2 some consequences of the general


motivic decompositions of [1] applied to the case of some varieties related to unitary
involutions.
We start getting new results in Section 3 by establishing the unitary analogue of the


results of [11] (which are about orthogonal involutions). The involution σ′ is adjoint to
certain (uniquely determined by σ′ up to an isomorphism and a non-zero factor from
F ′) K ′/F ′-hermitian form on a vector K ′-space; the Witt index ind σ′ of σ′ is the Witt
index of this hermitian form. The characteristic assumption charF 6= 2 is dropped in the
following result (proved in Section 3):


Theorem 1.4. We are assuming that the (Schur) index of A is a power of 2. Let F ′


be the function field of the Weil transfer RK/F (X) of the Severi-Brauer variety X of A.
Then the Witt index ind σ′ of σ′ is divisible by the Schur index indA of A.


2. Motivic decompositions of some isotropic varieties of unitary type


The characteristic of the base field F is arbitrary in this section.
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By a variety we mean a separated scheme of finite type over a field. A variety is called
anisotropic, if the degree of any its closed point is even.


Example 2.1. Any K-variety T , considered as an F -variety via the composition T →
SpecK → SpecF , is anisotropic because the residue field of any point on T contains K.


Example 2.2. Let V be a finite-dimensional vector space over K with a K/F -hermitian
form h. If h is anisotropic, then the F -variety of 1-dimensional totally isotropic subspaces
in V is also anisotropic (that is, h remains anisotropic over any finite odd degree field
extension of F ). This classical fact is a consequence of the Springer theorem [3, Corollary
18.5] for quadratic forms (applied to the quadratic form v 7→ h(v, v) ∈ F on V considered
as a vector space over F ).


We write Ch for the Chow group with coefficients in F2 (the finite field of 2 elements).
Motives below are the Chow motives with coefficients in F2, [3, §64]. We write M(Y ) for
the motive of a smooth projective variety Y . The motive of the spectrum of the base field
is denoted by F2. For any integer i, the motive F2(i) (the ith shift of the motive F2) is
called a Tate motive.


Note that the Krull-Schmidt principle [13, Corollary 2.2] holds for the motives of quasi-
homogeneous varieties, [13, Definition of §2].


Let D be a central division K-algebra of a index a power of 2 (possibly of index
1 = 20) with a fixed F -linear unitary involution τ . Let V ′ be a finite-dimensional right D-
module with a hermitian (with respect to the involution τ) form. Let H be the hermitian
hyperbolic D-plane. By definition, H is the right D-module D ⊕ D equipped with the


hermitian form of the matrix


(


0 1
1 0


)


. Let V be the orthogonal sum of H and V ′. Let


Y be the F -variety of the totally isotropic submodules in V of reduced dimension degD
(that is, of D-dimension 1). The variety Y is a closed subvariety of the Weil transfer
with respect to the field extension K/F of the K-variety of the submodules in V of the
reduced dimension degD. Similarly, we define Y ′ as the F -variety of the totally isotropic
submodules in V ′ of reduced dimension degD.


Lemma 2.3. The motive of Y is the sum of two Tate motives, a shift of the motive of
Y ′, and shifts of the motives of some anisotropic F -varieties.


Proof. According to [9, Theorem 15.8], the variety Y is a relative cellular space (as defined
in [3, §66]) over the (non-connected) variety Z of triples (I, J,N), where I and J are right
ideals in D and where N is a submodule in V ′ such that the submodule I ⊕ J ⊕N ⊂ V
is a point of Y (that is, τ(I) · J = 0, N is totally isotropic, and the reduced dimension of
the D-module I ⊕ J ⊕N is equal to degD). Therefore, by [3, Corollary 66.4], the motive
of Y is the sum of shifts of the motives of the components of Z.


The rational points (0, D, 0) and (D, 0, 0) of Z are components of Z which produce the
two promised Tate summands. Since D is a 2-primary division algebra, any other odd
degree rational point of Z lies on the component of the triples (0, 0, N). This component
is naturally identified with Y ′. �


Remark 2.4. Since we are trying to avoid unnecessary precision, we do not determine the
shifting numbers of the summands in the decomposition of Lemma 2.3. A more detailed
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analysis of the situation shows that the shifting numbers of the two Tate motives are 0
and dimY ; the shifting number of the motive of Y ′ is (dimY − dimY ′)/2.


