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ABSTRACT. We prove: (1) The group of multipliers of similitudes of a 12-
dimensional anisotropic quadratic form over a field K with trivial discriminant
and split Clifford invariant is generated by norms from quadratic extensions
E/K such that gg is hyperbolic. (2) If G is the group of K-rational points
of an absolutely simple algebraic group whose Tits index is ES%, then G is
generated by its root groups, as predicted by the Kneser-Tits conjecture.

1. INTRODUCTION

The Kneser-Tits conjecture—first formulated in [21)]—predicts that the group of
K-rational points (for some field K of arbitrary characteristic) of an absolutely
simple algebraic group with Tits index

@—‘—‘—‘—I—‘—®

is generated by its root groups. This Tits-index is denoted by Egg in [19]. Groups
with this Tits index are classified by similarity classes of anisotropic 12-dimensional
quadratic forms over K with trivial discriminant and split Clifford invariant. By
[22, 42.6], they are also the groups whose corresponding spherical building is a
Moufang quadrangle of type Eg as defined in [22, 16.6].

Given a quadratic form ¢ defined over a field K, we denote by clif(¢) the Clifford
invariant of ¢, by G(q) the group of multipliers of similitudes of ¢, by Hyp(q) the
subgroup of K* generated by K*? and the norms from finite extensions £/K such
that gg is hyperbolic and by Hyp,(q) the subgroup of Hyp(q) generated by K*?
and the norms from quadratic extensions E /K such that ¢g is hyperbolic (including
inseparable ones).

Our goal is to prove the following closely related statements.

Theorem 1.1. If q is an anisotropic quadratic form with trivial discriminant, then
G(q) = Hyps(q) in the following cases:

(i) dimgq = 8 and the index of clif(q) is 2;

(ii) dim g = 12 and clif(q) is split.

Theorem 1.2. If G is the group of K -rational points of an absolutely simple alge-
braic group whose Tits index is Egg, then G is generated by its root groups.
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We give two very different proofs of these theorems. In §2 we lay the groundwork
that is common to the two proofs, and show that the equality G(q) = Hyp(q) holds
for quadratic forms as in Theorem 1.1. As a consequence, the connected compo-
nent of the identity PGO4(¢) in the group of projective similitudes is R-trivial if
char(K) # 2: see Corollary 2.19. In §3, we give proofs of Theorems 1.1 and 1.2
based on results in [23] and [24]. In particular, the notion of a quadrangular alge-
bra introduced in Chapters 12-13 of [22] and in [23] plays a central role in these
proofs. In §4 we show how the R-triviality of PGO4(q) for ¢ as in Theorem 1.1(ii)
in characteristic 0 yields another proof of Theorem 1.2 in arbitrary characteristic.
In §5 we give an entirely different proof of Theorem 1.1 under the assumption that
char(K) # 2, using the triality-defined correspondence between 8-dimensional qua-
dratic forms of trivial discriminant and hermitian forms over the simple components
of their even Clifford algebra.

For a survey of what is known about the Kneser-Tits conjecture; see [9]. We call
attention especially to §6 of that paper, where the Kneser-Tits conjecture over an
arbitrary field is discussed. By [17], [9, 6.1] and Theorem 1.2, the only exceptional
groups of relative rank at least 2 for which the Kneser-Tits conjecture remains to
be verified over arbitrary fields are those whose Tits index is

SRS S

(called EZ% in [19]). Groups with this Tits index are classified by isotopy classes of
Albert division algebras, and the corresponding spherical buildings are the Moufang
hexagons defined in [22, 16.8] for “hexagonal systems” of dimension 27. See also
[9, 8.6] and [22, 37.41].

ACKNOWLEDGEMENT. The proof in §4 that the R-triviality in characteristic 0 of
PGO4(q) for q as in Theorem 1.1(ii) implies Theorem 1.2 in arbitrary characteristic
is due to Skip Garibaldi. We would like to thank him for allowing us to reproduce
his proof here.

2. SIMILITUDES OF QUADRATIC FORMS

Our main background reference for quadratic forms is [6], although we mostly use
the notation of [23]. Let (K, L,q) be a quadratic space. Thus K is a field, L is a
K-vector space and q: L — K is a quadratic form on L. We let f = Jq denote the
polar bilinear form of ¢q. Thus

f(z,y) =q(x+y) —q(z) —qly) forz,yelL.

The quadratic space (K, L,q) is nondegenerate if dimg rad f < 1; see [6, 7.17].
If dimg L is even and (K, L,q) is nondegenerate, then f is nondegenerate, the
discriminant disc(q) is the isomorphism class of the center of the even Clifford
algebra Cy(q) and the Clifford invariant clif (¢) is the Brauer class of the full Clifford
algebra C(q); see [6, §813, 14]. As in [6, §88, 9], we let I, K denote the quadratic
Witt group of K and let I’K = I"'K - I,K for all n > 0, where I""'K is
the (n — 1)st power of the fundamental ideal I K of even-dimensional forms in the
bilinear Witt ring W K.
The following definitions are taken from [22, 21.31].
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Definition 2.1. A quadratic space (K, L,q) is of type E7 if it is anisotropic
and there exists a separable quadratic extension E/K with norm N and scalars
ai, ... ,o4 such that

(K,L,q) = (K,E*, oy N L apN L azN L ayN)

and
arasasay € N(E).

In other words, ¢ is anisotropic,
q = <a13a2)a33a4> : Na
and the quaternion algebra (E /K, ajasasay), which represents clif(g), is not split.

Definition 2.2. A quadratic space (K,L,q) is of type Es if it is anisotropic
and there exists a separable quadratic extension E/K with norm N and scalars
ai,...,ag such that

(K,L,q) = (K,E®, a;N LasN L--- L agN)
and
—ajag - € N(E).
In other words, ¢ is anisotropic,
q={aq,...,a6) N,
and clif(q) is split.

Proposition 2.3. Suppose that (K, L,q) is an anisotropic quadratic space. Then
the following hold:
(i) (K, L,q) is of type E7 if and only if dim g = 8, disc(q) is trivial and clif(q)
is of index 2.
(ii) (K, L,q) is of type Eg if and only if dim g = 12, disc(q) is trivial and clif (q)
is split. These conditions are also equivalent to dimq = 12 and q € ISK.

Proof. If char(K) # 2, (i) is in [11, Ex. 9.12] and (ii) in [16, p. 123]. In arbi-
trary characteristic, see [5, 4.12] and (for the second part of (ii)) [6, Thm. 16.3] if
char(K) = 2. O

Remark 2.4. Suppose that (K, L,q) is a quadratic space of type E7 and that
q(1) =1 for a distinguished element 1 of L. Let F and «;,...,a4 be as in 2.1. By
[23, 2.24],

(2.5) C(q,1) = M(4,D) & M(4, D),

where C(q,1) is the Clifford algebra with base point as defined in [22, 12.47] and
D is the quaternion division algebra (E/K,ajasazay). By [22, 12.51], C(g,1) is
isomorphic to the even Clifford algebra Cy(g). Since D represents clif(q), it is
independent of the choice of the orthogonal decomposition of ¢ in 2.1.

