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Abstract

The question of which quadratic forms become isotropic when extended to the
function field of a given form is studied. A formula for the minimum dimension
of the minimal isotropic forms associated to such extensions is given, and some
consequences thereof are outlined. Especial attention is devoted to function
fields of Pfister forms. Here, the relationship between excellence concepts and
the isotropy question is explored. Moreover, in the case where the ground
field is formally real and has finite Hasse number, the isotropy question is
answered for forms of sufficiently large dimension.

1 Introduction

Certain field invariants in quadratic form theory (for example the u-invariant, the
Hasse number, the Pythagoras number) are defined as the suprema of the dimen-
sions of anisotropic quadratic forms of a given type. A fruitful method of establish-
ing that such an invariant attains a particular value was introduced by Merkurjev
(see [M]). It serves as one source of motivation for the following question.

Question 1.1. Given a quadratic form ϕ over a field F , which anisotropic quadratic
forms over F become isotropic when extended to the function field of ϕ over F?

While this question appears to be extremely difficult to resolve, some noteworthy
progress has been made in this direction (see [L, Ch.X]). More is known regarding
the following related question.

Question 1.2. Given a quadratic form ϕ over a field F , which anisotropic forms
over F become hyperbolic when extended to the function field of ϕ over F?

The Cassels-Pfister Subform Theorem [L, Ch.X, Theorem 4.5] gives a partial answer
to this question by providing necessary conditions in terms of subform containment.
One would obtain a complete answer to Question 1.1, again in terms of subform
containment, if one could classify the isotropic forms that are minimal with respect
to subform containment. Towards this end, we study the dimensions of such forms
in the second section of this article.

In the case where ϕ is a Pfister form, a complete answer is known to Question 1.2
[L, Ch.X, Theorem 4.9]. Thus, it is justified to devote particular attention to Ques-
tion 1.1 in the context of function fields of Pfister forms, particularly since the
property of excellence can only arise for such function fields (see [K2, Theorem
7.13]). Consequently, sections three, four and five of this paper are primarily con-
cerned with addressing Question 1.1 for function fields of Pfister forms. The third
section explores excellence concepts and their relation to Question 1.1. Building
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on this, the fourth section answers Question 1.1 for forms of certain dimensions,
and provides bounds on the range of these dimensions. The final section tackles
Question 1.1 for function fields of Pfister forms over formally real fields of finite
Hasse number, and offers an answer for forms whose dimension is greater than the
Hasse number.

Throughout, we highlight cases where our investigations allow for short or simple
recoveries of established results.

Henceforth, we will let F denote a field of characteristic different from two. The
term “form” will refer to a regular quadratic form. Every form over F can be
diagonalised. Given a1, . . . , an ∈ F×, one denotes by 〈a1, . . . , an〉 the n-dimensional
quadratic form a1X

2
1 + . . .+anX

2
n. If ϕ and ψ are forms over F , we denote by ϕ ⊥ ψ

their orthogonal sum and by ϕ⊗ψ their tensor product. For m ∈ N, we will denote
the orthogonal sum of m copies of ϕ by m × ϕ. We use aϕ to denote 〈a〉 ⊗ ϕ for
a ∈ F×. We write ϕ ≃ ψ to indicate that ϕ and ψ are isometric. Two forms ϕ and
ψ over F are similar if ϕ ≃ aψ for some a ∈ F×. For ϕ a form over F and K/F a
field extension, we write ϕK when we view ϕ as a form over K. A form over F is
isotropic if it represents zero non-trivially, and anisotropic otherwise. Every form
ϕ has a decomposition ϕ ≃ ψ ⊥ i × 〈1,−1〉 where the anisotropic form ψ and the
integer i are uniquely determined, with ψ being referred to as the anisotropic part
of ϕ, denoted ϕan, and i being labelled the Witt index of ϕ, denoted iW (ϕ). A form
ϕ is hyperbolic if its anisotropic part is trivial, whereby iW (ϕ) = 1

2 dimϕ. A form τ
is a subform of ϕ if ϕ ≃ τ ⊥ γ for some form γ, in which case we will write τ ⊂ ϕ.
The following basic fact (see [L, Ch.I, Ex. 16]) will be employed frequently.

Lemma 1.3. If τ ⊂ ϕ with dim τ > dimϕ− iW (ϕ) + 1, then τ is isotropic.

Given n ∈ N, an n-fold Pfister form is a form isometric to 〈1, a1〉 ⊗ . . . ⊗ 〈1, an〉
for some a1, . . . , an ∈ F×. We let PF denote the class of Pfister forms over F ,
and PnF the class of n-fold Pfister forms over F . For π ∈ PF , a form τ over F
is a generalised Pfister neighbour of π if there exists a form γ over F such that
τ ⊂ π ⊗ γ and dim τ > 1

2dim(π ⊗ γ). In particular, if dim γ = 1 then τ is said to
be a Pfister neighbour of π. Since isotropic Pfister forms are hyperbolic ([L, Ch.X,
Theorem 1.7]), Lemma 1.3 demonstrates that the isotropy of a Pfister form implies
the isotropy of its generalised Pfister neighbours.