3. Characterization of Witt index of hermitian forms


In this section we still allow to the base field F to be of arbitrary characteristic (in-
cluding 2). We recall that the index of the K-algebra A is a 2-power.
For any integer i ∈ {0, 1, . . . , (degA)/2} we write Yi for the F -variety of the isotropic


reduced dimension i ideals in A. This is a closed subvariety of the Weil transfer RK/FXi


of the generalized Severi-Brauer K-variety Xi of the reduced dimension i right ideals in
A. The K-variety (Yi)K is identified with the variety of the flags I ⊂ J of right ideals I, J
in A of reduced dimensions i, degA− i (see [14, Proposition 2.15] and [9, Lemma 15.5]).
Now we assume that the algebra A is split and we study the variety Y1. More precisely,


we assume that A = EndK(V ) for some finite-dimensional vector K-space V (of dimension
degA). In this case, the involution σ is adjoint to some K/F -hermitian form h on V .
By the Morita equivalence, the variety Y1 is the variety of 1-dimensional totally isotropic
with respect to h subspaces in V . So, the variety Y1 is the unitary analogue of a projective
quadric (which we have in the orthogonal case). And it turns out that the Chow group
of Y1 contains the information about the precise value of the Witt index of h exactly as
in the orthogonal case the Chow group of the projective quadric contains the information
about the precise value of the Witt index of the quadratic form [3, Corollary 72.6].
The K-variety (Y1)K is a hypersurface in P(V )× P


#(V ), where P(V ) is the projective
space of V , i.e., the variety of 1-dimensional subspaces in V , and P


#(V ) is the dual
projective space of V , i.e., the variety of 1-codimensional subspaces in V , which can be
identified with P(V #), the projective space of the vector space V # dual to V . More
precisely, (Y1)K ⊂ P(V )×P


#(V ) is the flag hypersurface, the hypersurface of the pairs of
subspaces (U,W ) of the vector space V satisfying the condition U ⊂ W .
We write C for the image of the composition


Ch(Y1) → Ch((Y1)K) → Ch(P(V )× P
#(V )).


For any variety P isomorphic to a projective space and any integer i ∈ {0, 1, . . . , dimP},
we write li for the class in Chi(P) of an i-dimensional linear subspace in P.
The following statement is the unitary analogue of [3, Corollary 72.6]:


Lemma 3.1. Assume that A is split. For any i ∈ {0, 1, . . . , (degA)/2− 1} the following
statements are equivalent:


(1) the Witt index of σ is > i;
(2) li × li ∈ C;
(3) the motive of Y1 contains the Tate summand F2(2i).


Proof. (1) ⇒ (2). If the Witt index of σ is > i, there exists an isotropic ideal I ⊂ A of
reduced dimension i + 1. The variety of the reduced dimension 1 right ideals contained
in I is then a closed subvariety of Y1 whose class in C is equal to li × li.
(2) ⇒ (3). If li× li ∈ C, we write α for an element of Ch2i(Y1) whose class in C is equal


to li × li. The variety Y1 is a hypersurface in RK/F (P(V )). For j := dimP(V ) − i, we
consider the cycle class RK/F (lj) ∈ Ch2j(RK/F (P(V ))) (RK/F in the expression RK/F (lj)
here is the Weil transfer on the algebraic cycle classes, see [10, §3]) and let β ∈ Ch2j−1(Y1)
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be the pull-back of RK/F (lj) with respect to the imbedding in : Y1 →֒ P(V ). By the
projection formula, the product α · β is a 0-cycle class on Y1 of degree 1. Indeed,


deg(α · β) = deg in∗(α · β) = deg
(


in∗(α) · RK/F (lj)
)


=


deg
(


in∗(α)K · RK/F (lj)K
)


= deg
(


(li × li) · (lj × lj)
)


= deg(l0 × l0) = 1.