Our goal in this section is to prove the equality G(¢q) = Hyp(q) for ¢ of type Er
or Es. We start with some general observations. The following is essentially [23,
2.18].
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Proposition 2.6. Suppose that the polynomial p(r) = 2?> — az + f € K|x] is
separable and irreducible over K. Let E be the splitting field of p(x) over K and
let N denote the norm of the extension E/K, so that (K, E,N) is a nondegenerate
anisotropic 2-dimensional quadratic space. Let (K, L,q) be a finite-dimensional
quadratic space. Then the following assertions are equivalent:

(i) The K-vector space structure on L extends to an E-vector space structure
such that q(u - v) = N(u)q(v) for allu € E, v € L;

(ii) There exists a similitude T of q such that q(T(v)) = Bq(v) and f(v,T(v)) =
a for all non-zero v € L and p(T) = 0;

(iii) For each v1 € L there exists a decomposition L = V4 @ --- ® Vg for some
d € N such that vi € Vi, the restriction q; of q to V; is similar to N for
each i € [1,d] and g=q1 L --- L qu;

(iv) for some d € N and some ai,as,...,aq € K*,

(K,L,q) = (K,E% a1N L asN L --- L agN);
(v) g is hyperbolic.

Proof. Suppose that (i) holds, choose a root v € E of p(x) and let T'(v) = - v for
all v € L. Then T is a similitude of ¢ as in (ii). If T is a similitude of ¢ as in (ii),
then for each nonzero v € L the restriction of ¢ to (v, T'(v)) is similar to N (and, in
particular, is nondegenerate). Therefore (iii) holds, and (iii) of course implies (iv).
Fixing an isomorphism as in (iv), we may transfer to L the natural E-vector space
structure on E¢ to obtain (i). The equivalence of (iv) and (v) follows readily from
[6, Prop. 34.8]. O

Definition 2.7. A similitude ¢ of a quadratic space (K, L, q) is called inseparable
if char(K) = 2, the multiplier of ¢ is not in K*? and

f(v,p(v)) =0 forallv e L,

where f = dq. We call a similitude of ¢ separable if it is not inseparable. Thus, if
char(K) # 2 all similitudes are separable.

Proposition 2.8. Let (K, L,q) be a finite-dimensional quadratic space such that
f = 0q is nondegenerate. If (K, L,q) admits an inseparable similitude with multi-
plier v, then

q~(1,7) 4
for some non-degenerate quadratic form qg. In particular, dim L = 0 mod 4 and
dK(y7) 18 hyperbolic.

Proof. Let & = K(,/7) be a purely inseparable quadratic extension of K, and let ¢
be an inseparable similitude of (K, L, ¢) with multiplier 4. Linearizing the condition
f(v,0(v)) =0, we obtain

f (v, o(w)) = fe(v), w) for all v, w € L.

Since f(¢(v),¢(w)) =~ f(v,w) for all v, w € L, it follows that

f(v, <p2(w)) = f(np(v), go(w)) =~f(v,w) for all v, w € L,

hence p?(w) = yw for all w € L. We then define on L an E-vector space structure
by
A+ p/7) - v = v+ pe(v) for \, pe€ K and v € L,
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and we define a map f': L x L — FE by
f'(w,w) = flo,w) + /7~ f (v, p(w))  for v, we L.

A straightforward computation shows that f” is a bilinear alternating form on L. It
is nondegenerate since f is nondegenerate. Therefore, the dimension of L over E is
even, hence its dimension over K is a multiple of 4. Let (e;, e;)le be a symplectic
E-base of L for f'. If Ly C L is the K-span of (e;,e})%; and qo is the restriction
of ¢ to Ly, we have L = Lo L ¢(Lg) and ¢ = qo L {7)qo- O

Corollary 2.9. Let (K, L,q) be a finite-dimensional quadratic space such that dq
is non-degenerate. Then the multiplier of every inseparable similitude of q is in

Hypy(q)-

Proof. Let ~ be the multiplier of an inseparable similitude of ¢q. Clearly, v €
N(K(\/'_y)), and Proposition 2.8 shows that ¢ is hyperbolic over K (/7). O

We now consider quadratic forms of low dimension. The following result is
presumably well-known:

Proposition 2.10. FEvery 10-dimensional quadratic form in IS(K) 1s 1sotropic.

Proof. This was proved by Pfister [16, p. 123] under the hypothesis that char(K) #
2. The arguments also apply when char(K) = 2; see [5, Thm. 4.10]. O

We now consider quadratic spaces of type Fr7. For the next statement, we do
not require the form to be anisotropic.

Lemma 2.11. Let (K, L,q) be a nondegenerate quadratic space of dimension 8.
If disc(q) is trivial and clif(q) is represented by a quaternion algebra Q with norm
form Ng, then q is Witt-equivalent to the sum of a multiple of Ng and a multiple
of some 3-fold Pfister quadratic form m: there exist o, § € K* such that

(2.12) g={a) -Nog+(8) -7 in I,K.

Moreover, G(q) = G(Ng) N G(w).

Proof. Let a € K* be a value represented by g. Consider the form
¢ =qLl(-a) Nq.

This 12-dimensional form is isotropic and has trivial discriminant and Clifford in-
variant, hence it is in [ g’K and is Witt-equivalent to a 10-dimensional form. By
Proposition 2.10, it is actually equivalent to an 8-dimensional form. By the Arason—
Pfister Hauptsatz [6, Thm. 23.7], this 8-dimensional quadratic form becomes hy-
perbolic over the function field of the corresponding quadric, hence it is a multiple
of some 3-fold Pfister quadratic form 7 by [6, Cor. 23.4]. Letting ¢’ = (8) - 7 in
I,K, we have (2.12).
Now, for v € G(q) we have (1, —v) - ¢ =0 in I K, hence

(L=7) () - No=—(L,—)-(f) -7  in[K.
Since the left side is a form of dimension 8 and the right side is a form of dimen-
sion 16, the right side must be isotropic. It is then hyperbolic by [6, Cor. 9.10],
since it is a multiple of a Pfister form. The left side is then also hyperbolic, which
means that 7 is in G(7) and in G(Ng). We have thus proved G(q) C G(Ng)NG(r).
Since the reverse inclusion is clear, the proof is complete. (]
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Lemmas 2.13 and 2.14 are well-known when char(K) # 2; see [7, 2.13] for
Lemma 2.13. The proofs we give below do not require any separability hypoth-
esis.

Lemma 2.13. Let Ey, E5 be linearly disjoint quadratic extensions of a field K,
and let M = Fy Qi Eo. The norm groups of Eq, Es, and M are related as follows:

N(E;/K)NN(Ey/K)=K*?* N(M/K).

Proof. Since K*? C N(E;/K) and N(M/K) C N(E;/K) for i = 1, 2, the inclusion
N(E1/K)NN(E2/K) > K*2.-N(M/K) is clear, and it suffices to prove the reverse
inclusion. We identify Fy and E» with subfields of M and consider a € N(E;/K)N
N(Ey/K). Let x1 € EJ, 2 € ES be such that

a = Ng,/k(z1) = Ng,/k (22).
Let Tg, /i : E; — K be the trace map, for i = 1, 2. Computation shows that

1 Nayg, (14 27 22) = T, i (21) + Ty i (22).

If ©1 # —xo, the left side is nonzero. Taking the norm from FE; to K of each side
yields

_ 2
alNy (1 + 27 2s) = (Tr, i (x1) + Ty i (22))” € K2,

hence o € K*2- N(M/K). If x1 = —x3, then 21 € E1 N Ey = K, hence a € K*2.
O

Lemma 2.14. Any multiplier of similitude of an anisotropic quadratic Pfister space
(K, L,m) is a square in K or is the norm of a quadratic extension over which m is
hyperbolic.

