

METABOLIC INVOLUTIONS


ANDREW DOLPHIN


Abstract. In this paper we study the conditions under which an involution
becomes metabolic over a quadratic field extension. We characterise those in-
volutions that become metabolic over a given separable quadratic extension.
We further give an example of an anisotropic orthogonal involution that be-
comes isotropic over a separable quadratic extension.


1. Introduction


The study of the conditions under which a symmetric bilinear form becomes
metabolic over a field extension is an important question in quadratic form the-
ory. Over fields of characteristic different from 2, the concept of metabolicity of a
bilinear form coincides with that of hyperbolicity of a quadratic form. Over fields
of characteristic 2, however, the relationship between bilinear forms and quadratic
forms is more complex, and metabolicity is a weaker condition than hyperbolicity.
Hence these concepts must be studied separately.


It is well known that a symmetric or skew-symmetric bilinear form can be associ-
ated with an involution, and that many of the concepts from quadratic form theory
have a natural extension to the theory of central simple algebras with involution on
a split algebra. The definition of a metabolic involution was introduced in [3, Ap-
pendix A.1]. It is the natural extension of the definition of a metabolic space from
the theory of symmetric bilinear forms to central simple algebras with involution.
The main motivation for the introduction of this concept was to properly study
hyperbolic involutions. The authors of [3] are primarily interested in the study of
symplectic involutions, in order to study quadratic pairs, and for symplectic invo-
lutions, the concepts of hyperbolicity and metabolicity coincide. Apart from this
work, no further study has been made on metabolic involutions.


As we shall see, a complete study of metabolicity will be concerned primarily
with orthogonal involutions over fields of characteristic 2. As can be seen in [8,
Chapter 1], the theory of involutions over fields of characteristic 2 is similar to the
theory over fields of characteristic different from 2, but has some crucial differences.
Studying involutions over fields of characteristic 2 is not only of interest in itself, but
also due to their intimate connection to quadratic pairs. Not only must one study
symplectic involutions to understand quadratic pairs, but more generally, much as
bilinear forms naturally act on quadratic forms, algebras with involution, of both
orthogonal and symplectic type, also act on quadratic pairs (see [8, Proposition
5.18]). This action is important in defining a generalisation of quadratic Pfister
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forms to quadratic pairs, and the study of metabolic involutions should be helpful
in the study of this special type of quadratic pair.


2. Bilinear forms


In the following sections we will investigate quadratic extensions over which
certain involutions defined over the base field become metabolic. Before defining
metabolicity for involutions we recall some results from the theory of bilinear forms.


Let F be a field of arbitrary characteristic. A bilinear space is a pair (V, b) where
V is a F–vector space and b is a F -bilinear form on V . We will sometimes refer to
a bilinear space simply as a form. We say that a bilinear space (V, b) is symmetric
if b(x, y) = b(y, x) for all x, y ∈ V . We call a bilinear space (V, b) alternating
if b(x, x) = 0 for all x ∈ V . If (V, b) is an alternating form then we have that
b(x, y) = −b(y, x) for all x, y ∈ V , that is, (V, b) is skew-symmetric. In particular
every alternating form over a field of characteristic 2 is symmetric.


Let ≃ denote isometry between bilinear spaces. The orthogonal sum of the
symmetric or alternating bilinear spaces (V, b1) and (W, b2) is written (V, b1) ⊥
(W, b2). A bilinear space (V, b) is said to be isotropic if it represents 0 non–trivially,
that is 0 = b(x, x) for some x ∈ V \ {0}, and anisotropic otherwise.


Let λ = ±1. We put Hλ = (F 2, h) where


h : F 2 × F 2 → F (x, y) 7→ xt
(


0 1
λ 0


)


y


and call this the λ-hyperbolic plane over F . For a fixed λ, we call a bilinear space
(V, b) that is isometric to an orthogonal sum of λ-hyperbolic planes hyperbolic. Over
fields of characteristic 2 where −1 = 1, we just speak of the hyperbolic plane.


Proposition 2.1. Let (V, b) be an alternating bilinear space. Then dimV = 2n for
some n and (V, b) ≃ ⊥n


i=1H−1, that is, (V, b) is hyperbolic.


Proof. See [4, Proposition 1.8]. �


For a1, . . . , an ∈ F× we denote by 〈a1, . . . , an〉 the symmetric bilinear space
(Fn, b) where


b : Fn × Fn → F, (x, y) 7→


n
∑


i=1


xiaiyi.


We call such a form a diagonal form. A symmetric bilinear space that is isometric
to a diagonal form is called diagonalisable.


Proposition 2.2. Let (V, b) be a symmetric bilinear space. Then (V, b) is diago-
nalisable except in the case where char(F ) = 2 and (V, b) is hyperbolic.


Proof. See [4, Proposition 1.17]. �


Example 2.3. Assume char(F ) = 2 and a ∈ F×. Then 〈a〉⊥H ≃ 〈a, a, a〉.


Given a bilinear space (V, b) we call a subspace W ⊂ V totally isotropic (with
respect to b) if b|W = 0. We call (V, b) metabolic if it has a totally isotropic subspace
W with W⊥ =W . Note that an alternating form is always metabolic.


Proposition 2.4. For a 2-dimensional symmetric bilinear space (V, b), the follow-
ing are equivalent:


(1) (V, b) is isotropic.
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(2) (V, b) is metabolic.
(3) Either (V, b) ≃ H or (V, b) ≃ 〈a,−a〉 for some a ∈ F×.


Moreover, if char(F ) 6= 2, then H ≃ 〈a,−a〉 for all a ∈ F×.