Therefore, α and β, considered as morphisms of motives


α : F2(2i) → M(Y1) and β : M(Y1) → F2(2i),


identify F2(2i) with a summand of M(Y1).
Note that the same α and β are morphisms β : F2(dimY1 − 2i) → M(Y1) and α :


M(Y1) → F2(dimY1−2i) showing that the Tate motive F2(dimY1−2i) is also a summand
of M(Y1) (this summand is dual to the previous one, cf. [3, §65]).


(3) ⇒ (1). Let j be the Witt index of σ. Note that j ≤ (degA)/2. According
to Lemma 2.3 (applied j times), there exists a motivic decomposition of Y1 containing
2j Tate summands and such that each of the remaining summands is a shift of the
motive of an anisotropic variety (take Example 2.2 into account). According to [12,
Lemma 6.3], the complete motivic decomposition of an anisotropic variety does not contain
Tate summands. It follows that the complete motivic decomposition of M(Y1) contains
precisely 2j Tate summands. But during the previous step, we have already constructed
2j Tate summands of M(Y1) (with pairwisely different shifting numbers):


F2,F2(2), . . . ,F2(2j − 2) and F2(d),F2(d− 2), . . . ,F2(d− 2j + 2),


where d = dimY1 = 2degA − 3. Note that the shifting number of every Tate summand
in the first group is ≤ degA− 2 while the shifting number of every Tate summand in the
second group is ≥ degA− 1. Therefore, M(Y1) contains F2(2i) with some i < (degA)/2
only if j > i. �


Proof of Theorem 1.4. We may assume that ind σ′ > 0. Let r be the biggest multiple of
indA with r < ind σ′. We will show that ind σ′ = r + indA.


Let T be the Severi-Brauer variety of a central division K-algebra Brauer-equivalent to
A. We write R instead of RK/F and we write Y instead of Y1 for short. By Lemma 3.1,
there exists α′ ∈ Ch2r(YF (R(T ))) with the image lr × lr in Ch2r(YK(R(T ))). Let


α ∈ Ch2r+2dimT


(


R(T )× Y
)


be a preimage of α′ with respect to the epimorphism


Ch2r+2 dimT


(


R(T )× Y
)


→→ Ch2r(YF (R(T )))


given by the pull-back with respect to the morphism YF (R(T )) → R(T ) × Y induced by
the generic point of the (integral) variety R(T ).


According to [11, Lemma 3.1] and since r is a multiple of indA lying on the interval
[0, dimX ], there exists an element


β ′ ∈ ChdimX−r(X × T ) = Chr+dimT (X × T )


with the image under the composition of the push-forward Ch(X × T ) → Ch(X) with
respect to the projection X × T → X followed by the change of field homomorphism
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Ch(X) → Ch(XK(X)) being equal to ldimX−r ∈ Ch(XK(X)). Let


β ∈ Ch2r+2dimT
(


Y ×R(T )
)


be the pull-back of R(β ′) ∈ Ch
(


R(X) × R(T )
)


to Ch
(


Y × R(T )
)


with respect to the
closed imbedding Y ×R(T ) →֒ R(X)×R(T ) induced by the closed imbedding Y →֒ R(X).
The composition of correspondences


β ◦ α ∈ Ch2 dimT


(


R(T )×R(T )
)


is a degree 0 correspondence on R(T ). The multiplicity of β ◦ α is 1. Indeed, the
multiplicity of β ◦ α coincides with the degree of the 0-cycle class (β ◦ α)∗(l0 × l0),
where l0 × l0 ∈ Ch0(R(T )K(T )) is the 0-cycle class of degree 1 on R(T )K(T ). Since
α∗(l0 × l0) = lr × lr ∈ Ch2r(YK(T )) and β∗(lr × lr) = l0 × l0 by the construction of α
and β, the 0-cycle class (β ◦ α)∗(l0 × l0) is equal to l0 × l0 and has the degree 1.
We have constructed morphisms of motives


α : M
(


R(T )
)