For a form ϕ over F with dimϕ = n > 2 and ϕ 6≃ 〈1,−1〉, the function field F (ϕ) of
ϕ is the quotient field of the integral domain F [X1, . . . , Xn]/(ϕ(X1, . . . , Xn)) (this is
the function field of the affine quadric ϕ(X) = 0 over F ). As per [L, Ch.X, Theorem
4.1], F (ϕ)/F is a purely transcendental extension if and only if ϕ is isotropic over
F . To avoid case distinctions, we set F (ϕ) = F if dimϕ 6 1 or ϕ ≃ 〈1,−1〉. The
positive integer iW (ϕF (ϕ)) is called the first Witt index of ϕ, and is denoted by
i1(ϕ). For all extensions K/F such that ϕK is isotropic, i1(ϕ) 6 iW (ϕK) (see [K1,
Proposition 3.1 and Theorem 3.3]). We will often invoke [H3, Theorem 1]:

Theorem 1.4. (Hoffmann) Let ψ be anisotropic over F . If dimψ 6 2n < dimϕ
for some n ∈ N, then ψF (ϕ) is anisotropic.

Combining Lemma 1.3 with Theorem 1.4, one obtains [H3, Corollary 1], namely
that if ϕ is an anisotropic form with dimϕ = 2n + k where 0 < k 6 2n, then
i1(ϕ) 6 k. If i1(ϕ) = k in this situation, whereby dimϕ − i1(ϕ) is a power of
two, ϕ is said to have maximal splitting. Two anisotropic forms ϕ and ψ over F
are isotropy equivalent if for every K/F we have that ϕK is isotropic if and only if
ψK is isotropic. For ϕ and ψ anisotropic forms over F , if ϕ is isotropic over F (ψ)
then ϕ is isotropic over any field extension K/F such that ψK is isotropic (since
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K(ψ)/K is a purely transcendental extension). Thus, one recovers the observation
in [K1] that ϕ is isotropy equivalent to ψ if and only if ϕF (ψ) is isotropic and ψF (ϕ)

is isotropic.

For further details regarding the above, we refer the reader to [L].

2 Minimal isotropy and essential dimension

Given an extension K/F , an anisotropic form ψ over F is minimal K-isotropic if
ψK is isotropic and, for every proper subform ϕ of ψ, the form ϕK is anisotropic.
As a consequence of Lemma 1.3, we note that every minimal K-isotropic form ψ
satisfies iW (ψK) = 1. Since every form over F that becomes isotropic over K
contains a minimal K-isotropic form, a determination of the minimal K-isotropic
forms would provide an answer to the question of which anisotropic forms over F
become isotropic when extended to K. Towards this end, we introduce the following
set:

M(K/F ) = {dimψ | ψ is a minimal K-isotropic form over F}.

The invariants minM(K/F ) and supM(K/F ) were introduced in [H1], wherein
they are denoted by tmin(K/F ) and tmax(K/F ), and have since been studied in the
case where K = F (ϕ) for ϕ a form over F . In particular, it was shown in [HVG]
that supM(F (ϕ)/F ) can be infinite when dimϕ = 3.

For ϕ an anisotropic form over F , we denote by edim(ϕ) the number dimϕ−i1(ϕ)+
1, defined as the essential dimension of the form by Izhboldin (see [IKKV] for more
details). In this section, we will regularly employ the isotropy criteria provided by
[KM, Theorem 4.1]:

Theorem 2.1. (Karpenko, Merkurjev) Let ϕ and ψ be anisotropic forms over F .

(i) If ψF (ϕ) is isotropic, then edim(ψ) > edim(ϕ),

(ii) If edim(ψ) = edim(ϕ), then ψF (ϕ) is isotropic if and only if ϕF (ψ) is isotropic.

Corollary 2.2. If ϕ and ψ are isotropy-equivalent anisotropic forms over F , then
edim(ϕ) = edim(ψ).

Proof. This follows immediately from Theorem 2.1(i).

Corollary 2.3. Let ϕ and ψ be anisotropic forms over F . If ψF (ϕ) is isotropic,
then dimψ > edim(ϕ).

Proof. This follows immediately from Theorem 2.1(i).

Remark 2.4. Theorem 2.1(i) was established through the usage of advanced algebro-
geometric machinery. Given its importance as an isotropy criterion over function
fields of quadratic forms, it would be desirable to obtain a proof of this result solely
by means of classical quadratic form theory. To this end, the following argument
demonstrates that it suffices to find such a proof of Corollary 2.3.

Assuming Corollary 2.3, we have that minM(F (ϕ)/F ) is greater than or equal to
edim(ϕ), whereby Lemma 1.3 implies that minM(F (ϕ)/F ) equals edim(ϕ). More-
over, since every subform of ψ of dimension dimψ− iW (ψF (ϕ)) + 1 is isotropic over
F (ϕ) by Lemma 1.3, this equality implies that dimψ − iW (ψF (ϕ)) + 1 is greater
than or equal to edim(ϕ), whereby Theorem 2.1(i) follows.
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Arguing as above, we obtain our opening result, which relates the essential dimen-
sion of ϕ to the problem of determining the minimal F (ϕ)-isotropic forms.

Theorem 2.5. Any anisotropic form ϕ over F satisfies minM(F (ϕ)/F ) = edim(ϕ).

Proof. By Lemma 1.3, every subform τ of ϕ with dim τ = dimϕ − i1(ϕ) + 1 is
isotropic over F (ϕ). Hence, minM(F (ϕ)/F ) 6 dimϕ − i1(ϕ) + 1. On the other
hand, if ψ is a form over F with dimψ 6 dimϕ−i1(ϕ), then dimψ−i1(ψ) < dimϕ−
i1(ϕ), whereby ψF (ϕ) is anisotropic by Theorem 2.1. Hence minM(F (ϕ)/F ) >

dimϕ− i1(ϕ) + 1, establishing the equality.

