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Abstract. The essential dimension is a numerical invariant of an alge-
braic group G which may be thought of as a measure of complexity of
G-torsors over fields. A recent theorem of N. Karpenko and A. Merkur-
jev gives a simple formula for the essential dimension of a finite p-group.
We obtain similar formulas for the essential p-dimension of a broad class
of groups, which includes all algebraic tori.

1. Introduction

Throughout this paper p will denote a prime integer, k an arbitrary base
field and G a (not necessarily smooth) algebraic group defined over k. Unless
otherwise specified, all fields are assumed to contain k and all morphisms
between them are assumed to be k-homomorphisms. Morphisms of algebraic
groups over k are assumed to be defined over k.

Let K be a field and H1(K,G) be the nonabelian cohomology set with
respect to the finitely presented faithfully flat (fppf) topology. Equivalently
H1(K,G) is the set of isomorphism classes of G-torsors over Spec(K). If G
is smooth then one may identify H1(∗, G) with the first Galois cohomology
functor. We say that α ∈ H1(K,G) descends to an intermediate field k ⊂
K0 ⊂ K if it lies in the image of the natural map H1(K0, G) → H1(K,G).
The minimal transcendence degree trdegk(K0), where α descends to K0, is
called the essential dimension of α and is denoted by the symbol ed(α). The
essential dimension of the group G is the supremum of ed(α), as K ranges
over all field extensions of k and α ranges over H1(K,G). This numerical
invariant of G has been extensively studied in recent years; see [BF, BR, Re,
RY, Me1].

For many groups G the essential dimension ed(G) is hard to compute,
even over the field k = C of complex numbers. Given a prime p, it is often
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easier to compute the essential p-dimension, ed(G; p), which is defined as
follows. The essential p-dimension ed(α; p) of α ∈ H1(K,G) is the minimal
value of ed(αL), as L ranges over all finite field extensions of K of degree
prime to p. The essential p-dimension ed(G; p) of G is then the supremum
of ed(α; p) taken over all fields K containing k and all α ∈ H1(K,G). For
details on this notion, see [RY] or [Me1]. Clearly 0 ≤ ed(G; p) ≤ ed(G). It is
also easy to check that if L/K is a finite extension of degree prime to p then

(1) ed(G; p) = ed(GL; p) ;

see [Me1, Proposition 1.5].
A representation ψ : G→ GL(V ) is called generically free if there exists a

non-empty G-invariant open subset U ⊂ V such that the scheme-theoretic
stabilizer of every point of U(kalg) is trivial. Such a representation gives rise
to an upper bound on the essential dimension,

(2) ed(G; p) ≤ ed(G) ≤ dim(V )− dim(G) ;

see [Me1, Theorem 4.1], [Re, Theorem 3.4], [BF, Lemma 4.11].
N. Karpenko and A. Merkurjev [KM] recently showed that the inequal-

ities (2) are in fact sharp for finite constant p-groups, assuming that the
base field k contains a primitive pth root of unity (note that this implies
char k 6= p). The purpose of this paper is to establish a similar result for a
large class of groups which includes all algebraic tori.

For a field extension l/k, set Gl := G ×Spec k Spec(l). Let ksep be a fixed
separable closure of k. Recall that an algebraic group G over a field k is
called diagonalizable if it isomorphic to a closed subgroup of Gn

m for some
n ≥ 0; G is said to be of multiplicative type if Gksep is diagonalizable, see,
e.g., [Vos2, Section 3.4]. Smooth connected groups of multiplicative type are
precisely the algebraic tori.

Recall that the order of an algebraic group F is defined as |F | = dimk k[F ];
algebraic groups of finite order are called finite. We will say that a repre-
sentation ψ : G → GL(V ) of an algebraic group G is p-faithful if its kernel
is finite and of order prime to p.

Theorem 1.1. Let G be a group of multiplicative type over an arbitrary
field k. Assume that G has a Galois splitting field of p-power degree. Then

ed(G; p) = mindim(ψ)− dimG ,

where the minimum is taken over all p-faithful representations ψ of G. More-
over, if G is an extension of a p-group by a torus then

ed(G) = ed(G; p) .