Proof. By [6, Cor. 9.9], the multipliers of 7 are the represented values of 7, so any
v € G(r) has the form v = w(v) for some v € L. Let e € L be such that w(e) = 1.
If e and v are not linearly independent, then v € K*2. Otherwise, let V be the
K-span of e and v. The restriction of m to V is the norm form of a quadratic
extension of K over which 7 is isotropic, hence hyperbolic by [6, Cor. 9.10]. By
construction, this norm form represents ~. (]

Proposition 2.15. For any nondegenerate quadratic space (K, L, q) of dimension 8
such that disc(q) is trivial and clif(q) has index 1 or 2, we have G(q) = Hyp(q).

Proof. Tt suffices to show G(¢q) C Hyp(g), since the reverse inclusion follows from
the similarity norm principle [6, Thm. 20.14]. Let v € G(q), and consider a de-
composition of ¢ as in (2.12). We may assume ¢ is not hyperbolic, otherwise
Hyp(q) = K* = G(q) and there is nothing to prove. If Ng or = is isotropic,
hence hyperbolic, the proposition readily follows from Lemma 2.14. For the rest of
the proof, we may thus assume Ng and 7 are anisotropic. By Lemma 2.11 we have
v € G(Ng)NG(w), hence Lemma 2.14 yields quadratic extensions E, E; of K that
split Ng and 7 respectively, such that v € N(E1/K)NN(Ey/K). If E1 = E,, then
E, splits Ng and m, hence also ¢. Since v € N(E/K), it follows that v € Hyp(q).
If B4 % FEs, then E; and Fs are linearly disjoint over K, and the tensor product
M = F1 ®g E» is a field that splits Ng and 7, hence also g. Since vy is a norm from
E; and from Es, Lemma 2.13 shows that v € K*? - N(M/K), hence v € Hyp(q).
[l
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Proposition 2.15 applies in particular to quadratic spaces of type E7. We now
turn to spaces of type Fg.

Proposition 2.16. Suppose that (K, L,q) is of type Eg, that v is the multiplier of
a separable similitude of q and that v € K*2. Then there exists a decomposition

(KaLaq) = (KaLlaql) 1 (K;L23q2)

such that qo is of type E7, q1 is similar to the reduced norm of the quaternion
division algebra representing clif(q2) and v is a multiplier of similitudes of both ¢
and qs.

Proof. Let ¢ be a separable similitude of ¢ with multiplier v. If char(K) = 2, we
choose v € L such that f(v,(v)) # 0; if char(K) # 2, we let v be an arbitrary
non-zero vector in L. Next we set W = (v,¢(v)). Since v ¢ K*2?, we have
dimg W = 2. Let ¢; denote the restriction of ¢ to W and let ¢, denote the
restriction of ¢ to W+. The form §; is similar to the norm N of a quadratic
extension F/K such that v € N(E). Since ¢; is nondegenerate, the extension
E/K is separable and ¢ = ¢; L §2. Since gg and (¢1)g have trivial discriminant
and split Clifford invariant, also (§2)g has trivial discriminant and split Clifford
invariant. By Proposition 2.10, it follows that (G2)g is isotropic. Hence we can
choose a 2-dimensional subspace U of W+ such that the restriction of ¢y to U is
hyperbolic over E. By Proposition 2.6, the restriction of ¢ to U is similar to V.
Let Ly = W @ U, let Ly = Li and let g; denote the restriction of ¢ to L; for i = 1
and 2. Then ¢; is similar to the reduced norm of a quaternion division algebra D,
~ is a multiplier of ¢; and

(KaLaq) = (K5L15q1> 1 (K7 LQvQQ)'

Since v is a multiplier of both ¢ and g1, both (1, —¥)-q and (1, —v)-¢; are hyperbolic.
Since
L= -q=0=7 o L),

it follows by Witt’s Cancellation Theorem that the product (1,—7) - g2 is also
hyperbolic. Hence g2 = () - ¢2 in I; K. By [6, 8.17], therefore, there is a similitude
of g2 with multiplier . Since disc(q) and disc(q;) are both trivial, so is disc(gz).
Furthermore, clif(g2) = clif(g1) since clif(¢) is split. Since the quaternion division
algebra D represents clif (qy), it also represents clif(¢2). We conclude, in particular,
that ¢o is of type F7. (I

Corollary 2.17. For any nondegenerate quadratic space (K, L,q) of dimension 12
such that disc(q) and clif(q) are trivial, we have G(q) = Hyp(q).

Proof. As in Proposition 2.15, it suffices to prove G(q) C Hyp(q). If q is isotropic,
then Proposition 2.10 shows that ¢ is Witt-equivalent to a multiple of a 3-fold
Pfister form, hence the inclusion follows from Lemma 2.14. For the rest of the
proof, we may thus assume ¢ is anisotropic, i.e., q is of type Ej.

Let v € G(q). If 7 is the multiplier of an inseparable similitude, then we have
~v € Hyp(q) by Corollary 2.9. If v is the multiplier of a separable similitude, we
fix a decomposition ¢ = ¢1 L ¢o as in Proposition 2.16, so v € G(q1) N G(g2).
By Proposition 2.15 we have G(¢g2) = Hyp(g2). Now, if E/K is a finite extension
such that (g2) g is hyperbolic, then E splits clif(¢2). Hence (¢1)g is hyperbolic, and
therefore ¢g is hyperbolic. This shows Hyp(g2) C Hyp(q). Since v € Hyp(gz), it
follows that v € Hyp(q). O



8 R. PARIMALA, J.-P. TIGNOL, AND R. M. WEISS

Remark 2.18. Restricting to quadratic extensions that split g2 in the last part of
the proof above, we see that Hyp,(g2) C Hyp,(g). This observation will be used in

§5.

When char(K) # 2, Proposition 2.15 and Corollary 2.17 yield information on the
connected component of the identity PGO (g) in the group of projective similitudes
of (K, L, q), which is the group of algebra automorphisms of End(L) that commute
with the adjoint involution of ¢q. The property of R-triviality used in the following
statement refers to Manin’s R-equivalence; see [14, §1] for details.

Corollary 2.19. Assume char(K) # 2. For q a quadratic form of type E7 or Eg
over K, the group PGO,(q) is R-trivial.

Proof. By [14, Thm. 1], it suffices to prove that G(qr) = Hyp(gg) for every field F
containing K. If g is of type E7, this property readily follows from Proposition 2.15.
If it is of type Eg, it follows from Corollary 2.17. O

Remark 2.20. Skip Garibaldi has observed that if ¢ is of type Er, then it follows
from Lemma 2.11 and [8, Prop. 6.1] that the group PGO,(q) is actually stably
rational.