Proof. See [4, Example 1.22] and [4, Lemma 1.23] for the equivalence of (1)− (3),
and [4, Corollary 1.25] for the last statement. �


We now fix (V, b) to be a symmetric bilinear space over a field F for the rest
of this section. Note that (V, b) can be decomposed as (V, b) ≃ (W1, ban) ⊥
(W2, bmeta) with (W1, ban) anisotropic and (W2, bmeta) metabolic. In this decom-
position (W1, ban) is uniquely determined up to isometry (see [4, Theorem 1.27]),
whereas (W2, bmeta) is not in general, as follows easily from (2.3).


Let K/F be a field extension. Then we write (V, b)K = (V ⊗F K, bK) where
bK is the extension of b to V ⊗F K. The metabolicity behavior of symmetric
bilinear forms over separable quadratic algebraic extensions is particularly simple
in characteristic 2 and was discovered in [6, Satz 10.2.1].


Proposition 2.5. Let char(F ) = 2 and let K/F be a separable field extension. If
(V, b) is anisotropic then (V, b)K is anisotropic.


For odd degree extensions, this is a simple corollary of Springer’s theorem (see
[4, Corollary 18.5]). By basic Galois Theory, this leaves only the case of a quadratic
separable extension to consider. We provide a proof based on [4, Corollary 34.15]
for this case, that is K/F a separable quadratic extension, for convenience.


Proof. We may write K = F (δ) with δ ∈ K\F such that δ2 + δ + a = 0 for some
a ∈ F×. Suppose v, w ∈ V are such that bK(v + δw, v + δw) = 0. Expanding gives


0 = b(v, v) + ab(w,w) + δb(w,w).


Since δ /∈ F , we have b(w,w) = 0 = b(v, v). Therefore if b is anisotropic, then so is
bK . �


For more details on symmetric bilinear forms we refer to [4, Chapter 1].


3. Involutions and Hermitian forms


In this section we recall the basic definitions and results we will use on central
simple algebras with involution and hermitian forms. We refer to [10] for a general
reference on central simple algebras.


Throughout, let F be a field and A a finite-dimensional F–algebra. If A is
simple and E is the centre of A, then A can be viewed as an E–algebra and by
Wedderburn’s theorem, A ≃ EndD(V ) for an F–division algebra D with centre E
and a right D–vector space V . In this case dimE(A) is a square, and the positive
root of this integer is called the degree of A and is denoted deg(A). The degree of
D is called the index of A and is denoted ind(A). We call any A with ind(A) = 1
split. For any field extension K/F we will use the notation AK = A⊗F K. We call
a field extension K/F a splitting field of A if AK is split. If E = F , then we call
the F–algebra A central simple.


An F–involution on A is an F–linear map σ : A→ A such that σ(xy) = σ(y)σ(x)
for all x, y ∈ A and σ2 = idA. An F–algebra with involution is a pair (A, σ) of a
finite-dimensional F–algebra A and an F–involution σ of A such that, with E being
the centre of A, one has F = {x ∈ E | σ(x) = x}, and such that either A is simple
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or A is a product of two simple F–algebras that are mapped to each other by σ.
In this situation, there are two possibilities: either E = F , so that A is a central
simple F–algebra, or E/F is a quadratic étale extension with σ restricting to the
nontrivial F–automorphism of E. To distinguish these two situations, we speak of
involutions of the first or second kind; more precisely, we say that the F–algebra
with involution (A, σ) is of the first kind if E = F and of the second kind otherwise.
Involutions of the second kind are also known as unitary involutions, and we refer
to [8, Section 2.B] for more details on unitary involutions. For any field extension
K/F we will use the notations σK = σ ⊗ idK and (A, σ)K = (AK , σK).


Let (A, σ) be an F–algebra with involution of the first kind. Then it is well
known (see [8, Proposition 2.1]) that in the case where the algebra A is split, that
is A ∼= EndF (V ) for some F -vector space V , each F -involution on A is adjoint to
a non-singular symmetric or alternating bilinear space on V . An F–algebra with
involution of the first kind is said to be symplectic if it becomes adjoint to an
alternating bilinear space over any splitting field, and orthogonal otherwise.


For an F -algebra with involution (A, σ) we define the set of alternating elements
to be


Alt(A, σ) = {a− σ(a) | a ∈ A}.


Proposition 3.1. Assume char(F ) = 2. Then (A, σ) is symplectic or unitary if
and only if 1 ∈ Alt(A, σ).


Proof. See [8, Proposition 2.6] for the case of involutions of the first kind. It only
remains to show that 1 ∈ Alt(A, σ) if (A, σ) is unitary. Assume we are in this case,
and let E be the centre of A. Then E is a quadratic étale extension of F and σ
restricted to E is the the nontrivial F–automorphism of E/F , which we denote ι.


If E is a quadratic separable extension of F then E = F (α) for some α ∈ E such
that α2 + α ∈ F , and ι(α) = α + 1. Hence ι(α) + α = 1 ∈ Alt(A, σ). Otherwise,
E ≃ F × F and ι(1, 0) + (1, 0) = (0, 1) + (1, 0) = (1, 1) ∈ Alt(A, σ). �


An F–quaternion algebra is a central simple F -algebra of degree 2. Every quater-
nion algebra Q has a unique symplectic involution, called the canonical involution
(see [8, Proposition 2.21]). The description of quaternion algebras in terms of a
basis distinguished by cases depending on whether the characteristic of F is 2 or
not is given in [11, Section 8.11]. We recall it for fields of characteristic 2.