→ M(Y )(−2r) and β : M(Y )(−2r) → M
(


R(T )
)


such that the multiplicity of the composition β ◦α is 1. It follows by [8, Lemma 2.14] that
a non-zero summand of the motive of R(T ) is isomorphic to a summand of M(Y )(−2r).
On the other hand, according to [5, Theorem 1.2], the motive of the variety R(T ) is
indecomposable. Therefore, the whole motive of R(T ) is isomorphic to a summand of
M(Y )(−2r). Since over the function field of R(T ), the Tate motive F2


(


dimR(T )
)


is a


summand of M
(


R(T )
)


F (R(T ))
, the motive of YF (R(T )) contains a Tate summand with the


shifting number 2r + dimR(T ) = 2(r + dimT ) = 2(r + indA− 1). It follows by Lemma
3.1 that ind σ′ > r+indA−1, that is, ind σ′ ≥ r+indA. Now, the definition of r ensures
that ind σ′ = r + indA. �


4. Proof of Theorem 1.1


We follow the lines of [12, §7] doing the necessary modifications. First of all we refix
our setting. Our base field F is now an arbitrary field of characteristic 6= 2, K/F is a
quadratic field extension, A is a non-split central simple K-algebra whose index is a power
of 2, σ is an F -linear unitary involution on A. We assume that σ becomes hyperbolic
over the function field of the Weil restriction R(X) = RK/F (X) of the Severi-Brauer
variety X of A. Equivalently, σ becomes hyperbolic over the function field of the Weil
restriction R(T ) = RK/F (T ) of the Severi-Brauer variety T of a central division K-algebra
D Brauer-equivalent to A.
According to Theorem 1.4, coindA := (degA)/(indA) is 2n for some integer n ≥ 1.


We assume that Theorem 1.1 is already proved for all algebras (over all fields) of index
< indA as well as for all algebras of index = indA and coindex < 2n.1


Let us fix an arbitrary F -linear unitary involution τ on D and an isomorphism of
F -algebras A ≃ EndD(D


2n). Let h be a hermitian (with respect to τ) form on the
right D-module D2n such that σ is adjoint to h. Then hF (R(T )) is hyperbolic. Since the
anisotropic kernel of h also becomes hyperbolic over F (R(T )), our induction hypotheses


1We are inducting on the index and on the coindex of A. The index induction base is the trivial case
of the index 1. The coindex induction base is the case of the coindex 1 proved by Theorem 1.4 (see also
[4, Example 4.5] for a simpler proof).
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ensure that h is anisotropic. Moreover, hL is hyperbolic for any field extension L/F such
that K ⊗F L is field and hL is isotropic (we avoid the case where K ⊗F L is not a field
because we did not give a definition of hyperbolic in this case). It follows by [14, Corollary
6.16] that hL is anisotropic for any finite odd degree field extension L/F .


Let Y be the variety of totally isotropic submodules in D2n of reduced dimension
n degD (that is, of D-dimension n). The variety Y is a closed subvariety of the Weil
transfer with respect to the field extension K/F of the K-variety of the submodules in
D2n of the reduced dimension n degD. Note that by [15], the F (Y )-algebra DF (Y ) is still
a division algebra. Also note that Y (K) 6= ∅ because coindA is even.


We are going to apply to the motive of Y the following slightly modified version of [12,
Proposition 4.6]. Here and below, for any irreducible smooth projective variety S we write
U(S) for the upper motive of S defined as the indecomposable upper motivic summand
of S, see [8].


Proposition 4.1. Let S be a geometrically split variety satisfying the nilpotence principle
and let M be a motive. Assume that there exists a field extension E/F such that


(1) SE is irreducible and the motive U(SE) is lower [8, Definition 2.10];
(2) the field extension E(S)/F (S) is purely transcendental;
(3) the upper motive U(SE) of the variety SE is a summand of ME.


Then the upper motive U(S) of the variety S is a summand of M .


Proof. The only difference with [12, Proposition 4.6] (besides of the particular current
choice F2 for the coefficient ring in place of an arbitrary finite connected ring) is that now
we do not require S to be geometrically irreducible and we only require instead that S is
irreducible over E. This change does not affect the original proof. �


We will apply Proposition 4.1 in the case where the variety S is quasi-homogeneous in
the sense of [13, §2]. Such S is geometrically split and satisfies the nilpotence principle
by [13, Theorem 2.1]. In Example 4.2 below, we describe a sufficient amount of varieties
for which Condition (1) of Proposition 4.1 is satisfied.