The quantity min dim(ψ) which appears in the statement of the The-
orem 1.1 can be conveniently described in terms of character modules;
see Corollary 5.1. We give several applications of these results in Sections 5
and 6. Further applications of the Theorem 1.1, to the classical problem
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of computing essential dimensions of central simple algebras, can be found
in [Me2] and [BM].

Note that Theorem 1.1 allows us to compute ed(G; p) for any group G
of multiplicative type over k. Indeed, we can always choose a finite field
extension k′/k of degree prime to p such that Gk′ has a Galois splitting
field of p-power degree. In view of (1), ed(G; p) = ed(Gk′ ; p), and the latter
number is given by Theorem 1.1.

In the last section we will prove analogous results for a finite (not neces-
sarily abelian) algebraic group over k, assuming char k 6= p; see Theorem 7.1
and Remark 7.2.

2. Preliminaries on groups of multiplicative type

Throughout this section, A will denote an algebraic group of multiplicative
type over a field k, X(A) the character group of A, and Γ := Gal(ksep/k)
the absolute Galois group of k. Then X(A) is a continuous ZΓ-module.
Moreover, X(∗) defines an anti-equivalence between algebraic k-groups of
multiplicative type and continuous ZΓ-modules; see, e.g., [Wa, 7.3]. Let Diag
denote the inverse of X, so that Diag(X(A)) ≃ A.

Given a field extension l/k, recall that A is called split over l if and only
if the absolute Galois group Gal(lsep/l) acts trivially on X(A). If a torsion-
free ZΓ-module P has a basis which is permuted by Γ, then it is called a
permutation module, and Diag(P ) is a quasi-split torus.

We will write A[p] for the p-torsion subgroup {a ∈ A | ap = 1} of A. Clearly
A[p] is defined over k. If A is a finite algebraic group of multiplicative type,
then |A| = |X(A)| (by Cartier duality).

It is well known how to construct a maximal split subtorus of an alge-
braic torus, see for example [Wa, 7.4]. The following is a variant of this
construction for algebraic groups of multiplicative type. Set

Splitk(A) := Diag(X(A)Γ) ,

where X(A)Γ is the module of co-invariants, defined as the largest quotient
of X(A) with trivial Γ-action. Clearly Splitk(A) is split over k.

Lemma 2.1. If A[p] 6= {1} and A is split over a Galois extension l/k of
p-power degree, then Splitk(A) 6= {1}.

Proof. If B is a k-subgroup of A then Splitk(B) ⊂ Splitk(A), so it suffices
to show that Splitk(A[p]) 6= {1}. Hence, we may assume that A = A[p] or
equivalently, that X(A) is a finite-dimensional Fp-vector space on which the
p-group Gal(l/k) acts. Any such action is upper-triangular, relative to some
Fp-basis e1, . . . , en of X(A); see, e.g., [Se1, Proposition 26, p. 64]. That is,

γ(ei) = ei+ (Fp-linear combination of ei+1, . . . , en)
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for every i = 1, . . . , n and every γ ∈ Gal(l/k). The quotient of X(A) by
the linear span of e2, . . . , en has trivial Γ-action. Hence the module of co-
invariants X(A)Γ is non-trivial. Then Splitk(A) = Diag(X(A)Γ) is non-
trivial as well. �

Let G be an algebraic group whose centre Z(G) is of multiplicative type.
Then we define C(G) := Splitk(Z(G)[p]). Note that this definition depends
on the prime p, which we assume to be fixed throughout.

Lemma 2.2. Let N be a subgroup of A defined over k. Assume that A has
a Galois splitting field l/k of p-power degree. Then N ∩ C(A) = {1} if and
only if N is finite and its order is prime to p.

Proof. If the order of N ⊆ A is finite and prime to p then clearly N∩C(A) =
{1}, because C(A) is a p-group. Conversely, suppose the order of N is either
infinite or is finite but divisible by p. Then N [p] 6= {1}, and N [p] is split by
l. By Lemma 2.1, {1} 6= Splitk(N [p]) ⊆ Splitk(A[p]) = C(A), as desired. �

Now suppose l/k be a Galois splitting field of A and ψ : A→ GL(V ) is a k-
representation. Then we can decompose Vl =

⊕
χ∈Λ V (χ), where Λ ⊆ X(A)

is the set of weights and V (χ) ⊂ V is the weight space associated to χ ∈ Λ,
i.e., the subspace of V , where A acts via χ. The Galois group Γ = Gal(l/k)
permutes Λ and weight spaces V (χ).