[AO, Example 1.5] demonstrates that there exist 5-dimensional isotropy-equivalent
forms which are non-similar. In particular, since [H3, Corollary 1] implies that a
5-dimensional anisotropic form ϕ over F satisfies i1(ϕ) = 1, whereby edim(ϕ) = 5,
this shows that minimal F (ϕ)-isotropic forms of minimum dimension need not be
similar to subforms of ϕ.

Corollary 2.6. Let ψ and ϕ be isotropy-equivalent anisotropic forms over F . Every
subform of ψ of dimension dimψ−iW (ψF (ϕ))+1 is a minimal F (ϕ)-isotropic form.

Proof. Lemma 1.3 implies that such subforms of ψ are isotropic over F (ϕ), whereby
dimψ − iW (ψF (ϕ)) + 1 > minM(F (ϕ)/F ). Moreover, dimψ − iW (ψF (ϕ)) + 1 6

edim(ψ) = edim(ϕ), whereby dimψ − iW (ψF (ϕ)) + 1 6 minM(F (ϕ)/F ) by Theo-
rem 2.5.

Corollary 2.7. An anisotropic form ϕ over F satisfies i1(ϕ) = 1 if and only if ϕ
is a minimal F (ϕ)-isotropic form.

Proof. This follows directly from Corollary 2.6, Theorem 2.5 or Theorem 2.1.

Corollary 2.6 does not hold for arbitrary pairs of anisotropic forms. As per [H1,
Section 3.3], there exists an example of a field F and anisotropic forms γ and
ψ over F , where π ∈ P2F and dim γ = 6, such that iW (γF (π)) = 1 but γ is
not a minimal F (π)-isotropic form (indeed, it is shown that γ contains two non-
similar 5-dimensional minimal F (π)-isotropic forms). In Section 5 we will provide
a complementary example, Example 5.8, which demonstrates that for ϕ and γ
anisotropic forms over a field F such that iW (γF (ϕ)) = m, where m ∈ N, the form
γ need not contain any minimal F (ϕ)-isotropic forms of dimension dim γ −m+ 1.

Theorem 2.5 allows us to describe those forms which have maximal splitting.

Corollary 2.8. An anisotropic form ψ over F has maximal splitting if and only if
there exists a form ϕ over F with dimϕ− iW (ϕF (ψ)) = 2n−1, where n is such that
2n−1 6 dimψ < 2n.

Proof. Letting ϕ = ψ gives the left-to-right implication. Conversely, if ϕ is such
that dimϕ − iW (ϕF (ψ)) = 2n−1, then Lemma 1.3 implies that every subform of ϕ
of dimension 2n−1 + 1 is isotropic over F (ψ). Hence, minM(F (ψ)/F ) = 2n−1 + 1
by Theorem 1.4, whereby Theorem 2.5 implies that ψ has maximal splitting.

Returning to Theorem 2.1 itself, our next two results highlight the extreme cases,
where equality of the respective essential dimensions is forced.

Corollary 2.9. Let ϕ and ψ be anisotropic forms over F such that 2n−1 < dimψ 6

2n and 2n−1 < dimϕ 6 2n. Assume that ψ has maximal splitting. Then ψF (ϕ) is
isotropic if and only if ϕ and ψ are isotropy equivalent.
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Proof. The right-to-left implication is clear. Conversely, Theorem 2.1 implies that
edim(ψ) = edim(ϕ), whereby we obtain that ϕ and ψ are isotropy equivalent.

Corollary 2.10. Let ϕ and ψ be anisotropic forms over F such that dimϕ = dimψ
and i1(ϕ) = 1. The following are equivalent:

(a) ψF (ϕ) is isotropic,

(b) ϕ and ψ are isotropy equivalent,

(c) ψ is a minimal F (ϕ)-isotropic form.

Proof. Assuming (a), Theorem 2.1 shows that edim(ψ) = edim(ϕ), whereby (b)
follows. Assuming (b), since dimψ = edim(ϕ), Theorem 2.5 implies that ψ is a
minimal F (ϕ)-isotropic form, establishing (c). Finally, (c) clearly implies (a).

Pfister neighbours have maximal splitting, as per [H3, Proposition 3] (one can also
see this via Corollary 2.2, since a Pfister neighbour is isotropy equivalent to its as-
sociated Pfister form). In general, forms with maximal splitting need not be Pfister
neighbours, as is demonstrated in [H3, Example 2]. However, this correspondence
does hold for forms of certain dimension, as we will see in the following short proof
of [H3, Theorem 3].

Theorem 2.11. (Hoffmann) Let ψ be an anisotropic form over F with dimψ =
2n−1+1 for some n > 4. Let γ be an anisotropic form over F with 2n− 3 6 dim γ.
Then ψF (γ) is isotropic if and only if there exists an n-fold Pfister form π such that
ψ and γ are Pfister neighbours of π.