Example 4.2. Let i be a 2-power of the interval [1, degD]. Let S be the generalized
Severi-Brauer K-variety of the reduced dimension i right ideals in D. According to [5],
the upper motive U


(


RK/F (S)
)


is lower (this fact is equivalent to the 2-incompressibility of
the variety RK/F (S) established in [5, Theorem 1.1], c.f. [4, Lemma 2.7 or Theorem 5.1]).
The K-motive U(S) is also lower by [8, Theorem 4.1]. Since the F -motive corK/F U(S)
is indecomposable by [13, Proposition 3.1] (see [13, §3] for the definition of the motivic
functor corK/F ), we have U(corK/F S) ≃ corK/F U(S) and it follows that the motive
U(corK/F S) is also lower. (The F -variety corK/F S is simply the K-variety S considered
as an F -variety via the composition S → SpecK → SpecF .)


Corollary 4.3. The motive U(Y ) has the following property: U(Y )F (Y ) is a sum of Tate
motives.


Proof. According to [13], each summand of the complete motivic decomposition of YF (Y )


is a shift of the upper motive of R(S)F (Y ) or of cor(S)F (Y ), where S/K is a generalized
Severi-Brauer variety of Example 4.2, R = RK/F , and cor = corK/F .
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Let us neglect the shifts. Proposition 4.1 with E = F (Y ) allows to split off from the
motive of Y (over F ) the summand U(R(S)) for each motivic summand U(R(S)F (Y )) of
YF (Y ) with S 6= SpecK, and it allows to split off the summand U(cor(S)) for each motivic
summand U(cor(S)F (Y )) of YF (Y ) with any S. Indeed, Condition (1) of Proposition 4.1
is satisfied by Example 4.2 (and because DE is still a division algebra); Condition (2) is
satisfied because the variety YK is rational and also for any S 6= SpecK the variety YR(S)


is rational.
The remaining part of M(Y ) is an upper motivic summand of Y which, if considered


over F (Y ), becomes a sum of Tate motives. Therefore, the upper motive of Y has the
same property. �


It will turn out below, that in fact the upper motive of Y is binary: U(Y )F (Y ) is the
sum of two Tate motives.
Let us consider a minimal right D-submodule V ⊂ D2n such that V becomes isotropic


over a finite odd degree field extension of F (Y ). We set v = dimD V . Clearly, v ≥ 2
(because DF (Y ) is a division algebra). Let Y ′ be the variety of totally isotropic submodules


in V of reduced dimension degD (that is, of D-dimension 1). Writing F̃ for an odd


degree field extension of F (Y ) with isotropic VF̃ , we have Y ′(F̃ ) 6= ∅ (because DF̃ is a
division algebra). Therefore there exists a correspondence of odd multiplicity (that is, of
multiplicity 1 ∈ F2) α ∈ ChdimY (Y × Y ′).
The variety Y ′ is projective homogeneous (in particular, irreducible) of dimension


dimY ′ = (degD)2(2v − 3)


which is not a power of 2 minus 1 (because even and positive). Moreover, the variety
Y ′ is anisotropic (because the hermitian form h is anisotropic and remains anisotropic
over any finite odd degree field extension of the base field). Therefore, Lemma 4.4 below
contradicts [12, Corollary 5.14] thus proving Theorem 1.1.2


Lemma 4.4. There is a Rost projector ([12, Definition 5.1]) on Y ′.


Proof. As explained above, there exists a correspondence of odd multiplicity (that is, of
multiplicity 1 ∈ F2) α ∈ ChdimY (Y × Y ′). On the other hand, since hF (Y ′) is isotropic,
hF (Y ′) is hyperbolic and therefore there exist a rational map Y ′


99K Y and a multiplicity
1 correspondence β ∈ ChdimY ′(Y ′ × Y ) (e.g., the class of the closure of the graph of the
rational map). It follows that the upper motives of the varieties Y and Y ′ are isomorphic.