Assume char(F ) = 2. Given any α ∈ F and β ∈ F×, there exists an F–
quaternion algebra with an F–basis (1, i, j, k) subject to the relations that


i2 + i = α, j2 = β and k = ij = ji+ j;


we denote this F–quaternion algebra by [α, β)F . If char(F ) = 2, by [11, Section
8.11], every F–quaternion algebra is isomorphic to [α, β)F for some α ∈ F and
β ∈ F×. Note that [α, β)F is split if α = u2 + u for some u ∈ F . In particular,
any quaternion division algebra splits over a quadratic separable extension. When
char(F ) = 2 and (1, i, j, k) is an F–basis of Q with relations as above, the canonical
involution is given by


x0 + x1i+ x2j + x3k 7−→ x0 + x1(i+ 1) + x2j + x3k


for x0, x1, x2, x3 ∈ F.
Throughout the rest of this section, let (D, θ) be an F–division algebra with


involution and let E be the centre of D. Further, fix λ ∈ E such that λθ(λ) = 1.
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A λ–hermitian form over (D, θ) is a pair (V, h) where V is a finite-dimensional
right D-vector space and h is a non-degenerate bi-additive map h : V × V → D
such that


h(x, yd) = h(x, y)d and h(y, x) = λθ(h(x, y))


holds for all x, y ∈ V and d ∈ D. Let ≃ denote isometry between hermitian
forms. We denote the orthogonal sum of two hermitian forms (V, h) and (W,h′) by
(V, h)⊥(W,h′). Note that if (D, θ) is of the first kind one must have that λ = ±1.


Let V be a finite dimensional right D–vector space and let V ∗ = EndD(V,D),
the dual of V . We define an F–bilinear map


hλ : (V ∗ ⊕ V )× (V ∗ ⊕ V ) → D


by


hλ(ϕ+ x, ψ + y) = ϕ(y) + λθ(ψ(x)) for ϕ, ψ ∈ V ∗ and x, y ∈ V.


Then Hλ(V ) = (V ∗ ⊕ V, hλ) is a regular λ–hermitian form over (D, θ). We call a
λ-hermitian form over (D, θ) hyperbolic if it is isometric to Hλ(V ) for some right
D–vector space V .


Let S ⊂ V . We define the orthogonal complement S⊥ of S with respect to a
fixed hermitian form h as


S⊥ = {x ∈ V |h(x, s) = 0 for all s ∈ S}.


A hermitian space (V, h) is called metabolic if there exists a subspace S ⊂ V such
that S = S⊥.


Let K/F be a field extension. Then we write (V, h)K = (V ⊗F K,hK) where
hK = h⊗ idK .


As with bilinear spaces, we can decompose any hermitian space into an orthog-
onal sum of an anisotropic hermitian space and a metabolic hermitian space (see
[7, Proposition 6.1.1]). The first, called the anisotropic part of (V, h) is uniquely
determined up to isometry by [7, Proposition 6.1.4] and denoted (V, h)an.


For a1, . . . , an ∈ D such that ai = λθ(ai), for i = 1 . . . , n and λ = ±1, we denote
by 〈a1, . . . , an〉(D,θ,λ) the λ-hermitian space (V, h) where


h : V × V → D, (x, y) 7→


n
∑


i=1


θ(xi)aiyi.


We call such a form a diagonal form. We call a hermitian form that is isometric to
a diagonal form diagonalisable. We have the following result.


Proposition 3.2. Let (V, h) be a λ-hermitian space over (D, θ). Then (V, h) is
diagonalisable, except when (D, θ) = (F, idF) and either char(F ) 6= 2 and (V, h) is a
skew-symmetric bilinear space, or char(F ) = 2 and (V, h) is a hyperbolic symmetric
bilinear space.


Proof. See [7, Proposition 6.2.4] �


We call a hermitian space (V, h) over (D, θ) alternating if h(x, x) ∈ Alt(D, θ) for
all x ∈ V .


Proposition 3.3. Let (V, h) be an alternating hermitian form over (D, θ). If
(D, θ) = (F, idF ) then (V, h) is a hyperbolic form. Otherwise, (V, h) ≃ 〈a1, . . . , an〉(D,θ,λ)


for some a1, . . . , an ∈ Alt(D, θ).
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Proof. Let (V, h) be an alternating form. If (D, θ) = (F, Id) then (V, h) is a hy-
perbolic bilinear form by (2.1). Otherwise (V, h) is diagonalisable by (3.2). Let
(V, h) ≃ 〈a1, . . . , an〉(D,θ,λ) for some a1, . . . , an ∈ D×.


Let (e1, . . . , en) be the standard basis of V = Dn. Then, if (V, h) is alternating,
ai = h(ei, ei) ∈ Alt(D, θ) for all i ∈ {1, . . . , n}. On the other hand, if ai ∈ Alt(D, θ),
then clearly (V, h) is alternating. �


There is a well known correspondence between non-degenerate λ-hermitian forms
on V and involutions on A.


Proposition 3.4. Let (D, θ) be an division F -algebra with involution, V a right
D–vector space and let A = EndD(V ). For every non-degenerate λ-hermitian form
(V, h), there is a unique F–algebra with involution (A, σ) such that σ(a) = θ(a) for
all a ∈ E and


h(f(x), y) = h(x, σ(f)(y)) for all x, y ∈ V and f ∈ A.


Proof. See, for example, [8, Theorem 4.1]. �


In this situation, we call the involution σ on EndD(V ) the adjoint involution
to the hermitian space (V, h), and we denote it by Ad(V, h). This correspondence
commutes with extension of the base field. That is, for a field extension K/F , we
have that Ad((V, h)K) ∼= (Ad(V, h))K .


Proposition 3.5. Assume char(F ) = 2. Let (V, h) be a λ–hermitian space over
some F–division algebra with involution of the first kind. Then (V, h) is alternating
if and only if λ = 1 and Ad(V, h) is symplectic if (D, θ) is of the first kind.