3. QUADRANGULAR ALGEBRAS AND PROOFS OF THEOREMS 1.1 AND 1.2

Most of this section is devoted to results about quadrangular algebras. At the very
end of this section, we use these results to prove Theorems 1.1 and 1.2.

The notion of a quadrangular algebra arose in the course of the classification
of Moufang polygons; see, in particular, Chapters 12-13 and 27 in [22]. For the
definition, see [23, 1.17].

Proposition 3.1. Let (K, L,q) be a quadratic space of type E7 or Es as defined
in 2.1 and 2.2 and suppose that q(1) =1 for a distinguished element 1 of L. Then
there exists a unique quadrangular algebra

E= (K7L7qa 17X7 '7h)9)
as defined in [23, 1.17].

Proof. Existence holds by [23, Thm. 10.1] and uniqueness (up to equivalence as
defined in [23, Thm. 1.22]) holds by [23, 6.42]. O

Notation 3.2. For the rest of this section, we let
HE= (K7L7qa 17X7 '7h)9)

be as in 3.1 and f = dq. By [23, Prop. 4.2], we can assume that = is d-standard for
some § € L as defined in [23, 4.1]. (This allows us to use the identities in Chapter 4
of [23].) In addition, we let o be as [23, 1.2], we let u~! for all non-zero u € L be
as in [23, 1.3] and we let 7 be as in [23, 1.17(D1)].

Remark 3.3. Suppose that (K, L, q) is of type E; and let C(g,1) and D be as in
2.4. By (2.5) and [23, 1.17(A1)-(A3) and Prop. 2.22], there exists a unique map x*
from D x X to X with respect to which X is a left vector space over D, ta =t*a
for all (a,t) € X x K and wx* (a-v) = (w*a) -vforallw e D,a € X and v € L.
This map is given explicitly in [24, 3.6].
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Proposition 3.4. Suppose that (K, L,q) is of type E7, let D and x be as in 3.3,
let @1 be a similitude of q, let u = ¢1(1) and let
a*v=(a-v)-u!
for all (a,v) € X x L, where u™! is as in 3.2. Then there exists a similitude ¢ with
the same multiplier as w1 such that u = (1), an element w € K* and a D-linear

automorphism v of X such that the following hold:

(i) Y(a-v) =9(a)* ) for alla € X and allv € L.

(i) ¢(h(a,b)) = wh(¥(a),Y(b)u) for all a,b e X.
(i) ¢(0(a,v)) = wl(Y(a),p(v)) (mod (p(v))) for all a € X and all v € L.

Proof. The map (7 is an isomorphism of pointed quadratic spaces from (K, L, q, 1)
to (K, L,q/q(u),u). It therefore induces an isomorphism of Clifford algebras with
base point from C(q, 1) to C(g/q(u),u). Let Z, h and 0 be as in [23, Prop. 8.1];
thus, = = (K,L,q/q(u),u, X, 2 h, é) is the isotope of = at u as defined in [23, 8.7].
By [23, 1.17(A1)~(A3) and Prop. 2.22] applied to both Z and to =, X is a right
C(g,1)-module with respect to - and a right C(g¢/q(u),u)-module with respect to
*. By [22, 12.55] (where the base point 1 is called ¢), exactly one of the two
direct summands in (2.5) acts nontrivially on X, and by [22, 12.54], there exists an
isometry p of ¢ fixing 1 that extends to an automorphism of C(q, 1) interchanging
the two direct summands. Thus for j = 0 or 1, the composition ¢1 o p/ maps the
direct summand A of C(g, 1) acting nontrivially on X to the direct summand A,
of C(q/q(u),u) acting nontrivially on X. Let ¢ = o1 o p/. Choosing a basis for X
as a left vector space over D, we can identify both A and A4, with Endp(X). It
follows that there exists a D-linear automorphism v of X such that (i) holds. By
[23, 1.25 and Prop. 6.38], there exists w € K such that also (ii) and (iii) hold. O

Notation 3.5. Let g and ¢ be the maps that appear in [23, 1.17(C3)-(C4)], let
(U-‘r) Ula U2) Uga U4)

be the root group sequence and x4 the isomorphism from L to U, obtained by
applying the recipe in [22, 16.6] to Z, g and ¢, let " be the corresponding Moufang
quadrangle (see [22, 8.11]), let GT be the subgroup of Aut(T") generated by the root
groups of T', let Hy be the subgroup of Aut(I") defined in [24, 1.4] (or [23, 11.20]), let
G = Hy-G"and let H' = HyN G'. By [22, 35.11], the similarity class of (K, L, q)
is an invariant of I'.

Proposition 3.6. G/G' = Hy/H' and if (K,L,q) is of type Fs, then G is the
group of K-rational points of an absolutely simple algebraic group with Tits index
Egg, and every such group arises in this way starting with some quadratic space of
type Eg defined over K.

Proof. For the isomorphism G/G' = Hy/H?, see the top of page 193 of [24] (where
G is called Gy), The remaining assertions hold by [22, 42.6]. O

Proposition 3.7. Suppose that (K, L,q) is of type E; and that @1 is a similitude
of q. Let Hy and x4 be as in 3.5. Then there exist an element h of Hy and a
similitude ¢ of q with the same multiplier as p1 such that

h

24 (v)" = za(p(v))

forallv e L.
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Proof. Let ¢ and 1 be the maps obtained by applying Proposition 3.4 to ¢;1. By
Proposition 3.4 and [23, Prop. 12.5], the pair (¢, ) is contained in the structure
group of = (as defined in [23, 12.4]). The claim follows now by [23, Thm. 12.11]
and the first few lines of its proof (as well as [23, 11.22]). O

From now on we identify K with its image under the map ¢ — ¢-1 from K to L.
Thus when we write m(a) 4 t for (a,t) € X x K, for example, we mean 7(a) +¢ -1
(where 7 is as in 3.2).

Proposition 3.8. Let a be a non-zero element of X, let

pla) = 2® — f(L,7(a))z + q(n(a)) € Kla],
let E be the splitting field of p(x) over K and let N be the norm of the extension
E/K. Let T(v) = 6(a,v) for allv € L and let I be the identity automorphism of L.

Then N(E*) = K*2 . {q(n(a) +t) | t € K}, qr is hyperbolic and for each t € K,
T +tI is a similitude of q with multiplier q(n(a) +t).

Proof. By [23, 1.17(D2)], p(t) = q(n(a) —t) # 0 for each t € K. Thus p(z) is
irreducible over K. It follows that N(E*) = K*2 . {q(n(a) +t) | t € K}. By [23,
Props. 4.9(i) and 4.22], T +tI is a similitude of ¢ with multiplier ¢(m(a)+1t) for each
t € K and f(T(v),v) = f(n(a),1)q(v) for each non-zero v € L. By [23, Prop. 4.21],
p(T) = 0. Thus if p(x) is separable, then gg is hyperbolic by Propositions 2.6. If
p(zx) is inseparable, then f(m(a),1) = 0, hence T is inseparable and again ¢g is
hyperbolic, this time by Proposition 2.8. (]

Definition 3.9. For each non-zero a € X, the map v — 6(a,v) is a similitude
of ¢ by Proposition 3.8. We call an element a € X separable if a # 0 and the
similitude v — 6(a,v) of ¢ is separable as defined in 2.7. We let X, denote the
set of separable elements of X. Thus if char(K) # 2, then X, = X\{0}, but if
char(K) = 2, then by [23, Prop. 4.9(i)],

Xsep = {a € X | f(n(a),1) # 0}
If char(K) = 2, then by [22, 13.42-1343], a — f(n(a),1) is a nondegenerate

quadratic form on X. In particular, the set Xqep, is non-empty also if char(K) = 2.