Proof. The right-to-left implication is clear. Conversely, since dimψ = 2n−1 + 1,
we have that i1(ψ) = 1. If ψF (γ) is isotropic, then ψ and γ are isotropy equivalent
by Corollary 2.9. Hence γ has maximal splitting, whereby [K1, Theorem 5.8] and
[K2, Corollary 8.2] imply that γ is a Pfister neighbour of some π ∈ PnF . Hence γ
is isotropy equivalent to π, whereby ψ is isotropy equivalent to π. Since πF (γ) is
isotropic, [L, Ch.X, Theorem 4.5] implies that γ ⊂ aπ for some a ∈ F×. Moreover,
since γF (π) is isotropic, Theorem 1.4 implies that dim γ > 1

2 dimπ, whereby we can
conclude that ψ is a Pfister neighbour of π.

We end this section with some characterisations of anisotropic Pfister neighbours.

Proposition 2.12. Let π be an anisotropic n-fold Pfister form over F and γ an
anisotropic form over F . The following are equivalent:

(a) γ is a Pfister neighbour of π,

(b) γ and π are isotropy equivalent,

(c) γ has maximal splitting, dim γ 6 dimπ and γF (π) is isotropic.

Proof. Since Pfister neighbours have maximal splitting, (a) clearly implies (c).

Assuming (c), since γF (π) is isotropic, we have that edim(γ) > edim(π) by Theo-
rem 2.1. Furthermore, since dim γ 6 dimπ and γ has maximal splitting, we have
that edim(γ) 6 edim(π). Hence edim(γ) = edim(π), whereby Theorem 2.1 shows
that (b) holds.

As per the proof of Theorem 2.11, assuming (b), [L, Ch.X, Theorem 4.5] and The-
orem 1.4 respectively show that γ ⊂ aπ for some a ∈ F× and dim γ > 1

2 dim π,
whereby (a) follows.
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Corollary 2.13. Let π be an anisotropic n-fold Pfister form over F and γ an
anisotropic form over F such that dim γ = 2n−1 + 1. If γF (π) is isotropic, then γ
is a Pfister neighbour of π.

Proof. This follows directly from Proposition 2.12, since i1(γ) = 1.

3 Excellence

A field extension K/F is said to be excellent if, for every form ϑ over F , the
anisotropic part of ϑK is defined over F , that is, (ϑK)an ≃ γK for some form γ over
F . For m ∈ N, we say that K/F is m-excellent if, for every form ϑ over F with
dimϑ 6 m, there exists a form γ over F such that (ϑK)an ≃ γK .

Combining [K2, Theorem 7.13] and [H3, Proposition 3], the following is known:

Proposition 3.1. (Knebusch (⇒) and Hoffmann (⇐)) Let ϕ be an anisotropic form
over F . Then (ϕF (ϕ))an is defined over F if and only if ϕ is a Pfister neighbour.

Thus, the only anisotropic quadratic forms whose function fields can be excellent
are Pfister neighbours. Indeed, for π ∈ PnF anisotropic, the extension F (π)/F is
excellent when n 6 2, and is not excellent in general when n > 3 (see [EKM, Ch.IV,
Section 29]).

As a result of Proposition 3.1, if ϕ is not a Pfister neighbour, then F (ϕ)/F is not
(dimϕ)-excellent. However, one may justifiably examine m-excellence for arbitrary
function fields F (ϕ)/F when m is less than dimϕ, and the opening comments of
this section address this topic.

Proposition 3.2. If ϕ is an anisotropic form over F with dimϕ > 2n, then F (ϕ)/F
is 2n-excellent.

Proof. This follows directly from Theorem 1.4, since an anisotropic form ψ over F
with dimψ 6 2n is such that ψF (ϕ) is anisotropic.

Proposition 3.3. Let ϕ and ψ be isotropy-equivalent anisotropic forms over F and
γ an anisotropic form over F . Then iW (γF (ϕ)) = iW (γF (ψ)). Moreover, (γF (ϕ))an
is defined over F if and only if (γF (ψ))an is defined over F .

Proof. By [L, Ch.X, Theorem 4.1], F (ϕ, ψ) is a purely-transcendental extension of
F (ϕ) and of F (ψ). Thus iW (γF (ϕ)) = iW (γF (ϕ,ψ)) = iW (γF (ψ)). Consequently,
letting (γF (ϕ))an ≃ δF (ϕ) for some form δ over F , we can conclude that γ ⊥ −δ
becomes hyperbolic over F (ψ), whereby (γF (ψ))an ≃ (δF (ψ))an ≃ δF (ψ).

Our next observation is that Proposition 3.2 cannot be improved in general.

Proposition 3.4. Let ψ and ϕ be anisotropic forms over F such that 2n + 1 =
dimψ 6 dimϕ for some n ∈ N and ψF (ϕ) is isotropic. Then (ψF (ϕ))an is defined
over F if and only if ψ is a Pfister neighbour.

Proof. Since ψF (ϕ) is isotropic, Theorem 2.1 implies that edim(ψ) = edim(ϕ),
whereby ψ and ϕ are isotropy equivalent. Thus, (ψF (ϕ))an is defined over F if
and only if (ψF (ψ))an is defined over F by Proposition 3.3, which occurs if and only
if ψ is a Pfister neighbour by Proposition 3.1.
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For the rest of this section, we will consider how the aforementioned excellence
concepts relate to F (π)/F when π is an anisotropic Pfister form. We begin by
examining which forms ϕ over F are such that (ϕF (π))an is defined over F . Propo-
sition 3.1 establishes that Pfister neighbours of π have this property. Indeed, if
a ∈ F× and α, µ are forms over F such that α ⊥ µ ≃ aπ with dimα > dimµ, then
(αF (π))an ≃ −µF (π). We next show that certain forms containing Pfister neighbours
of π also possess this property.