Proof. See [8, Theorem 4.2] if (D, θ) is of the first kind. For unitary involutions,
the result follows from [8, Proposition 2.17]. �


Let (A, σ) be an F–algebra with involution. We call an algebra with involution
an anisotropic part of (A, σ), denoted (A, σ)an, if (A, σ)an ∼= Ad((V, h)an) for some
hermitian space (V, h) such that Ad(V, h) ∼= (A, σ).


Proposition 3.6. Let (A, σ) be an F–algebra with involution. Then the F–algebra
with involution (A, σ)an is determined up to isomorphism by (A, σ).


Proof. Let (V, h) be an hermitian space over some F–division algebra with invo-
lution (D, θ) such that Ad(V, h) ∼= (A, σ). Let (V1, h1) and (V2, h2) be anisotropic
hermitian spaces over (D, θ) that are adjoint to different anisotropic parts of (A, σ),
say (B, τ) and (C, γ) respectively.


We have that (B, τ) ∼= Ad((W,h′)an) for some hermitian form (W,h′) over some
F–division algebra with involution (D′, θ′) such that (A, σ) ∼= Ad(W,h′). Clearly
(W,h′)⊥(W,−h′)an is metabolic. From this, it follows that some orthogonal sum
of (A, σ) and (B, τ) (in the sense of [3, Definition 1.1]) is metabolic. This implies
that (V, h)⊥λ1(V1, h1) is metabolic for some λ1 ∈ F×. Similarly (V, h)⊥λ2(V2, h2)
is metabolic for some λ2 ∈ F×.


Hence both λ1(V1, h1) and λ2(V2, h2) represent inverses of the class of (V, h)
in the Witt group of hermitian forms on (D, θ) (see, for example, [8, Chapter
I, Section 6]). Since λ1(V1, h1) and λ2(V2, h2) are anisotropic, this implies that
λ1(V1, h1) ≃ λ2(V2, h2), and hence (B, τ) ∼= (C, γ). �
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Note that, while the anisotropic part of a symplectic involution is always sym-
plectic, the anisotropic part of an orthogonal involution may also be symplectic, as
we shall see later in (5.11).


4. Hyperbolic and metabolic involutions


The concepts of isotropy, hyperbolicity and metabolicity all have analogues in
the theory of algebras with involution. In this section we recall these concepts
and expand on the basic results on metabolic involutions given in [3, Appendix
A.1]. In particular we will establish a connection between metabolic involutions
and metabolic hermitian forms. This connection was clearly known to the authors
of [3], but no proof yet appears in the literature.


Recall that an F -involution (A, σ) is said to be isotropic if there exists 0 6= a ∈ A
such that σ(a)a = 0, and anisotropic otherwise. The F -involution (A, σ) is called
hyperbolic if there exists an idempotent e ∈ A such that σ(e) = 1− e, and we refer
to such an e as a hyperbolic idempotent.


We now collect some definitions and basic results from [3, Appendix A.1].


Proposition 4.1. Let A be a central simple E–algebra of even degree and let e, e′ ∈
A be two idempotents. Any two of the following conditions imply the third one:


(1) e′e = 0,
(2) (1 − e)(1− e′) = 0,
(3) dimEeA+ dimEe


′A = dimEA.


Moreover, any two of these conditions hold (and hence all three hold) if and only if
eA = (1− e′)A.


Proof. See [3, Lemma A.1]. �


Corollary 4.2. Let A be a central simple E-algebra and let e, e′ ∈ A be two
idempotents. If dimEeA = dimEe


′A = 1
2dimEA, then e′e = 0 if and only if


(1− e)(1− e′) = 0.


Proof. If dimEeA = dimEe
′A = 1


2dimEA then Condition (3) in (4.1) is satisfied by
e and e′, so by (4.1) e′e = 0 if and only if (1− e)(1− e′) = 0. �


Corollary 4.3. Let A be a central simple E–algebra and let e ∈ A be an idempotent
such that σ(e)e = 0. Then dimEeA = 1


2dimEA if and only if (1− e)(1− σ(e)) = 0.


Proof. By [8, Proposition 1.12] and the remarks preceding it, we have


dimEσ(e)A = dimEσ(Ae) = dimEAe = dimEeA.


Hence, if dimEeA = 1
2dimEA, then (4.1) applies with e′ = σ(e), yielding (1 −


e)(1 − σ(e)) = 0. Conversely, if (1 − e)(1 − σ(e)) = 0, then dimEA = dimEeA +
dimEσ(e)A = 2dimEeA. �


Let (A, σ) be an F -algebra with involution. An idempotent e ∈ A is called
metabolic if σ(e)e = 0 and dimEeA = 1


2dimEA. Note that, by (4.3), we may


substitute the condition that dimEeA = 1
2dimEA for the condition that (1− e)(1−


σ(e)) = 0 in this definition. An F -algebra with involution (A, σ) is called metabolic
(with respect to σ) if A contains an metabolic idempotent with respect to σ.


For every right ideal I, we define its orthogonal I⊥ (with respect to σ) as the
right annihilator of σ(I), that is


I⊥ = {x ∈ A |σ(I)x = 0},
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which is also a right ideal in A. By [8, Section 6.A] an F -algebra with involution
(A, σ) is isotropic if and only if A contains a non-zero ideal I such that I ⊂ I⊥.
The following is a corresponding characterisation of metabolic involutions.


Proposition 4.4. Let (A, σ) be an F -algebra with involution. (A, σ) is metabolic
if and only if there exists a right ideal I ⊂ A such that I⊥ = I.


Proof. Let I ⊂ A be a right ideal with I⊥ = I. By [8, Proposition 6.2], dimEI =
1
2dimEA. By [8, Corollary 1.13] there exists an idempotent e ∈ A such that I = eA.


Hence σ(e)e = 0 and dimEeA = 1
2dimEA.