In particular, U(Y ′)F̃ , where F̃ /F (Y ) is a finite odd degree field extension with isotropic
VF̃ , is a sum of Tate motives.
On the other hand, (h|V )F̃ is an orthogonal sum of a hyperbolic DF̃ -plane and a her-


mitian form h′ such that h′


L is anisotropic for any finite odd degree field extension L/F̃ of


the field F̃ . Indeed, otherwise – if h′


L is isotropic for some such L, the module VL contains
a totally isotropic submodule W of D-dimension 2; any D-hyperplane V ′ ⊂ V , considered
over L, meets W non-trivially; it follows that V ′


L is isotropic and this contradicts the


2We recall that [12, Corollary 5.14] is due to M. Rost [17]; its proof makes use of Steenrod operations on
Ch which are available only over fields of characteristic 6= 2. This explains the characteristic assumption
of Theorem 1.1.
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minimality of V . (This is a very standard argument in the theory of quadratic forms over
field which we applied now to a hermitian form over a division algebra.)


It follows by Lemma 2.3 that the complete motivic decomposition of Y ′


F̃
has one copy of


F2, one copy of F2(dimY ′), and no other Tate summands. The anisotropy of the variety
Y ′ implies now that


U(Y ′)F̃ ≃ F2 ⊕ F2(dimY ′),


that is, that the projector giving U(Y ′) is a Rost projector on Y ′. �


5. Relation with the orthogonal case


The aim of this Section is to explain the relationship between Theorem 1.1 and Theorem
1.2. It turns out that Theorem 1.2 is “contained” in Theorem 1.1 in the following sense:
Theorem 1.2 is equivalent to Theorem 1.1 with expA = 2.


It has been already shown in [18] that Theorem 1.2 implies Theorem 1.1 for algebras
A of exponent 2. The inverse implication is based on the following construction (similar
to the symplectic case construction of [18]).


Let F be a field of characteristic 6= 2, B a central simple F -algebra with an orthogonal
involution τ , x a variable, F̃ /F (x) the quadratic extension F̃ = F (x)(


√
x) (the “generic


quadratic extension over F”). Let B̃ := B ⊗F F̃ and let τ̃ be the F (x)-linear unitary
involution on B̃ obtained as the tensor product of τ by the non-trivial automorphism of
F̃ /F (x).


Lemma 5.1 (cf. [18, Proposition 1]). If τ is anisotropic, then τ̃ is also anisotropic. If
for some field extension L/F (x) such that L̃ := L ⊗F (x) F̃ is a field, the involution τL is
hyperbolic, then the involution τ̃L is also hyperbolic.


Proof. If τ̃ is isotropic, there exists a non-zero element a ∈ B̃ with τ̃ (a) · a = 0 which is
a polynomial in t :=


√
x, a = ant


n + · · ·+ a0 for some an, . . . , a0 ∈ B such that an 6= 0.
The coefficient of t2n in the polynomial τ̃ (a) · a is ±τ(an) · an. Therefore τ(an) · an = 0
and τ is isotropic.


If for some field extension L/F (x) such that L̃ := L ⊗F (x) F̃ is a field, the involution
τL is hyperbolic, the algebra BL contains an isotropic ideal I of the reduced dimension
(degB)/2. The tensor product I⊗LL̃ is then an isotropic ideal of the algebra B̃L = BL⊗LL̃


of the same reduced dimension (degB)/2 = (deg B̃)/2. Hence τ̃L is also hyperbolic. �


Now Theorem 1.1 with A = B̃ implies Theorem 1.2 as follows. We may assume that
τ is anisotropic. Then, by Lemma 5.1, the unitary involution τ̃ is also anisotropic. In
particular, τ̃ is not hyperbolic and it follows by Theorem 1.1 that there exists a field
extension L/F (x) such that L⊗F (x) F̃ is a field, the algebra B̃ ⊗F (x) L is split, and τ̃L is
not hyperbolic. By Lemma 5.1, the involution τL is also not hyperbolic. Since the algebra
BL splits over the quadratic extension L̃/L, indBL ≤ 2. We finish by the orthogonal
hyperbolicity theorem for index 2 algebras proved in [2] and independently in [16].


Acknowledgements. I am grateful to Maksim Zhykhovich for useful discussions.
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