Lemma 2.3. Let dχ = diml V (χ). Then there exists an l-basis

∆ = {eχj |χ ∈ Λ, j = 1, . . . , dχ}

of Vl such that γeχj = eγχj for every γ ∈ Γ.

Proof. We may assume that Γ acts transitively on Λ. Then d = diml V (χ)
is independent of χ ∈ Λ.

Choose a weight χ0 ∈ Λ. The stabilizer Γ0 of χ0 in Γ acts semi-linearly
on the l-vector space V (χ0). By the no-name lemma [Sh, Appendix 3] there
exists a basis e1, ..., ed of V (χ0) such that each ei is preserved by Γ0. Now
for χ ∈ Λ and j = 1, . . . , d, set eχj := γ(ej), where γ ∈ Γ takes χ0 to χ. It is

now easy to see that the eχj are well defined and form an l-basis of Vl with
the desired property. �

Corollary 2.4. Suppose A is split by a Galois extension l/k and ψ is an
irreducible representation of A. Then dimψ divides [l : k].

Proof. By our construction Γ = Gal(l/k) permutes the l-basis ∆ of Vl. Since
V is k-irreducible, this permutation action is transitive. Hence, |∆| = dimψ
divides |Γ| = [l : k]. �

Now consider the k-torus T := Diag(Z[∆]), which is split over l and
quasi-split over k. By our construction T is equipped with a representation

ι : T →֒ GL(V ) .
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In the basis ∆ of Vl, this representation is given by ι(t) · eχj = χ(t)eχj .
Note that by Galois descent, ι is defined over k. One easily checks that ι is
generically free (this can be done over l).

We also remark that the original representation ψ : A → GL(V ) can be

written as a composition ψ = ι ◦ ψ̂, where ψ̂ : A→ T is induced by the map
Z[∆] → X(A) of Γ-modules, sending eχj to χ.

Lemma 2.5. Every faithful representation ψ : A → GL(V ) of A is generi-
cally free.

Proof. As we saw above, ψ = ι ◦ ψ̂, where ι : T → GL(V ) is generically

free. If ψ is faithful then ψ̂ : A → T is faithful, and hence, ψ is generically
free. �

Lemma 2.6. Let N be a closed subgroup of A, l/k be a Galois splitting field
of A and Γ = Gal(l/k). Then

min dimψ = min rank(P )

where the minimum on the left hand side is taken over all k-representations
ψ of A with kernel N , and the minimum on the right is taken over all
homomorphisms f : P → X(A) of ZΓ-modules, with P permutation and
cokernel(f) = X(N).

Proof. Given ψ : A → GL(V ) with kernel N , write ψ : A
ψ̂
→ T

ι
→֒ GL(V ) as

above, where T is a quasi-split k-torus of dimension dimT = rankX(T ) =

dimψ which splits over l. Then ker ψ̂ = N and the cokernel of the induced
map X(ψ̂) : X(T ) → X(A) of ZΓ-modules is X(N).

Conversely, if P is a permutation ZΓ-module then we can embed the
torus Diag(P ) in GLn, where n = rkP [Vos2, Section 6.1]. A map f : P →
X(A) of ZΓ-modules with cokernel X(N) then yields a representation A→
Diag(P ) →֒ GLn with kernel N . �

3. A lower bound on essential p-dimension

Consider an exact sequence of algebraic groups over k

(3) 1 → C → G→ Q→ 1

such that C is central in G and isomorphic to µrp for some r ≥ 0. Given
a character χ : C → µp, we will, following [KM], denote by Repχ the set
of irreducible representations φ : G → GL(V ), such that φ(c) = χ(c) Id for
every c ∈ C.

Theorem 3.1. Suppose a sequence of k-groups of the form (3) satisfies the
following condition:

gcd{dim(φ) |φ ∈ Repχ} = min{dim(φ) |φ ∈ Repχ}

for every character χ : C → µp. Then

ed(G; p) ≥ mindim(ψ)− dimG ,
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where the minimum is taken over all finite-dimensional representations ψ of
G such that ψ|C is faithful.