Proposition 3.5. Suppose that an anisotropic form ϕ over F contains a Pfister
neighbour of an n-fold Pfister form π. If iW (ϕF (π)) = 1 or if dimϕ 6 2n−1 + 3,
then (ϕF (π))an is defined over F .

Proof. Let ϕ ≃ τ ⊥ ϕ′, where τ is a Pfister neighbour of π such that τ ⊥ γ ≃ aπ.
Hence, ϕF (π) ≃ ϕ′

F (π) ⊥ iW (τF (π)) × 〈1,−1〉 ⊥ −γF (π) and (ϕF (π))an ≃ ((ϕ′ ⊥
−γ)F (π))an. If iW (ϕF (π)) = 1, then ϕ′ ⊥ −γ is anisotropic over F (π). If dimϕ 6

2n−1 + 3, then dimϕ′ 6 2, whereby dim(ϕ′ ⊥ −γ) 6 2n−1 + 1. If ϕ′ ⊥ −γ is
isotropic over F (π), then it is a Pfister neighbour of π by Corollary 2.13. Hence
(ϕF (π))an is defined over F .

[H2, Corollary 4.2] establishes that F (π)/F is 6-excellent in the case where π is a
3-fold Pfister form. Owing to this fact, we can obtain a slight improvement of the
preceding result in this case.

Proposition 3.6. Let ϕ be an anisotropic form over F with dimϕ 6 8 and π an
anisotropic 3-fold Pfister form over F . If ϕ contains a Pfister neighbour of π, then
(ϕF (π))an is defined over F .

Proof. As above, letting ϕ ≃ τ ⊥ ϕ′, where τ is a Pfister neighbour of π such that
τ ⊥ γ ≃ aπ, we have that (ϕF (π))an ≃ ((ϕ′ ⊥ −γ)F (π))an. Since dim(ϕ′ ⊥ −γ) 6 6,
[H2, Corollary 4.2] implies that ((ϕ′ ⊥ −γ)F (π))an is defined over F .

For certain generalised Pfister neighbours α of π, we can prove that (αF (π))an is
defined over F .

Proposition 3.7. Let α be an anisotropic generalised Pfister neighbour of an n-
fold Pfister form π, with µ and ϑ forms over F such that α ⊥ µ ≃ π ⊗ ϑ with
dimα > dimµ. If iW (αF (π)) = 1, then (αF (π))an ≃ −µF (π).

Proof. Since α ⊥ µ ≃ π⊗ϑ, we have that (αF (π))an ≃ −(µF (π))an. As iW (αF (π)) =
1 by assumption, we have that dim(αF (π))an > dimµ, whereby we must have that
−µF (π) ≃ (αF (π))an.

We note that the above result does not follow from Proposition 3.5, as generalised
Pfister neighbours need not contain Pfister neighbours:

Example 3.8. As per [HVG, Section 4], for a certain field F and a particular
π ∈ P2F , there exists a minimal F (π)-isotropic form ψm of dimension 2m + 1 for
every m ∈ N. Since F (π)/F is an excellent extension (see [EKM, Section 29]),
[H1, Lemma 3.1.2] implies that ψm is a generalised Pfister neighbour of π for every
m ∈ N. By minimality, ψm does not contain a Pfister neighbour of π when m > 2.

The “only if” part of the following result is [H1, Lemma 3.1.2].
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Proposition 3.9. (Hoffmann (⇒)) Let ψ be a minimal F (π)-isotropic form for
some Pfister form π. Then (ψF (π))an is defined over F if and only if ψ is a gener-
alised Pfister neighbour of π.

Proof. If (ψF (π))an ≃ γF (π) for some form γ over F , then ψ ⊥ −γ becomes hyper-
bolic over F (π). Moreover, ψ ⊥ −γ is anisotropic over F , as otherwise we would
have that ψ ≃ 〈d〉 ⊥ ψ′ and γ ≃ 〈d〉 ⊥ γ′ for some d ∈ F×, whereby ψ′ ⊥ −γ′ would
also be hyperbolic over F (π). However, since dimψ > dim γ, this cannot occur, as
otherwise ψ′

F (π) would be isotropic, contradicting the minimality of ψ. Thus, [L,

Ch.X, Theorem 4.9] implies that ψ ⊥ −γ ≃ π ⊗ ϑ for some form ϑ, whereby ψ is a
generalised Pfister neighbour of π.

Conversely, since ψ is a minimal F (π)-isotropic form, we have that iW (ψF (π)) = 1.
Hence, if ψ is a generalised Pfister neighbour of π, Proposition 3.7 implies that
(ψF (π))an is defined over F .

We conclude this section with some characterisations of excellence and m-excellence
for function fields of Pfister forms.

Theorem 3.10. Let π be an anisotropic Pfister form over F . For m ∈ N, the
following are equivalent:

(a) F (π)/F is m-excellent,

(b) (ψF (π))an is defined over F for every minimal F (π)-isotropic form ψ over F of
dimension m or less,

(c) Every minimal F (π)-isotropic form over F of dimension m or less is a gener-
alised Pfister neighbour of π.

Proof. (a) clearly implies (b). Moreover, Proposition 3.9 establishes the equivalence
of (b) and (c). To conclude, we will show that (b) implies (a).