Assume now that there exists an idempotent e ∈ A such that σ(e)e = 0 and
dimEeA = 1


2dimEA. Let I = eA. Then I ⊂ I⊥, and by [8, Proposition 6.2] we have


dimEI
⊥ = dimEA− dimEeA = dimEeA. Therefore I = I⊥. �


Proposition 4.5. Let (D, θ) be an F–division algebra with E the centre of D, and
λ ∈ E such that λθ(λ) = 1. Let (V, h) be a λ-hermitian space on (D, θ). Then
(V, h) is hyperbolic if and only if Ad(V, h) is hyperbolic.


Proof. See [8, Proposition 6.7]. �


Proposition 4.6. Let char(F ) = 2 and let (A, σ) be an F -algebra. Then (A, σ)
becomes hyperbolic over some field extension if and only if (A, σ) is symplectic or
unitary.


Proof. First we assume that (Aσ) is of the first kind. Since the type of (A, σ) does
not change under field extensions, it will be sufficient to prove the case where F is
algebraically closed.


Assume that F is algebraically closed. Then (A, σ) is the adjoint involution to
some bilinear space (V, b) over F . By (4.5), (A, σ) is hyperbolic if and only if (V, b)
is hyperbolic. By (2.1), (V, b) is hyperbolic if and only if it is alternating. Hence
the result.


It remains to show that (A, σ) becomes hyperbolic over some field extension if
(A, σ) is unitary. If the centre of A is E ≃ F×F , then for the idempotent (1, 0) ∈ E
we have σ(1, 0) = (0, 1) = (1, 1)+ (1, 0), and hence (A, σ) is hyperbolic. Otherwise,
the centre of E is a field, and by [8, Section 2.B], the centre of AE is isomorphic to
E × E, and hence (A, σ)E is hyperbolic. �


Corollary 4.7. Let char(F ) = 2 and (A, σ) be an F -algebra with involution of the
first kind. Let K be a splitting field for A. Then (A, σ)K is hyperbolic if and only
if (A, σ) is symplectic.


We show the characterisation of metabolicity analogous to (4.5).


Theorem 4.8. Let (D, θ) be an F–division algebra with E the centre of D, and
λ ∈ E such that λθ(λ) = 1. Let (V, h) be a λ-hermitian space on (D, θ) and
(A, σ) = Ad(V, h). Then (V, h) is metabolic if and only if Ad(V, h) is metabolic.


Proof. Assume that (V, h) is metabolic, that is, there exists a subspace S ⊂ V such
that S = S⊥. Let I = HomD(V, S). Then since S = S⊥ we have I = I⊥ by [8,
Proposition 6.2]. Hence, by (4.4), we have that Ad(V, h) is metabolic.


Assume now that Ad(V, h) is metabolic and let e ∈ EndD(V ) be a metabolic
idempotent with respect to the involution of the pair Ad(V, h). Let S = Im(e) ⊂ V ,
so that eA = HomD(V, S) and dimFS = 1


2dimEV . Then for all s ∈ S we have
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h(s, s) = h(e(s), e(s)) = h(σ(e)e(s), s) = h(0, s) = 0. Hence S = S⊥, so (V, h) is
metabolic. �


Proposition 4.9. Any hyperbolic involution is metabolic.


Proof. Any idempotent e ∈ A satisfying σ(e) = 1−e also clearly satisfies σ(e)e = 0
and (1− e)(1− σ(e)) = 0. �


Proposition 4.10. Let char(F ) 6= 2. An involution on a central simple F -algebra
is metabolic if and only if it is hyperbolic.


Proof. By (4.9) any hyperbolic involution is metabolic. Now assume that e ∈ A is
a metabolic idempotent for the involution σ on A. Take e′ = e − 1


2eσ(e). Since


σ(e)e = 0 we have that e′2 = e′. Further we have


1− e′ − σ(e′) = 1− e− σ(e) + eσ(e) = (1 − e)(1− σ(e)) = 0.


Hence e′ is a hyperbolic idempotent for (A, σ). �


Proposition 4.11. Let (A, σ) be an F -algebra with symplectic or unitary involu-
tion. Then (A, σ) is metabolic if and only if it is hyperbolic.


Proof. See [3, Lemma A.3]. �


For a right ideal I ⊂ A we denote the left annihilator ideal


I0 = {a ∈ A | ax = 0 for all x ∈ I}.


Lemma 4.12. Let (A, σ) be an F -algebra with involution and e ∈ A be a metabolic
idempotent. Then Aσ(e) = A(1− e) = (eA)0 and A = Ae⊕Aσ(e).


Proof. We have that A(1−e) ⊂ (eA)0, as e = e2, and Aσ(e) ⊂ (eA)0, as σ(e)e = 0.
Furthermore, since e is a metabolic idempotent, we also have dimEeA = 1


2dimEA,


and hence dimEAσ(e) = dimEσ(e)A = dimEeA = 1
2dimEA. Similarly, since A =


A(1− e)⊕Ae we have dimE(1− e)A = 1
2dimEA.


Finally, dimE(eA)
0 = 1


2dimEA as dimE(eA)
0+dimEeA = dimEA, by [8, Propo-


sition 1.14]. Hence A(1 − e) = Aσ(e) = (eA)0. The last statement is now clear, as
A = A(1− e)⊕ Ae. �


5. Involutions and separable quadratic extensions


In this section we will characterise those F -algebras with involution (A, σ) that
become metabolic over K, where K is a given separable quadratic extension of F .
We will then apply this characterisation to hermitian forms.


Theorem 5.1. Let K/F be a separable quadratic extension with non-trivial F -
automorphism ι. Let (A, σ) be a central simple F -algebra with symplectic or unitary
involution. Then (A, σ)K is hyperbolic if and only if it is metabolic, if and only if
there is an F -embedding (K, ι) →֒ (A, σ).