Proof. Denote by C∗ := Hom(C,µp) the character group of C. Let V be a
generically free Q-module, and U ⊆ V an open dense Q-invariant subvariety
such that U → U/Q is a Q-torsor. Then let E → SpecK be the generic
fibre of this torsor, and let β : C∗ → Brp(K) denote the homomorphism
that sends χ ∈ C∗ to the image of E ∈ H1(K,Q) in Brp(K) under the map

H1(K,Q) → H2(K,C)
χ∗

→ H2(K,µp) = Brp(K)

given by composing the connecting map with χ∗. Then there exists a basis
χ1, . . . , χr of C

∗ such that

(4) ed(G; p) ≥
r∑

i=1

indβ(χi)− dimG,

see [Me1, Theorem 4.8, Example 3.7]. Moreover, by [KM, Theorem 4.4, Re-
mark 4.5]

ind β(χi) = gcd dim(ψ) ,

where the greatest common divisor is taken over all (finite-dimensional)
representations ψ of G such that ψ|C is scalar multiplication by χi. By our
assumption, gcd can be replaced by min. Hence, for each i ∈ {1, . . . , r} we
can choose a representation ψi of G with

indβ(χi) = dim(ψi)

such that (ψi)|C is scalar multiplication by χi.
Set ψ := ψ1 ⊕ · · · ⊕ ψr. The inequality (4) can be written as

(5) ed(G; p) ≥ dim(ψ)− dimG.

Since χ1, . . . , χr form a basis of C∗ the restriction of ψ to C is faithful. This
proves the theorem. �

4. Proof of the main result

The following lemma generalizes [MR, Lemma 4.1].

Lemma 4.1. Let A be an algebraic group of multiplicative type over a field
k, and let B ⊂ A a closed subgroup of (finite) index prime to p. Then
ed(A; p) = ed(B; p).

Proof. The inequality ed(B; p) ≤ ed(A; p) is clear, since dimA = dimB; see
[Me1, Corollary 4.3].

To prove the opposite inequality, set Q := A/B. In view of the exact
sequence H1(K,B) → H1(K,A) → H1(K,Q) it suffices to show that every
Q-torsor X → Spec(K) splits over a finite prime to p extension of K. (Here
K is assumed to be an arbitrary field extension of k.)

First suppose char k = p. In this case X is étale over Spec(K) (since Q
is étale over Spec(K), see [Wa, 14.4]). The proof now proceeds as in [MR,
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Lemma 4.1]. That is, X is K-isomorphic to a direct product Spec(K1×· · ·×
Kn), where each Ki/K is a finite separable field extension. One of the fields
Ki has degree prime to p over K, and we get a Ki-point of X from the map
Spec(Ki) → X, induced by the projection K[X] → Ki. This implies that X
splits over Ki.

Now suppose char k 6= p. By [EKM, Prop 101.16] there exists an al-

gebraic field extension K(p)/K such that every finite extension of K(p)

has degree a power of p and every finite sub-extension L/K of K(p)/K

has degree prime to p. It is easy to see that K(p) is a perfect field and
Γ = Gal(Kalg/K

(p)) is a profinite p-group. Since Q(Kalg) has order prime to

p the group H1(K(p), Q) = H1(Γ, Q(Kalg)) is trivial by [Se2, I.5, ex. 2]. Thus

X splits over K(p) and hence over a finite sub-extension L/K of K(p)/K. �

Proposition 4.2. Let G be an algebraic group of multiplicative type over
k, T its maximal k-torus, and l/k a minimal Galois splitting field of T . Let
N ⊂ G be a finite k-subgroup whose order is coprime to both [l : k] and
|G/T |. Let π : G→ G/N be the natural projection. Then

π∗ : H
1(K,G) → H1(K,G/N)

is bijective, for any field extension K/k. In particular, ed(G) = ed(G/N).

The following argument, simplifying our earlier proof, was suggested to
us by Merkurjev.

Proof. We claim that H1(K,G) is m-torsion, where m = [l : k] · |G/T |.
Indeed, since TK is split by a Galois extension of degree dividing [l : k],
restricting and corestricting in Galois cohomology yields [l : k] ·H1(K,T ) =
(0). On the other hand, since |G/T | ·H1(K,G/T ) = (0), the exact sequence

H1(K,T ) → H1(K,G) → H1(K,G/T )

shows that H1(K,G) is m-torsion, as claimed. Note that N is contained in
T and the quotient of G/N by its maximal torus T/N is isomorphic to G/T .
So the group H1(K,G/N) is m-torsion as well.