Let ϕF (π) be isotropic, where dimϕ 6 m. Then ϕ ≃ ψ ⊥ γ, where ψ is a minimal
F (π)-isotropic form. Since (ψF (π))an ≃ δF (π) for some form δ over F , we have
that ϕF (π) ≃ 〈1,−1〉F (π) ⊥ δF (π) ⊥ γF (π). Now consider ϕ1 := δ ⊥ γ. If ϕ1 is
anisotropic over F (π), then (ϕF (π))an ≃ (ϕ1)F (π) and we are done. Otherwise, ϕ1

is isotropic over F (π), whereby ϕ1 ≃ ψ1 ⊥ γ1 for ψ1 a minimal F (π)-isotropic form.
Iterating our argument, we obtain that (ϕF (π))an ≃ (ϕn)F (π) for some n ∈ N.

Corollary 3.11. (Hoffmann (a) ⇐⇒ (c)) Let π be an anisotropic Pfister form
over F . The following are equivalent:

(a) F (π)/F is excellent,

(b) (ψF (π))an is defined over F for every minimal F (π)-isotropic form ψ,

(c) Every minimal F (π)-isotropic form is a generalised Pfister neighbour of π.

The equivalence of (a) and (c) in the above is [H1, Theorem 3.1.3]. This provides
an answer to Question 1.1 for function fields of Pfister forms that are excellent
extensions. As per the proof of Theorem 3.10, the equivalences of (a) and (b) in
Theorem 3.10 and Corollary 3.11 hold for arbitrary extensions K/F .
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4 Bounds on the dimensions where excellence holds

Whereas F (π)/F is excellent for all π ∈ PnF when n 6 2, Izhboldin [I, Proposition
1.2] proved that for every n > 3 and any anisotropic π ∈ PnF , there exists a field
K/F such that K(π)/K is not excellent. In particular, there exists a form ϕ over
K with dimϕ = dimπ such that (ϕK(π))an is not defined over K by [I, Lemma 2.4].

As remarked above, Corollary 3.11 provides an answer to Question 1.1 for function
fields of Pfister forms that are excellent extensions. In light of Izhboldin’s results,
one cannot use Corollary 3.11 to obtain information regarding isotropy over F (π)
when n > 3 without first placing restrictions on either F or π ∈ PnF . However,
Theorem 3.10 provides isotropy criteria over all function fields of Pfister forms. Let
Φ : N → N ∪ {∞} be given by

Φ(n) = sup{m ∈ N | F (π)/F is m-excellent for every field F and π ∈ PnF}.

Proposition 4.1. Let n > 3 and let π be an n-fold Pfister form over F . An
anisotropic form ϕ with dimϕ 6 Φ(n) is isotropic over F (π) if and only if it
contains a Pfister neighbour of π.

Proof. The right-to-left implication is clear. Conversely, ϕ contains a minimal F (π)-
isotropic form ψ. Since F (π)/F is Φ(n)-excellent and dimψ 6 Φ(n), Theorem 3.10
implies that ψ is a generalised Pfister neighbour of π. As per Izhboldin’s examples
[I], we have that Φ(n) < dim π, whereby ψ is a Pfister neighbour of π.

Question 4.2. For each n > 3, what is the value of Φ(n)?

Proposition 4.3. Φ(n) > 2n−1 + 1 for every n ∈ N.

Proof. Let π ∈ PnF and ψ be anisotropic forms over F such that dimψ 6 2n−1 +
1 and ψF (π) is isotropic. Theorem 1.4 implies that dimψ = 2n−1 + 1. Hence,
Corollary 2.13 implies that ψ is a Pfister neighbour of π, whereby (ψF (π))an is
defined over F . Hence, F (π)/F is (2n−1 + 1)-excellent.

We note that Φ(3) > 6 by [H2, Corollary 4.2].

Corollary 4.4. Let π be an anisotropic 3-fold Pfister form over F and ψ a 6-
dimensional anisotropic form over F . Then ψF (π) is isotropic if and only if ψ
contains a Pfister neighbour of π. In particular, there are no 6-dimensional minimal
F (π)-isotropic forms.

Proof. Since Φ(3) > 6, Proposition 4.1 gives the equivalence. Consequently, every
6-dimensional anisotropic form over F that becomes isotropic over F (π) necessarily
contains a 5-dimensional Pfister neighbour of π, and hence cannot be a minimal
F (π)-isotropic form.

In order to establish upper bounds on the values of Φ(n) when n > 3, we will require
the following result:

Proposition 4.5. Let ψ be a minimal F (π)-isotropic form for some n-fold Pfister
form π over F . If (ψF (π))an is defined over F , then dimψ = m2n−1 + 1 for some
m ∈ N.

Proof. By Proposition 3.9, ψ is a generalised Pfister neighbour of π, whereby there
exists a form γ over F such that ψ ⊂ π ⊗ γ and dimψ > 1

2 dim(π ⊗ γ). Letting
dim γ = m for some m ∈ N, the minimality of ψ implies the result.

9



Corollary 4.6. (Hoffmann) For π an anisotropic 2-fold Pfister form over F , every
minimal F (π)-isotropic form has odd dimension.

Proof. Since F (π)/F is excellent, Proposition 4.5 implies that every minimal F (π)-
isotropic form is of dimension 2m+ 1 for some m ∈ N.