Proof. See [3, Theorem 1.15] for the statement on hyperbolicity, and then apply
(4.11) to obtain the full statement. �


Theorem 5.2. Assume that char(F ) 6= 2. Let K/F be a separable quadratic exten-
sion with non-trivial F -automorphism ι. Let (A, σ) be a central simple F -algebra
with orthogonal involution. Then (A, σ)K is hyperbolic if and only if it is metabolic,
if and only if there exists an embedding (K, ι) →֒ (A, σ) or (A, σ) ∼= Ad(V, b), where
(V, b) ≃ 〈1,−d〉⊗ (W, τ) ⊥ H, and (W, τ) is some symmetric bilinear space over F .
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Proof. See [2, Theorem 3.3] and the subsequent remark for the statement on hy-
perbolicity, then apply (4.10) for the full statment. �


In the following results, we extend [3, Lemma A.9], which was restricted to
symplectic and unitary involutions, so that it holds for involutions of arbitrary
type.


Lemma 5.3. Let K/F be a quadratic extension (either separable or inseparable).
Assume (A, σ) is anisotropic and (A, σ)K is metabolic and let e ∈ AK be a metabolic
idempotent with respect to σK .


Then for all x ∈ AK , there is a unique element c ∈ A such that


σK(e)(x − c⊗ 1) = 0,


and the map ǫ : K → A defined by


σK(e)(1 ⊗ k − ǫ(k)⊗ 1) = 0


for k ∈ K is an injective F -algebra homomorphism.


Proof. We identify the image of A →֒ AK , a 7→ a ⊗ 1 with A in the following.
Assume that (A, σ)K is metabolic and let e ∈ AK be a metabolic idempotent
with respect to σK . Then we have dimKeAK = 1


2dimKAK and hence dimF eAK =


dimFA = 1
2dimFAK , sinceK/F is a quadratic extension. We also have σK(x)x = 0


for all x ∈ eAK , hence,


A ∩ eAK = 0,


since (A, σ) is anisotropic. Hence


AK = A⊕ eAK .


Therefore, for x ∈ AK there is a unique c ∈ A such that x− (c⊗ 1) ∈ eAK , that
is


σK(e)(x − c⊗ 1) = 0.


We may then define a map ǫ : K → A as follows: for k ∈ K, ǫ(k) ∈ A is the unique
element such that


σK(e)(1⊗ k − ǫ(k)⊗ 1) = 0.


Obviously ǫ : K → A is injective and F -linear. For k, k′ ∈ K we have


1⊗ k′k − ǫ(k)ǫ(k′)⊗ 1 = (1⊗ k′ − ǫ(k′)⊗ 1)(1⊗ k) + (1⊗ k − ǫ(k)⊗ 1)(ǫ(k′)⊗ 1),


so


σK(e)(1⊗ k′k − ǫ(k)ǫ(k′)⊗ 1) = 0


and therefore


ǫ(kk′) = ǫ(k)ǫ(k′).


Hence ǫ is an F -algebra homomorphism K →֒ A. �


Proposition 5.4. Let K/F be a separable quadratic extension with non-trivial
F -automorphism ι. Let (A, σ) be a central simple F -algebra with anisotropic invo-
lution. If (A, σ)K is metabolic, then there exists an embedding (K, ι) →֒ (A, σ).
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Proof. Let e be a metabolic idempotent of (A, σ)K , and let ǫ be the embedding
K →֒ A associated with e given in the proof of (5.3). That is, for k ∈ K, ǫ(k) ∈ A
is the unique element such that


σK(e)(1⊗ k − ǫ(k)⊗ 1) = 0.


We need only show that ǫ ◦ ι = σ ◦ ǫ.
Choose now k ∈ K \ F and put


e′ = (1⊗ k − ǫ(k)⊗ 1)(1⊗ (k − ι(k))−1) ∈ AK .


Note that e′ is independent of the choice of k. Moreover it is an idempotent as it
is the image under ǫ ⊗ IdK of the separability idempotent of K (see [8, p285]). It
satisfies


(IdA ⊗ ι)(e′) = 1− e′.


Since dimK(IdA ⊗ ι)(e′)K = dimKe
′K and AK = e′AK ⊕ (1 − e′)AK , we have


dimKe
′AK = 1


2dimKAK , and therefore dimKe
′AK = dimKeAK . By definition of


ǫ(k) we have σK(e)e′ = 0, therefore by (4.1) we have


(1 − e′)(1− σK(e)) = 0.


Applying σK , we obtain


(1 − e)(1− σK(e′)) = 0,


and hence A(1 − e)(1− σK(e′)) = 0. By (4.12) we have A(1 − e) = AσK(e), hence
AσK(e)(1 − σK(e′)) = 0, and hence


σK(e)(1− σK(e′)) = 0.


As σK(1⊗ k) = 1⊗ k and σK(1⊗ (k− ι(k))−1)) = 1⊗ (k− ι(k))−1, expanding this
gives


σK(e)(−1⊗ ι(k) + σK(ǫ(k))⊗ 1)(1⊗ (k − ι(k))−1)) = 0,


or equivalently


σK(e)(1⊗ ι(k)− σK(ǫ(k))⊗ 1) = 0,


that is, ǫ(ι(k)) = σK(ǫ(k)) = σ(ǫ(k)) for all k ∈ K. �


Note that the result of (5.4) is known in the case of an involution of the first
kind over a field of characteristic different from 2 (see [2, Lemma 3.2]), but the
proof presented here uses different methods. One can also find a proof of this
statement restricted to symplectic involutions and involutions of the second kind
in [3, Theorem 1.15].


Theorem 5.5. For (A, σ) an anisotropic F–algebra with involution and K/F a
separable quadratic extension, the following conditions are equivalent:


(1) (A, σ)K is hyperbolic,
(2) (A, σ)K is metabolic,
(3) there exists an embedding (K, ι) →֒ (A, σ).