Now let n = |N | and pn : G → G be given by g → gn. The induced

map H1(K,G)
(pn)∗
−−−→ H1(K,G) is multiplication by n. Since H1(K,G) is

m-torsion and by assumption n and m coprime, (pn)∗ is an isomorphism.
Moreover, N lies in the kernel of pn and so (pn)∗ factors through π∗:

(pn)∗ : H
1(K,G)

π∗−→ H1(K,G/N) → H1(K,G) .

In particular, π∗ is injective. A similar argument shows that composing these
maps in the opposite order,

H1(K,G/N) → H1(K,G)
π∗−→ H1(K,G/N) ,

we get an isomorphism as well. This shows that π∗ is surjective and hence,
bijective, as desired. �
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Proof of the Theorem 1.1. We will first prove ed(G; p) ≥ min dim(ψ)−dimG,
where the minimum is over p-faithful representations. Since G is split by a
Galois extension of p-power degree, Corollary 2.4 tells us that for any char-
acter χ of C(G) and any φ ∈ Repχ, dim(φ) is a power of p. By Theorem 3.1,
ed(G; p) ≥ min dim(ψ) − dimG, where ψ ranges over representations of G
whose restriction to C(G) is faithful. By Lemma 2.2 representations with
this property are precisely the p-faithful representations.

We will now show that ed(G; p) ≤ dimψ − dimG for any p-faithful rep-
resentation ψ of G. We will proceed in two steps.

Step 1. SupposeG is an extension of a p-group F by a torus T . Since N :=
kerψ is finite of order prime to p, Proposition 4.2 yields ed(G) = ed(G/N).
Now ψ can be considered as a faithful representation of G/N . By Lemma
2.5, this representation of G/N is generically free. By (2),

ed(G; p) ≤ ed(G) = ed(G/N) ≤ dimψ − dim(G/N) = dimψ − dim(G) ,

as desired.
Taking ψ to be of minimal dimension, we also see that in this case we

have ed(G; p) = ed(G), as asserted in the statement of the theorem.

Step 2. Let G be an arbitrary group of multiplicative type. Let T be the
maximal torus of G, and F ′ be the Sylow p-subgroup of the multiplicative
finite group F := G/T . Recall that F ′ is defined as Diag(X(F )/Y ), where
Y is the submodule of elements of order prime to p.

Now denote the preimage of F ′ under the projection G → F = G/T by
G′. Since G′ is an extension of a p-group by a torus, we know from Step 1
that

ed(G′; p) ≤ dimψ|G′ − dimG′ = dimψ − dimG .

The index of G′ in G is finite and prime to p, hence ed(G; p) = ed(G′; p) by
Lemma 4.1 and the desired inequality, ed(G; p) ≤ dimψ−dimG follows. �

5. Main theorem in the language of character modules

Let G be of multiplicative type over k and let l/k be a Galois splitting field
of G. We will call a map of ZGal(l/k)-modules P → X(G) a p-presentation
if P is permutation, and the cokernel is finite of order prime to p.

We now restate our Theorem 1.1 in a way that is often more convenient
to use.

Corollary 5.1. Let G be a group of multiplicative over k, l/k be a finite
Galois splitting field of G, and Γp be a Sylow p-subgroup of Gal(l/k). Then

ed(G; p) = min rk ker φ,

where the minimum is taken over all p-presentations φ : P → X(G) of X(G),
viewed as a ZΓp-module.

Proof. Let k′ = lΓp . Then Gal(l/k′) = Γp. Since [k′ : k] is finite and prime
to p, (1) tells us that ed(G; p) = ed(Gk′ ; p). By Theorem 1.1 ed(Gk′ ; p) =
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mindim(ψ) − dimG, where the minimum is taken over all p-faithful repre-
sentations ψ of Gk′ . By Lemma 2.6

min dim(ψ) − dimG = min rank(P )− dimG = min rk kerφ,

where the minimum on the right is taken over all p-presentations φ : P →
X(G), as in the statement of the theorem. �

Example 5.2. Let T be a torus of dimension < p − 1. Then ed(T ; p) = 0,
because there is no non-trivial integral representation of dimension < p− 1
of any p-group [AP, Satz].