Corollary 4.7. Let π be an n-fold Pfister form over F and ψ a minimal F (π)-
isotropic form. If 2n−1 + 2 6 dimψ 6 2n, then (ψF (π))an is not defined over F .

Proof. This is an immediate corollary of Proposition 4.5.

In [I, Lemma 2.4], Izhboldin established the existence of 2n-dimensional minimal
F (π)-isotropic forms ψ for all n > 3, where π is an n-fold Pfister form over a
certain field F . Additionally, he proved that these forms are such that (ψF (π))an
is not defined over F , a result we can recover directly by invoking Corollary 4.7.
These examples belong to the class of twisted Pfister forms, Pn,mF , which Hoffmann
studied in [H4]. For 1 6 m < n, a form ϕ over F is contained in Pn,mF if dimϕ = 2n

and ϕ ≃ (π1 ⊥ −π2)an where π1 (respectively π2) is an n-fold (respectively m-fold)
Pfister form over F . For all n > 3 and for all m satisfying 1 6 m 6 n−2, Hoffmann
provided examples in [H4, Section 8] of fields F , forms ϕ ∈ Pn,mF and n-fold
Pfister forms π over F such that (ϕF (π))an is not defined over F . The following
result concerns the minimal F (π)-isotropic forms contained within these examples.

Proposition 4.8. For n > 3, let a field F , forms ϕ ∈ Pn,mF and an n-fold Pfister
form π over F be as in [H4, Example 8.1] or [H4, Example 8.3]. The minimal
F (π)-isotropic forms ψ ⊂ ϕ are such that (ψF (π))an is not defined over F .

Proof. We note that such ϕ ∈ Pn,mF satisfy the criteria of [H4, Proposition 7.6].
As a consequence, for all m such that 1 6 m 6 n − 2, the minimal F (π)-isotropic
forms ψ ⊂ ϕ satisfy 2n−1+2 6 dimψ 6 2n− 2m−1+1. Thus, Corollary 4.7 implies
that (ψF (π))an is not defined over F .

Corollary 4.9. Φ(n) 6 2n − 2n−3 for every n > 3.

Proof. For certain fields F and certain n-fold Pfister forms π over F , Proposition 4.8
implies the existence of minimal F (π)-isotropic forms ψ such that (ψF (π))an is not
defined over F . As per the proof of Proposition 4.8, for all m such that 1 6 m 6

n− 2, these forms ψ satisfy 2n−1 + 2 6 dimψ 6 2n − 2m−1 + 1. The result follows
by letting m = n− 2.

5 Fields of finite Hasse number

We will let XF denote the space of orderings of F , with rP
+(ϕ) (respectively

rP
−(ϕ)) denoting the number of positive (respectively negative) coefficients in a

diagonalisation of ϕ with respect to P ∈ XF . A field F is formally real if −1 is
not a sum of squares in F , a condition which is equivalent to XF 6= ∅ (see [L,
Ch.VIII, Theorem 1.10]). Elman, Lam and Wadsworth ([ELW, Theorem 3.5 and
Remark 3.6]) proved that P ∈ XF extends to an ordering of F (ϕ) if and only if ϕ
is indefinite at P , that is, rP

+(ϕ) > 0 and rP
−(ϕ) > 0. Clearly, XF = XF (ϕ) if

and only if ϕ is totally indefinite, that is, indefinite at every P ∈ XF . The Hasse
number of F is defined to be

ũ(F ) := sup{dimϕ | ϕ is anisotropic and totally indefinite over F}.
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In this section, we study a special case of Question 1.1 for function fields of Pfister
forms, namely that where F is formally real and ũ(F ) is finite. The next result
provides an answer to this question for those forms over F of dimension greater
than ũ(F ), by offering a classification of the minimal F (π)-isotropic forms contained
therein, where π is a Pfister form over F .

Theorem 5.1. Let π be an anisotropic n-fold Pfister form over F , and ϕ an
anisotropic form over F such that dimϕ > ũ(F ). Then ϕF (π) is isotropic if and
only if ϕ contains a Pfister neighbour of π.

Proof. The right-to-left implication is clear. Conversely, suppose that ϕF (π) is
isotropic. Since ũ(F ) < dimϕ and ϕ is anisotropic over F , we can conclude that
F is real (as otherwise ϕ would be trivially totally indefinite and hence isotropic
over F ) and that there exists Q ∈ XF such that ϕ is definite at Q. If P ∈ Y ,
then [H1, Lemma 4.4.3] implies that 0 < rP

+(ϕ), rP
−(ϕ) 6 2n−1 does not hold.

Moreover, since ϕF (π) is isotropic, Theorem 1.4 implies that dimϕ > 2n−1 + 1,
whereby if 0 < rP

+(ϕ), rP
−(ϕ) 6 2n−1 does not hold, we can conclude that either

rP
+(ϕ) > 2n−1 or rP

−(ϕ) > 2n−1. Furthermore, since isotropic forms must nec-
essarily be totally indefinite, if P ∈ XF extends to an ordering of F (π) (that is,
P /∈ Y by [ELW, Theorem 3.5 and Remark 3.6]), then ϕ must be indefinite with
respect to P . Hence, ϕ fulfills all of the conditions in [H1, Lemma 4.4.5], whereby
one may conclude that it contains a Pfister neighbour of π.