If char(F ) = 2 and (A, σ) is of the first kind, these conditions hold only if (A, σ) is
symplectic.


Proof. That (1) implies (2) is clear.
That (2) implies (3) is the result of (5.4).
For (3) implies (1), we note first that in the case of char(F ) 6= 2, the implication


is found in (5.2).
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It only remains to show (3) implies (1) in the case char(F ) = 2. Assume this is
the case and let ǫ : (K, ι) →֒ (A, σ) be the embedding. For k ∈ K\F , take


e′ = (1⊗ k − ǫ(k)⊗ 1)(1⊗ (k − ι(k))−1) ∈ AK .


This is an idempotent, as in the proof of (5.4 ). In particular we see that σK(e′) =
(IdA ⊗ ι)(e′) = 1− e′, and hence (A, σ) is hyperbolic.


Moreover, this shows that 1 ∈ Alt(A, σ)K . Hence if char(F ) = 2 and (A, σ) is of
the first kind, it is symplectic by (3.1). �


Corollary 5.6. Assume that char(F ) = 2 and let (A, σ) be an F -algebra with
anisotropic orthogonal involution. Then (A, σ)K is not metabolic for any separable
quadratic field extension K/F .


Theorem 5.7. Let char(F ) = 2 and let K/F be a separable quadratic extension
with non-trivial F -automorphism ι. Let (A, σ) be an F -algebra with involution.


Then (A, σ)K is metabolic if and only if (A, σ) is metabolic or there exists an
embedding (K, ι) →֒ (A, σ)an. If (A, σ) is of the first kind, then in the latter case,
(A, σ)an is symplectic.


Proof. Let (V, h) be an hermitian form over some E–division algebra with involution
(D, θ) such that D is Brauer equivalent to A and (A, σ) = Ad(V, h). Then (V, h)
decomposes into its anisotropic part (V, h)an and some metabolic part.


That (A, σ)K is metabolic if (A, σ) is metabolic is clear.
If there exists an embedding (K, ι) →֒ (A, σ)an = Ad(V, h)an, then we have that


((A, σ)an)K is hyperbolic by (5.1), and hence ((V, h)an)K is hyperbolic by (4.5).
Therefore (V, h)K is metabolic, and (A, σ)K is metabolic by (4.8).


Assume now that (A, σ)K is metabolic. By (4.8) this means that (V, h)K is
metabolic, and by [7, Lemma 6.1.2] we must also have that ((V, h)an)K is also
metabolic. Therefore by (4.8) we must have that (A, σ)an is anisotropic over F and
metabolic over K. If (A, σ)an is orthogonal then this contradicts (5.6). Therefore
(A, σ)an is symplectic and metabolic and (5.1) says that there must be an embedding
(K, ι) →֒ (A, σ)an as required. �


Corollary 5.8. Assume char(F ) = 2 and let K = F (δ) where δ2 + δ = a ∈ F×,
with non-trivial F -automorphism ι. Fix (D, θ) to be a F–division algebra with
involution. Let (V, h) be an anisotropic hermitian space over (D, θ).


Then (V, h)K is metabolic if and only if either (V, h) is metabolic or there exists
an r ∈ EndD(V ) such that r2 = r + a and h(r(x), y) = h(x, (r + 1)(y)) for all
x, y ∈ V . In this case, (V, h) is alternating and (V, h) ≃ (V, ah).


Proof. The main result follows from (5.7) and (4.8), where r is the image of α under
the embedding (K, ι) →֒ (A, σ). That (V, h) is alternating follows as the adjoint
involution to (V, h) is symplectic if and only if (V, h) is alternating by (3.5).


Assume that there exists r ∈ EndD(V ) such that r2 = r + a and h(r(x), y) =
h(x, (r + 1)(y)) for all x, y ∈ V . Since r is invertible, as r−1 = (r + 1)/a, it is an
isomorphism. Furthermore we have that


h(r(x), r(y)) = h((r + 1)r(x), y) = h(ax, y) = ah(x, y).


Therefore (V, h) ≃ (V, ah). �
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Corollary 5.9. Let char(F ) = 2 and let K/F be a separable quadratic extension.
Let (A, σ) be an anisotropic F -algebra with involution of the first kind. Suppose
that AK is split, then (A, σ)K is metabolic if and only if (A, σ) is symplectic.


Proof. If (A, σ) becomes metabolic overK, then it is symplectic by (5.7). If (A, σ) is
symplectic, then it becomes hyperbolic overK by (4.7) and therefore metabolic. �


Note that in the situation of (5.9), by [5, Proposition 4.5.13], AK is split if and
only if it is a quaternion algebra.
Together with the following result, we now have a complete description of those
F -algebras with involution that become metabolic over a separable extension in
characteristic 2.


Theorem 5.10. Let K/F be a field extension of odd degree. Let (A, σ) be an F -
algebra with involution. Then (A, σ)K is metabolic if and only if (A, σ) is metabolic.


Proof. See [1, Proposition 1.2] for the statement in terms of hermitian forms, and
apply (4.8). �


However, unlike in the case of an odd degree extension, a non-metabolic orthog-
onal involution can become metabolic over a quadratic separable extension, as the
following example shows.


Example 5.11. Let char(F ) = 2 and let K/F be a separable quadratic extension.
Let (Q, γ) be a non-split quaternion algebra over F with the canonical involution,
and with basis (1, i, j, k) over F as defined in Section 3, such that QK is split. Let
(V, h) = 〈1, j, j〉(Q,γ) and (A, σ) = Ad(V, h).


Then (A, σ) is a non-metabolic orthogonal involution and (A, σ)K is metabolic.