Example 5.3. Assume char k = 0, and let Γ = Spr denote the symmetric
group for some r ≥ 1. The generic torus T of PGLn, defined in [Vos2, §4.1–
4.2], is of dimension pr − 1 and has character lattice

X(T ) = {a ∈ Z
pr |a1 + · · ·+ apr = 0}

with the natural action of Γ on it; see [Vos1]. Let Γp be a Sylow p-subgroup
of Γ. In [MR, Prop. 7.2] it is shown that the minimal rank of a permuta-
tion module with a p-presentation to X(T ) is p2r−1. Thus by Corollary 5.1,
ed(T ; p) = p2r−1 − pr + 1.

6. Forms of µn

Proposition 6.1. Let A be a twisted form of µpn over k and l/k a minimal
Galois splitting field. Then ed(A; p) = pr, where pr is the highest power of p
dividing [l : k].

Proof. Let Γp be a Sylow p-subgroup of Gal(l/k) and φ : P → X(A) be a p-
presentation. Since φ has prime to p cokernel and X(A) is a cyclic p-group,
φ must be surjective. Thus, if Λ is a basis of P , permuted by Γp, some
element λ ∈ Λ maps to a generator a of X(A). Moreover, Γp acts faithfully
on X(A) and |Λ| ≥ |Γpλ| ≥ |Γpa| = |Γp|. Conversely we have a surjective
homomorphism Z[Γpa] → X(A) that sends a to itself. So the minimal value
of rkP is |Γp|. Now apply Corollary 5.1. �

Remark 6.2. For char k 6= p, Proposition 6.1 was previously known in the
following special cases:

For twisted cyclic groups of order 4 it is due to M. Rost [Ro] and in the
case of cyclic groups of order 8 to G. Bayarmagnai [Ba]. The case of constant
cyclic groups of arbitrary prime power order is due to M. Florence [Fl].

Example 6.3. Let char k = p. D. Tossici and A. Vistoli [TV, Question 4.1
(2)] asked if the essential dimension of every algebraic k-group of order pn

is ≤ n. The following example, with n = 2 and p > 2, answers this question
in the negative.

Let l/k be a cyclic extension of order p; set Γ := Gal(l/k). (For example,
we can take k and l to be finite fields of orders p and pp, respectively.) Now
let M ≃ Z/p2Z be the Γ-module obtained by identifying Γ with the unique
subgroup of Aut(Z/p2Z) ≃ Z/p(p − 1)Z of order p. By construction G =
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Diag(M) is a form of µp2 defined over k, whose minimal Galois splitting field
is l. Proposition 6.1 now tells us that ed(G) = ed(G; p) = [l : k] = p > 2. �

7. Twisted p-groups

In this section we will use Theorem 3.1 to generalize the Karpenko–
Merkurjev theorem to arbitrary (possibly twisted) finite p-groups over a
field k, assuming that char k 6= p and k contains a primitive pth root of
unity.

Theorem 7.1. Let G be an algebraic group over k such that GL is a constant
group of order pn for some n ≥ 1 and some Galois extension L/k of p-power
degree. Then

ed(G) = ed(G; p) = min dimψ ,

where ψ runs through all faithful representations of G.

Proof. The inequalities ed(G; p) ≤ ed(G) ≤ min dimψ follow from (2).
Hence it suffices to show that ed(G; p) ≥ mindimψ.

Since char k 6= p the centre of G is of multiplicative type, the subgroup
C(G) = Splitk(Z(G)[p]) is well-defined (as in Section 2) and is isomorphic
to µrp for some r ≥ 1.

We claim that every irreducible representation ψ of G has dimension equal
to a power of p. Denote by ζ a primitive root of unity of order equal to the
exponent of G(L). Since k contains a primitive pth root of unity, L′ := L(ζ)
is Galois over k and of p-power degree, and ψ decomposes over L′ as a
direct sum of absolutely irreducible representations of the abstract p-group
G(L′) = G(L). All direct summands in this decomposition have the same
dimension, equal to a power of p. By [Ka, Theorem 5.22] the number of
direct summands in this decomposition is also a power of p, and the claim
follows.