Proposition 3.10. Every inseparable similitude of q (as defined in 2.7) is the
product of two separable similitudes.

Proof. Let ¢ be an inseparable similitude of ¢, so char(K) = 2. It suffices to show
that

f(0a,p(v)),v) #0
for some v € L and some a € Xgop, where Xqp is as in 3.9. Suppose this is false
and let w = p(1). Then

(3.11) f(0(a,w),1) =0
for all @ € Xgep. Furthermore,
(3.12) fw,1)=0

but w & (1) since ¢ is inseparable. Choose a € Xep. Since f is nondegenerate, we
can choose v € (w)*\(1)*. Replacing v by v + w if necessary, we can assume in
addition (by [23, Prop. 4.9(i)] again) that

(3.13) f(b(a,w),v) #0.
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By [23, Prop. 3.21], av € Xeep, so f(6(av,w),1)) = 0 by (3.11). By [23, 1.17(C4)]
and (3.12), it follows that

f(0(a,w?)?, 1)q(v) = f(w,v7)f(0(a,v)”,1) + f(0(a,v),w”) f(v7,1),

where o is as in 3.2. By [23, 1.4] and (3.12), we have 27 =z for z = 1 and = = w
and f(z%,y) = f(z,y°) for all z,y € L. Therefore

f(0(a,w”)?,1) = f(0(a,w),1) =0
by (3.11) and
f(w,v7) = f(w”,v) = f(w,v) =0
by the choice of v and hence
f(0(a,v), w)f(v,1) = f(0(a,v),w”) f(v7,1) = 0.
Since f(v,1) # 0 by the choice of v, we conclude that f(f(a,v),w) = 0. By [23,

Prop. 4.22], therefore, f(H(a,H(a,v)),G(a,w)) = 0. By [23, Prop. 4.21], it follows
that

f(m(a), 1) f(0(a,v),0(a, w)) = q(m(a)) f(v,0(a,w)).
By (3.13), therefore, f(@(a,v),@(a,w)) # 0. By one more application of [23,
Prop. 4.22], however, f(@(a,v),@(a,w)) =q(m(a))f(v,w) =0. O

Proposition 3.14. Let E/K be a separable quadratic extension such that qg is
hyperbolic and let V; and q; for i € [1,d] be as in Proposition 2.6(iii) with v; = 1.
Then there exists e € Xgep such that 0(e,V;) = V; for each i € [1,d].

Proof. Let p(x) = 22 — ax + 8 € K[z] be an irreducible polynomial that splits over
E. We can choose p(x) so that & = 0 if and only if char(K) # 2. Let v,7 € E
be the two roots of p(x). There exists an E-vector space structure on L as in
Proposition 2.6(i) such that V; is a 1-dimensional subspace for each i € [1,d]. Let
T(v) =~ -v for each v € L and let T be the unique automorphism of L such that
T¢(v) = 31 -v for all v € V4 and T¢(v) = T(v) for all v € V;*. Both T and T*¢
are norm splitting maps of ¢ as defined in [22, 12.14] and both map V; to itself for
each i € [1,d]. By [22, 12.20 and 13.13(ii)], therefore, we can choose R € {T, T}
such that R is linked to the map (a,v) — a- v at some point e € X as defined in
[22, 13.2]. By [22, 13.61], e € Xep and there exists r € K™ and s € K such that
R(v) =rf(e,v) + sv for all v € L. O

Proposition 3.15. Suppose that (K, L,q) is of type Es and that
(KaLaq) = (Kleaql) 1 (Ka L27Q2)
with qo of type Er, q1 similar to the reduced norm of the quaternion division algebra

representing clif (g2) and 1 € La. Then the following hold:

(i) There exists e € Xgep such that 0(e, L;) = L; for i =1 and 2.

(ii) Let e € X be as in (i), let X, be the subspace of X generated by elements
of the form evivy - - -v;, where v; € Ly for i € [1,j] and j > 1 is arbitrary,
let ¢, he, Tespectively, 0. denote the restriction of -, h, respectively, 0 to
Xe X Lo, X X X, respectively, X. x Ly and let

Ee = (K7 L27q27 15X6; ‘e heaee)'

Then Z. is a quadrangular algebra.
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Proof. By 2.2, 2.4 and Proposition 2.6, both (¢1)g and (¢2)r are hyperbolic. We
can thus choose V; and g; for i € [1, d] as in Proposition 2.6(iii) with v; = 1, V; C Lo
for i € [1,4] and V; C L, for i € [5,6]. By Proposition 3.14, therefore, there exists
e € Xqop such that 0(e, L;) = L, for i = 1 and 2. Thus (i) holds.

Let Z. be as described in (ii). To show that Z. is a quadrangular algebra, it
therefore suffices to show that X, - Ly C X,, 0(X., L2) C Lo and h(X,, X.) C Lo.
The first of these inclusions holds by the definition of X.. To show the other
two inclusions, we first choose non-zero elements v; € V; for i € [2,5]. We can

assume that e is the element of X chosen in [23, 6.4]. Thus the set 1,vs,...,v5 is
e-orthogonal as defined in [23, 6.6]. By [23, 1.17(A3) and Prop. 6.16], there exists
a non-zero vg € L such that 1,vs,...,vs5,vg is e-orthogonal and evevsvqvsv6 = e.

(We are not claiming that vg € Vg or even vg € L;.) Let I3 be as in [23, 6.32], let J
denote subset of I containing all the elements of I3 that are subsets of {va,v3,v4}
together with the element {vs,v6} € I2 (so |J| = 8), let J; be the elements of J of
cardinality 2 (so |Ja| = 4), let X, for each « € J be as in [23, 6.35], let M be the
subspace of X spanned by {X,,, | m € J} and let N be the subspace of M spanned
by {X, | m € Ja}. By [23, Prop. 6.34], dimxgk M = 16 and M = el & N. By
[23, 6.37], we have M = X., by [23, Prop. 6.13], we have h(e, N) = 0 and by [23,
Props. 3.15 and 4.5(i)], h(e,eLs) C Lo (since 0(e, L) C La). Hence h(e, X.) C Lo.
By repeated application of [23, 1.17(B1)—(B2)], it follows that h(X., X.) C Lo.
Since 1 € Ly, we have L§ C Lo, where o is as in 3.2. By repeated application of
[23, 1.17(C3)—(C4)], it follows from O(e, Ly) C Lo first that 6(eLa, La) C Lo and
then that 0(X,., La) C L. Thus (ii) holds. O

Definition 3.16. For each non-zero u in L, let 7, be the reflection of ¢ given by

mu(v) = f(u, 0)u/q(u) —v

for all v € L. Thus m; = o, where o is as in 3.2.

Proposition 3.17. Let H' and x4 be as in 3.5. Suppose that ¢ is a product of an
even number of reflections of q as defined in 3.16. Then there exists an element

h e HT such that
z4(0)" = z4(p(v))

for all v.