Proof. Firstly, note that (V, h) cannot be metabolic as it is of odd dimension over V ,
therefore (A, σ) is not metabolic by (5.7). Now note that (V, h) is non-alternating,
as j /∈ Alt(Q, γ). Hence (A, σ) is orthogonal by (3.5).


Finally, note that 〈1〉(Q,γ) is alternating as (Q, γ) is symplectic. Since QK is


split, (〈1〉(Q,γ))K is metabolic by (5.9). Hence (V, h)K is the sum of two metabolic


forms, and hence is metabolic. Therefore (A, σ)K is metabolic. �


6. Isotropy over separable quadratic extensions


Throughout this section we will assume that char(F ) = 2 and that all invo-
lutions are of the first kind. It is natural to ask, when does an F -algebra with
anisotropic involution become isotropic over a quadratic separable field extension?
In particular, does the result of (2.5) directly generalise to the case of an algebra
with involution? This is clear in the split case and involution of the first kind.


Proposition 6.1. Let (A, σ) be an anisotropic F -algebra with involution of the first
kind. If A is split then (A, σ)K is anisotropic for all separable quadratic extensions
K/F .


Proof. If (A, σ) is symplectic, then it is adjoint to an alternating bilinear form, and
by (2.1) it is therefore hyperbolic and in particular isotropic. If (A, σ) is orthogonal
then the result follows from (2.5). �


Does a similar result hold in the non-split case? We shall show, in (6.6), that in
general it does not. Recall the definition of a quaternion algebra from Section 3.
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Proposition 6.2. Let α ∈ F ,β ∈ F×. Take an F -quaternion algebra Q = [α, β)
with the canonical involution γ. The following are equivalent


(1) (Q, γ) is isotropic,
(2) (Q, γ) is hyperbolic,
(3) Q is split.


Proof. That (2) ⇒ (1) is clear.
(3) ⇒ (2): If (Q, γ) is split and symplectic then it is hyperbolic by (4.7).
(1) ⇒ (3): If Q is not split, then it is a division algebra as deg(Q) = 2, and any


involution on Q is anisotropic. Hence (Q, γ) is anisotropic. �


Theorem 6.3. Let Q be an F -quaternion algebra with anisotropic involution of the
first kind σ, and let K = F (δ) where δ2 + δ = a ∈ F×. Then (Q, σ)K is metabolic
if and only if σ is the canonical involution and Q ∼= [a, β)F for some β ∈ F×.


Proof. By Theorem 5.7, if (Q, σ)K is metabolic then there exists an embedding
K →֒ Q. This gives that Q ∼= [a, β), for some β ∈ F×, by [9, Observation (9)].
That σ is symplectic also follows from (5.7), therefore it must be the canonical
involution.


On the other hand, the projective conic ax2+βy2 = z2+zx has a rational point
over K. Therefore, if Q ∼= [a, β) and σ is the canonical involution, then (Q, σ)K is
hyperbolic by (6.2), and hence metabolic by [5, Chapter 1, Exercise 4]. �


Lemma 6.4. Let A =M2(Q) and σ be the involution given by


σ


(


a b
c d


)


=


(


γ(a) γ(c)j−1


jγ(b) jγ(d)j−1


)


for a, b, c, d ∈ Q. Then (A, σ) is an orthogonal F -algebra with involution.


Proof. That σ is an involution on A can be seen by direct computation. Note that
(A, σ) ∼= Ad(〈1, j〉(Q,γ)) and hence (A, σ) is orthogonal by (3.5), as j /∈ Alt(Q, γ).


�


Lemma 6.5. Let Q = [α, β)F , with α, β ∈ F . Let A = M2(Q), σ as in (6.4).
Then (A, σ) is isotropic if and only if (Q, γ) is isotropic.


Proof. Assume (Q, γ) is isotropic and let a ∈ Q be an isotropic element of (Q, γ).


Then


(


a 0
0 0


)


is an isotropic element of (A, σ)K .


Assume that (Q, γ) is anisotropic, then Q is not split by (6.2), that is, Q is
division.


The involution (A, σ) is adjoint to the hermitian form (V, h) = 〈1, j〉(Q,γ). Note


that j /∈ Alt(Q, γ), and therefore 〈j〉(Q,γ) cannot represent any alternating elements.


On the other hand, 〈1〉(Q,γ) only represents alternating elements. Therefore (V, h)


is anisotropic and hence so is (A, σ) by (4.8). �


Example 6.6. Let F and α ∈ F , β ∈ F× be such that Q = [α, β) is division over
F . Let K = F (δ) where δ2 + δ + α = 0. Let A = M2(Q) and σ as in (6.4). Then
(A, σ) is an anisotropic orthogonal F -algebra with involution such that (A, σ)K is
isotropic.
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Proof. (A, σ) is orthogonal by (6.4).
By (6.2), Q is split if and only if (Q, γ) is anisotropic, and this is equivalent to


(A, σ) anisotropic by (6.5). Therefore (A, σ) is anisotropic, and (A, σ)K is isotropic
by (6.3). �


Remark 6.7. Note that we can easily adapt the above method to construct exam-
ples of anisotropic orthogonal involutions that become isotropic over a quadratic
field extension.


Take an anisotropic hermitian form over some F–division algebra with involution
that does not represent any alternating elements, and call it (V, h). We could take,
for example, any 1-dimensional form representing an non-alernating element. We
then take the sum (V, h)⊥(W, b), where (W, b) is an alternating form that becomes
metabolic over some quadratic field extension.


Then (V, h)⊥(W, b) is anisotropic, as can be argued as in (6.5), and clearly non-
alternating. So Ad((V, h)⊥(W, b)) is an anisotropic orthogonal F–algebra with
involution that becomes isotropic over some quadratic field extension.
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