Therefore, Theorem 3.1 can be applied, i.e., ed(G; p) ≥ min dimψ taken
over all representations ψ of G whose restriction to C(G) is faithful. Let
N be the kernel of such a representation. We claim that N ∩ C(G) = {1}
implies that N is trivial. If G is constant we have C(G) = Z(G)[p] since k
contains a primitive pth root of unity and the claim is a standard elementary
fact about p-groups. The general case follows from Lemma 2.1 applied to
A = Z(G)[p] ∩N . �

Remark 7.2. Theorem 7.1 allows one to compute ed(G; p), at least in prin-
ciple, for any étale algebraic group G over k, provided char(k) 6= p.

To carry out this computation, we first pass to a suitable Galois extension
L/k of degree prime to p such that L contains a primitive pth root of unity
and GL becomes constant over a Galois extension E/L of p-power degree.

We claim that GL has a Sylow p-subgroup S defined over L. Indeed, the
p-group Gal(E/L) permutes the Sylow subgroups of G(E). By the Sylow
theorems, the number of such subgroups is prime to p. Thus one of them is
fixed by the p-group Gal(E/L). This proves the claim.
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Now we have ed(G; p) = ed(GL; p) = ed(S; p), and ed(S; p) is given by
Theorem 7.1.
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Inst. Math. Sci. (RIMS), Kyoto (2007).

[BF] G. Berhuy, G. Favi, Essential Dimension: A Functorial Point of View (after
A. Merkurjev), Doc. Math. 8 (2003), 279–330.

[BM] S. Baek, A. Merkurjev, Essential dimension of central simple algebras, preprint,
http://www.math.ucla.edu/~merkurev/publicat.htm.

[BR] J. Buhler, Z. Reichstein, On the essential dimension of a finite group, Compositio
Mathematica 106:159–179 (1997).

[EKM] R. Elman, N. Karpenko, A. Merkurjev: The algebraic and geometric theory of.
quadratic forms. Amer. Math. Soc. Coll. Publ. 56, Providence, RI: Amer. Math. Soc.
(2008).

[Fl] M. Florence, On the essential dimension of cyclic p-groups, Inventiones Mathemati-
cae, 171 (2007), 175-189.

[Ka] G. Karpilovsky, Clifford Theory for Group Representations. Mathematics Studies,
156. North-Holland, Netherlands, (1989).

[KM] N. Karpenko, A. Merkurjev, Essential dimension of finite p-groups, Inventiones
Mathematicae, 172 (2008), 491–508.

[Me1] A. Merkurjev, Essential dimension, in Quadratic forms – algebra, arithmetic, and
geometry (R. Baeza, W.K. Chan, D.W. Hoffmann, and R. Schulze-Pillot, eds.), Con-
temporary Mathematics 493 (2009), 299–326.

[Me2] A. Merkurjev, A lower bound on the essential dimension of simple algebras, preprint,
http://www.math.ucla.edu/~merkurev/publicat.htm.

[MR] A. Meyer, Z. Reichstein, The essential dimension of the normalizer of a maximal
torus in the projective linear group, Algebra and Number Theory, 3, no. 4 (2009),
467–487.

[Re] Z. Reichstein, On the Notion of Essential Dimension for Algebraic Groups, Transfor-
mation Groups, 5, 3 (2000), 265-304.

[RY] Z. Reichstein, B. Youssin, Essential Dimensions of Algebraic Groups and a Resolu-
tion Theorem for G-varieties, with an appendix by J. Kollar and E. Szabo, Canadian
Journal of Mathematics, 52, 5 (2000), 1018–1056.

[Ro] M. Rost, Essential dimension of twisted C4, preprint,
http://www.math.uni-bielefeld.de/~rost/ed.html

[Se1] J.-P. Serre, Linear representations of finite groups, Graduate Texts in Mathematics,
42, Springer-Verlag, 1977.

[Se2] J.-P. Serre, Galois cohomology. Springer Monographs in Mathematics. Springer-
Verlag, Berlin, 2002.

[Sh] I. R. Shafarevich, Basic Algebraic Geometry, vol. 1, 2nd edition, Springer-Verlag,
1994.

http://www.math.ucla.edu/~merkurev/publicat.htm
http://www.math.ucla.edu/~merkurev/publicat.htm
http://www.math.uni-bielefeld.de/~rost/ed.html
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