We offer the following improvement of [H1, Theorem 4.4.6] as a corollary of Theo-
rem 5.1:

Theorem 5.2. For ũ(F ) 6 2n−1 + 1 and π an anisotropic n-fold Pfister form
over F , the minimal F (π)-isotropic forms are exactly the Pfister neighbours of π of
dimension 2n−1 + 1. In particular, F (π)/F is excellent.

Proof. All forms which become isotropic over F (π) are necessarily of dimension at
least 2n−1 + 1 by Theorem 1.4. Since ũ(F ) 6 2n−1 + 1, Theorem 5.1 implies that
all the minimal F (π)-isotropic forms are of dimension 2n−1 +1. Moreover, all such
forms are Pfister neighbours of π by Corollary 2.13. Hence, F (π)/F is excellent by
Corollary 3.11.

We will proceed to list some further corollaries of Theorem 5.1, beginning by making
explicit the consequence thereof employed in the above proof. We note that the
following result is contained in [H5, Theorem 5.3], where an analogous statement is
presented for iterated function fields of Pfister forms, and thus, it may be viewed
as a short recovery of this result for function fields of a single Pfister form:

Corollary 5.3. (Hoffmann) 2n−1 + 1 6 supM(F (π)/F ) 6 max{2n−1 + 1, ũ(F )},
for π an anisotropic n-fold Pfister form over F .

Proof. Theorem 1.4 gives the lower bound. Letting ψF (π) be isotropic, if dimψ >
ũ(F ), then Theorem 5.1 implies that ψ contains a Pfister neighbour of dimension
2n−1 + 1. Hence if ψ is a minimal F (π)-isotropic form, dimψ 6 max{2n−1 +
1, ũ(F )}.

As a corollary of the above, we can give a short proof of [HVG, Proposition 2.6],
a result of concerning function fields of conics (or equivalently, function fields of
2-fold Pfister forms):
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Corollary 5.4. (Hoffmann, Van Geel) Let F be formally real with ũ(F ) 6 2n for
n ∈ N, and ρ an anisotropic conic over F . Then supM(F (ρ)/F ) 6 max{3, 2n−1}.

Proof. Since dim ρ = 3, supM(F (ρ)/F ) = supM(F (π)/F ) for some π ∈ P2F .
Hence, supM(F (ρ)/F ) 6 max{3, ũ(F )} by Corollary 5.3. The statement follows,
since Corollary 4.6 implies that F (ρ)-minimal forms are of odd dimension.

Proposition 5.5. Let ϕ and a Pfister form π be anisotropic forms over F . If ϕ is
such that dim((ϕF (π))an) > ũ(F )− 1, then (ϕF (π))an is defined over F .

Proof. Without loss of generality, we may assume that ϕF (π) is isotropic, whereby
dimϕ > ũ(F ) + 1. Theorem 5.1 implies that ϕ ≃ ϕ′ ⊥ τ , where τ is a Pfister
neighbour of π with τ ⊥ γ ≃ aπ. Hence ϕF (π) ≃ ϕ′

F (π) ⊥ iW (τF (π)) × 〈1,−1〉 ⊥

−γF (π). If ϕ1 ≃ ϕ′ ⊥ −γ is anisotropic over F (π), we are done. Otherwise, since
(ϕF (π))an ≃ (ϕ1F (π))an, we may iterate the process, whereby for some n we will
obtain that ϕnF (π) ≃ (ϕF (π))an.

Proposition 5.6. Let π be an anisotropic Pfister form over F . Then F (π)/F is
excellent if and only if F (π)/F is ũ(F )-excellent.

Proof. The left-to-right implication is clear, as is the right-to-left one in the case
where ũ(F ) = ∞, so we will assume that F (π)/F is ũ(F )-excellent where ũ(F ) <
∞. If ũ(F ) 6 2n−1 + 1, Corollary 5.2 gives the result. Hence, we may assume
that ũ(F ) > 2n−1 + 1, whereby Corollary 5.3 implies that there are no minimal
F (π)-isotropic forms of dimension > ũ(F ). Since F (π)/F is ũ(F )-excellent, every
minimal F (π)-isotropic form ψ is such that (ψF (π))an is defined over F , whereby
Corollary 3.11 implies that F (π)/F is excellent.

As a result of [H2, Corollary 4.2], one can conclude that F (π)/F is 6-excellent for
all Pfister forms π over F . Hence, as a corollary of Proposition 5.6, we can recover
the following component of [H5, Corollary 4.8]:

Corollary 5.7. (Hoffmann) Let F be a field such that ũ(F ) 6 6. Then F (π)/F is
excellent for every anisotropic Pfister form π over F .

Proof. Since ũ(F ) 6 6, F (π)/F is ũ(F )-excellent for every π ∈ PF , whereby Propo-
sition 5.6 establishes the result.

We conclude by invoking Theorem 5.1 to establish the example previously referred
to in Section 2.

Example 5.8. Let F be a formally real field with ũ(F ) = 4. Let n > 1 and let
γ be an anisotropic form over F of dimension 5 + n that becomes isotropic over
F (π), where π ∈ P2F . Since [L, Ch.X, Theorem 4.9] implies that γ cannot become
hyperbolic over F (π) in the case where n = 1, we have that dim γ− iW (γF (π))+1 >
4 for all n. Theorem 5.1 implies that every subform of γ of dimension dim γ −
iW (γF (π)) + 1 necessarily contains a Pfister neighbour of π. Thus γ contains no
minimal F (π)-isotropic forms of dimension dim γ − iW (γF (π)) + 1.
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