Proof. Let u be a non-zero element of L. By [24, eq. (6)—(14)], there are elements
w1(0,q(u)) and wy(u) in HT such that

$4(U)w1(0’q(u))w4(u) = $4(U/Q(U))w4(u) = x4(mym1(v))
for each v € L. O

Notation 3.18. Let M denote the subgroup of K* generated by the non-zero
elements in the set {g(7(a) +¢) | (a,t) € X x K}.

Thus
(3.19) M C G(g) N Hyp,(q)
by Proposition 3.8 and K*? = {¢q(n(a) +t) | (a,t) € {0} x K*} C M.

Proposition 3.20. Let HT and x4 be as in 8.5. For each h € HT, there exists a
unique similitude @y, of q such that

z4(v)" = z4(on(v))
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for all v € L. Furthermore, the map h — ~y, is a surjective homomorphism from
H' to M, where ~y, is the multiplier of ¢

Proof. Let w(a,t) for non-zero (a,t) € X x K and w4(u) for non-zero u € L be as
in [24, egs. (6)—(7)]. Then

w4(v)* ) = 2y (uf (u,07) = g(u)o?)
and
2a(0)1 ) = 24 ((0(a,v) + tv) /q(n(a) + 1))
for all v € L and all non-zero (a,t) € X x K by [24, eqs. (13)—(14)]. We have

q((0(a,v) +tv)/q(n(a) +1)) = q(v)/q(n(a) +1)
for all v € L and all non-zero (a,t) € X x K (by 3.8) and

q(uf(u,v7) = q(u)v?) = q(v)q(u)®
for all u,v € L since gq(v”) = ¢(v). The claim holds, therefore, by [24, Thm. 2.1].
O

Proposition 3.21. If (K, L,q) is of type E7, then G(q) = M.

Proof. By (3.19), it suffices to show that G(q) C M. Let ¢1 be a similitude of ¢,
let x4, Uy, Hy and H' C Hy be as in 3.5 and let h and ¢ be as in Proposition 3.7.
Thus
21(0)" = 2a(p ()

for each v € L and ¢ is a similitude of ¢ with the same multiplier as ¢;. Let H; and
Hj be the subgroups of Hy defined in [24, 3.12 and 3.14]. By [24, Thm. 3.15(ii)],
Ho = HH, and by [24, Thm. 5.19], Hy C HyH'. We conclude that Hy = H HT.
By [24, Prop. 3.11], H; centralizes Uy. There thus exists g € HT such z4(v)? =
24(p(v)) for each v € L. The claim holds, therefore, by Proposition 3.20. O

Proposition 3.22. If (K, L, q) is of type Eg, then G(q) = M.

Proof. By (3.19), it suffices to show that G(¢) C M. Let ¢ be a similitude of ¢
whose multiplier is not in K *2. By Proposition 3.10, it suffices to assume that ¢
is separable. Let

(K,L,q) = (K, L1,q1) L (K, L2, q2)
be the decomposition of ¢ obtained by applying Proposition 2.16 to ¢. Replacing
= by an isotope as defined in [23, 8.7], we can assume that the base point 1 lies in

Ly (without changing the subgroup generated by the set of non-zero elements in
{q(w(a) +t) | (a,t) € X x K}). We can thus let e and

Ee = (K; Lo, q2,1, Xe, e, he, He)

with X, C X be as in Proposition 3.15. By Proposition 3.21 (and the uniqueness
assertion in Proposition 3.1), we conclude that « is the product of elements in
{q(m(a) + 1) ]| (a,t) € X. x K}. O

We can now prove Theorems 1.1 and 1.2. By Proposition 2.3, a quadratic form
satisfying the hypotheses of Theorem 1.1 is of type E7 or Es. By the existence
assertion in Proposition 3.1, we can apply all the results in this section. Hence
G(q) C Hypy(q) by (3.19) and Propositions 3.21 and 3.22. By [6, Thm. 20.14], we
have Hyp,(¢q) C G(g). This concludes the proof of Theorem 1.1.
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Suppose that (K, L,q) is of type Eg and that x4, Hy and H' are as in 3.5. To
prove Theorem 1.2, it suffices by Proposition 3.6 (and the existence assertion in
Proposition 3.1) to show that every element in Hy lies in HT. Let h € Hy. By [24,
eq. (19)], there is a similitude ¢ of ¢ such that

24 (0)" = 24(0(v))

for all v € L. Replacing h by a suitable element in hH', we can assume, by
Propositions 3.20 and 3.22, that ¢ is an isometry of ¢ and hence a product of
reflections of ¢q. Again replacing h by a suitable element of hHT, we can assume,
by Proposition 3.17 and [24, Prop. 3.16], that ¢ is the identity. By [24, Thm. 3.12],
h = a, for some u € C*, where C = K by [24, 3.6] and «, is as defined in [24,
Prop. 3.11]. By [24, Prop. 3.13], it follows that h € H. This concludes the proof
of Theorem 1.2.

4. R-EQUIVALENCE AND AN ALTERNATIVE PROOF OF THEOREM 1.2

In this section, we give an alternative proof of Theorem 1.2 based on Corollary 2.19
and various other results about R-equivalence. This proof is due to Skip Garibaldi.
The methods employed in this section are completely different from those employed
in the previous section; in particular, we make no further reference to the Moufang
quadrangle I of §3.

Let G denote a reductive algebraic group of absolute type Eg whose Tits index
over a field K is E§%. Our goal is to show that the group of K-rational points of G
is generated by its root groups. By [9, 7.3], it suffices to assume that char(K) = 0.
This will allow us to apply Corollary 2.19. By [9, 7.2], it suffices to show that G is
R-trivial.

Now fix a maximal K-torus T containing a maximal K-split torus S in G and
fix a pinning for G with respect to T" over an algebraic closure of K. Number the
simple roots «; as in [3, Chapter 6, Plate VII] and let w;” be the corresponding
fundamental dominant co-weights, so (@j,w,’) = d;;. The fundamental co-weights
wy and wy belong to the co-root lattice and so define cocharacters, in other words,
homomorphisms from G,, to 7. Their images generate a subtorus S in T" which
is the connected component of the intersection (in T') of the kernels of the roots
2, ...,a7. There is a canonical isomorphism

(4.1) ®: KX @, T, = T(K),

where T, is the lattice of cocharacters of 7' and where K is an algebraic closure of
K; see [18, 3.2.11]. Since the group G is of adjoint type, the w) form a Z-basis for
Ty. Thus we may view ® as an isomorphism
8

[[5" 922w = T(K).

i=1
This shows that the intersection of the kernels of the roots as ..., a7 is connected
and that ® restricts to an isomorphism

(4.2) (K* ®z Zw)') x (K™ @z Zwy) = S(K).
The cocharacters wy and wg are defined over K by [2, Cor. 6.9], so (4.2) implies

that S is K-isomorphic to the direct product of the images of the cocharacters wy’
and wy .



THE KNESER-TITS CONJECTURE FOR Eg% 15

We next fix a parabolic P of G whose Levi subgroup is the connected reductive
group Zg(S); see [18, §13.4 and Lemma 15.1.2]. Let U be the unipotent radical
of P and let U~ be the unipotent radical of the opposite parabolic. The product
U~ x U is isomorphic as a variety to an affine space. By [1, Proof of Thm. 21.20],
the natural map from G to G/P restricts to an isomorphism from U~ to an open
subset of G/P. Hence the product map from U~ X P to G defines an isomorphism
from U~ x P to an open subset of G. It follows that G is birationally equivalent to

U™ x Zg(S) x U.

(This subvariety is the analog of the big cell for the Bruhat decomposition of G
over K; see [2, Prop. 4.10(d)].) We conclude that G is birationally equivalent to
the product of Zg(S) and an affine space.

Let H denote the derived subgroup of Zg(S). The sequence

1-8—Zg(S)—H/(HNS)—1

is exact on L-points for every extension L/K because S is split. Hence Zg(S) is
birationally equivalent to the product of S with H/(H N S).

The absolute Dynkin diagram of H is of type Dg. By [20, p.211], the group H
is Spin(q) for ¢ a quadratic form over K with dimg = 12, discq = 1 and clif(q)
split. As S centralizes H, the intersection H NS is contained in the center ug X o
of Spin(q). We show that H N S is equal to the center of Spin(q).

Since G is simply connected as well as adjoint, the co-roots a}/ provide also a
Z-basis for the cocharacter lattice T,. Thus we may view the isomorphism ¢ in
(4.1) as an isomorphism

8
K* @ T. = [[ K* ®2 2oy & T(K).
i=1
Then it follows from [18, 8.1.8] that ® restricts to an isomorphism

7
(4.3) [[ 5" @z Zay = (HNT)(K).
i=2
The expressions for the fundamental dominant weights w; in terms of the roots
a; in [3, Chapter 6, Plate VII] imply expressions for the fundamental dominant
co-weights w;’ in terms of the co-roots a}/. These expressions yield

wi(=1) = ag(~1)ag (1) and wg(-1) = ag(-1)ag(~1)az (-1).
From (4.2) and (4.3), we see that these two elements both lie in S(K) and in

(HNT)°(K) and are nontrivial and distinct. We have thus produced two distinct
nontrivial elements in (H N S)(K). Hence H NS is, in fact, the entire center of
Spin(q).

Therefore H/(HNS) is PGO4(q). It follows by 2.19 that H/(HN.S) is R-trivial.
Therefore G is birationally equivalent to the product of PGO4 (g) times an affine
space. Thus G itself is R-trivial by [4, p. 197, Cor.]. This concludes our second

proof of Theorem 1.2.

We observe that this proof goes through verbatim for every group G of absolute
type Eg in whose Tits index the roots a1 and ag are circled. We conclude that for
such groups, G is R-trivial and the group of K-rational points of G is generated by
its root groups. With only minor modifications, the proof also shows that if G is
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adjoint of absolute type E7 with trivial Tits algebras and the root a; is circled in
the Tits index of G, then G is R-trivial.

5. THEOREM 1.1 AND TRIALITY

In this section, we assume that char(K) # 2. We give an alternative proof of
Theorem 1.1, based on completely different methods. We actually show:

Proposition 5.1. Suppose the characteristic of the base field K is different from 2.
If q is a quadratic form with trivial discriminant, then Hyp,(q) = Hyp(q) in the
following cases:

(i) dimg = 8 and the index of clif(q) is 1 or 2;

(ii) dim g = 12 and clif(q) s split.

Since in each case G(q) = Hyp(q) by Proposition 2.15 and Corollary 2.17, Theo-
rem 1.1 follows from Proposition 5.1.

We start with the case of 8-dimensional quadratic forms. If clif(q) is split, then
q is a multiple of a 3-fold Pfister form, and the result follows from Lemma 2.14.
Similarly, if ¢ is isotropic, then ¢ is Witt-equivalent to a multiple of a 2-fold Pfister
form, and the result follows from Lemma 2.14. We may thus assume that (K, L, q)
is of type Er; and let D be the quaternion division algebra over K that repre-
sents clif(¢). We show next that the Clifford algebra construction associates to
q a skew-hermitian form h of rank 4 over D, and we shall complete the proof of
Proposition 5.1(i) by proving that

Hyp(q) = Sn(h) = Hyp,(q);
see Proposition 5.9.
Let (A, o) be a central simple K-algebra of degree 8 with an orthogonal involu-

tion of trivial discriminant. The Clifford algebra C(A, o) decomposes into a direct
product of two central simple K-algebras of degree 8:

C(A,0) =C4+(A,0) x C_(4,0).
Recall that C'(A, o) carries a canonical involution g, which induces orthogonal in-
volutions o4 and o_ on Cy(A,0) and C_(A4, o) respectively. By triality (see [12,
(42.3)]), the Clifford algebras of (C1(4,0),04+) and (C_(A,0),0_) satisfy
(C(C+ (A70)50+)50_+) c- (A,O'),O',) X (A,O'),
(C(C* (A,O'),O',),O'_,) A,O’) X (C+(A,O’),O’+).
Proposition 5.2. The following hold:
(1) If A is split, then (C1(A,0),04+) and (C_(A,0),0_) are isomorphic.
(2) If (A,0) is split and isotropic, then (C4(A,0),04+) and (C_(A,0),0-) are
hyperbolic.
(3) If (A, o) is split and hyperbolic, then (C1(A,0),04+) and (C_(A,0),0_) are
split and hyperbolic.

Proof. (1) is well-known, (2) is in [12, (8.5)], and (3) follows from (2) and the fact
that the Clifford invariant of a hyperbolic quadratic form is trivial. (I

= (
= (

We apply this proposition in the following context: let (K, L, q) be an 8-dimen-
sional quadratic space with disc ¢ = 1, and assume clif (¢) is represented by a quater-
nion division algebra D. Let ad,: Endg L — Endg L be the adjoint involution of
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q. We apply the discussion above with (A4,0) = (Endg L,ad,). Then C(4,0) =
Co(L,q) and (C4(A,0),04), (C_(A,0),0-) are isomorphic to (Endp W, ad},) for
some 4-dimensional skew-hermitian space (W, h) over D (with its conjugation in-
volution).

Proposition 5.3. For an arbitrary extension E/K, the following statements are
equivalent:

(a) qg is hyperbolic;
(b) Dg is split and (Endp W, adp)g is hyperbolic;
(¢) Dg is split and (Endp W, ady,)g is isotropic.

Proof. (a) = (b): This readily follows from Proposition 5.2(3).

(b) = (c): Clear.

(¢) = (a): This follows from Proposition 5.2(2) with (Endp W, ady) g for (4, 0);
then by triality (C4(A,0),04) or (C_(A4,0),0_) is isomorphic to (Endk L, ad,)g).
(]

The next results 5.4-5.6 hold for skew-hermitian forms of arbitrary dimension.

Lemma 5.4. Let (W, h) be a skew-hermitian space over a quaternion division al-
gebra D over K and let E be a quadratic extension of K. If h is anisotropic, the
following conditions are equivalent:

(i) E= K(h(v,v)) for somev e W;

(ii) Dpg 1is split and hg is isotropic.

Proof. If (i) holds, then E is isomorphic to a maximal subfield of D, hence Dg is
split. Let h(v,v)? = a € K*, so E = K(y/a). Then v - (h(v,v) + \/a) € Wg is
isotropic for hg. Thus, (ii) holds.

Conversely, if (ii) holds, then E is isomorphic to a maximal subfield of D. Let
E = K(y/a) for some a € K, and let A\ € D be a pure quaternion such that
A2 = a. Suppose x + y\/a € Wg is hg-isotropic for some z, y € W. The condition

he(z +yva,x + yy/a) = 0 yields
h(z,z) + h(y,y)a=0 and h(z,y)+ h(y,z) = 0.

Since h is skew-hermitian, the second equation shows that h(z,y) € K. Then
h(x 4+ yA, z + yA) = 2h(z,y)\ — h(y,y)a — Mh(y, y)A

and the right side commutes with A. Therefore, h(z 4+ yA,x + yA) = Ab for some
bEKX,andwehaveE%K(h(v,v)) with v =z + yA. O

For any skew-hermitian space (W, h) over a quaternion division algebra D over
K, we let Sn(h) denote the group of spinor norms of h, which is the image of
the Clifford group I'(Endp W, ady) = T'(W, k) under the multiplier map; see [12,
(13.30)].

Proposition 5.5. If h is anisotropic, then Sn(h) = [[; N(E/K), where E runs
over the quadratic extensions of K satisfying the equivalent conditions (i) and (ii)
of Lemma 5.4.

Proof. The multiplier map I'(W, h) — K * factors through the vector representation
T'(W,h) = O (W, h), where O4 (W, h) is the group of direct isometries of the space
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(W,h). By [10, Thm. 6.2.17], this group is generated by transformations of the
form

Tor: W =W, x— z—vh(vr,x)
where v € W is an anisotropic vector and r € D* satisfies r — 7 = rh(v,v)T. To
compute the spinor norm of that transformation, observe that 7, , is the identity
on v1, hence the spinor norm of 7, , is the spinor norm of its restriction to the
1-dimensional subspace vD. Let v = h(v,v) € D* and let h, denote the restriction
of h to vD, so

ho (VX vp) = Avp for A\, p € D.
We have

O (vD,h,)={0€ K(v)* |00 =1} and T(vD,h,) =K ()™

(where § € K(v)* is identified with the map vA — vOX for A € D). The vector
representation I'(vD, h,) — Oy (vD,h,) carries u € K(v)* to uu !, hence the
spinor norm of that isometry is vuK *?; see [12, (13.17)]. This shows that Sn(h,)
consists of norms from the quadratic extension K (v)/K. Since Sn(h) is generated
by the groups Sn(h,) for the anisotropic vectors v € W, the proposition follows. [J

Corollary 5.6. Let (W,h) be a skew-hermitian space over a quaternion division

algebra D over K, and let p = char(K) > 2. For K = K=P"7 the perfect closure
of K, we have Sn(hzz) N K = Sn(h).

Proof. The inclusion Sn(h) C Sn(hz)NK is clear, so it suffices to prove the reverse
inclusion. Let z € Sn(hz) N K. If z € K*2, then z € K*? C Sn(h). We may thus
assume x ¢ K*2, By Proposition 5.5, there exist quadratic extensions E; /I~(, cee
E, / K such that D 5, is split and Ay is isotropic for each i € [1,7], and elements
y; € E; \ K for i € [1, 7] such that

(5.7) x:Nﬁl/f((yl)'""NET/I?(%)'

Let K’ C K be the subfield generated by Nﬁl/f((yl), e Nﬁr/f((yT) and, for
i€ [1,r], let B! = K'(y;). Thus, K'/K is a purely inseparable extension of finite
degree, (5.7) yields

(5.8) = Ng k(Y1) - Neryr(yr),

and each E!/K’ is a quadratic extension. For i € [1,7], let E/ be the separable
closure of K in El; it is a quadratic extension of K and we have

El~E'®x K and E ~E'®gK.
Since quaternion division algebras do not split over extensions of odd degree,
the condition that Dy is split shows that Dpgy is split. Likewise, anisotropic
skew-hermitian forms do not become isotropic over odd-degree extensions by [15,
Thm. 3.5], hence hg is isotropic. Now, let [K': K] = p?; taking the norm from
K’ to K of each side of (5.8), we obtain

d
2? = Npi/k(W1)-- - Ner g (yr) = Ny (Neyyer (1)) -+ - Nev e (Ngyyse ().

Since 2?" = z mod K X2 this equation shows that x is a product of norms from
quadratic extensions over which D is split and h is isotropic, hence = € Sn(h) by
Proposition 5.5. 0
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We now return to the context of Proposition 5.3. The following proposition
completes the proof of Proposition 5.1(i):

Proposition 5.9. For g an anisotropic 8-dimensional quadratic form and h the
corresponding 4-dimensional skew-hermitian form as in Proposition 5.3, we have

Hyp(g) = Sn(h) = Hyp,(q).

Proof. Proposition 5.3 shows that the quadratic extensions F/K such that Dg is
split and hg is isotropic are exactly those such that gg is hyperbolic, hence by
Proposition 5.5 we have

Sn(h) = Hyp,(q) C Hyp(q).

To complete the proof, we show Hyp(q) C Sn(h). Let E/K be a finite-degree
extension such that qg is hyperbolic, let K be the perfect closure of K in some
algebraic closure of F, and let K be the purely inseparable closure of K in E. The
compositum E - K of E and K satisfies E- K ~ E ®K, K. Since ¢qg is hyperbolic,
q is also hyperbolic over E - K , hence D 7 is split and h ; is isotropic, by
Proposition 5.3. Therefore, Sn(h, ) = (£ - K)*. Since K is perfect, we may
apply the norm principle for spinor norms (see [13, (6. 2)]), which is a twisted
analogue of Knebusch’s norm theorem, to see that N(E - K/K) c Sn(h 7). Since

N(E/K,) C N(E - K/K), it follows that N(E/K;) C Sn(h 7). Let p = char(K) if
char(K) > 2 and p = 1 if char(K) = 0, so [K; : K] = p? for some d > 0. For all
x € K1, we have N, /i (z) = 2P" | hence

N(E/K) = Ng,;x (N(E/K})) = N(E/K))P" C Sn(hg).

But N(E/K) C K, hence Corollary 5.6 shows that N(E/K) C Sn(h). Of course,
we also have K*2 C Sn(h), hence Hyp(q) C Sn(h). O

Part (ii) of Proposition 5.1 follows from part (i) by the same arguments as in the
proof of Corollary 2.17: let ¢ be a 12-dimensional nondegenerate form with trivial
discriminant and Clifford invariant. If ¢ is isotropic, then it is Witt-equivalent
to a 3-fold Pfister form and G(¢) = Hyp,(q) by Lemma 2.14. For the rest of
the proof, suppose ¢ is anisotropic, i.e., ¢ is of type Fs. Let v € G(g). Since
char(K) # 2, all similitudes of g are separable. We can thus fix a decomposition
g = q1 L g2 as in Proposition 2.16. Since v € G(g2), part (i) of Proposition 5.1
shows that v € Hyp,(g2). Since Hyp,(g2) C Hyp,(g) by Remark 2.18; it follows
that v € Hypy(q). This proves Proposition 5.1(ii).
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