
ON THE RELATION OF SYMPLECTIC ALGEBRAIC COBORDISM TOHERMITIAN K-THEORYI. PANIN AND C. WALTERAbstrat. We reonstrut hermitian K-theory via algebrai sympleti obordism. In themotivi stable homotopy ategory SH(S) there is a unique morphism ϕ : MSp → BO ofommutative ring T -spetra whih sends the Thom lass thMSp to the Thom lass thBO.Using ϕ we onstrut an isomorphism of bigraded ring ohomology theories on the ategory
SmOp/S

ϕ̄ : MSp
∗,∗(X,U)⊗MSp4∗,2∗(pt) BO

4∗,2∗(pt) ∼= BO
∗,∗(X,U).The result is an algebrai version of the theorem of Conner and Floyd reonstruting real

K-theory using sympleti obordism. Rewriting the bigrading as MSpp,q = MSp
[q]
2q−p, wehave an isomorphism

ϕ̄ : MSp
[∗]
∗
(X,U)⊗

MSp
[2∗]
0 (pt)

KO
[2∗]
0 (pt) ∼= KO[∗]

∗ (X,U),where the KO
[n]
i (X,U) are Shlihting's hermitian K-theory groups.

1. A motivi version of a theorem by Conner and FloydOur main result relates sympleti algebrai obordism to hermitian K-theory. It is analgebrai version of the theorem of Conner and Floyd [2, Theorem 10.2℄ reonstruting real
K-theory using sympleti obordism. The algebrai version of the reonstrution of omplex
K-theory using unitary obordism was done in [5℄.In [7℄ the urrent authors onstruted a ommutative ring T -spetrum BO represent-ing hermitian K-theory in the stable homotopy ategory SH(S) for any regular noether-ian separated base sheme S of �nite Krull dimension without residue �elds of harater-isti 2. (These restritions allowed us to use partiularly strong results of Maro Shliht-ing [9℄. We leave it to the expert(s) in negative hermitian K-theory to weaken them.)It has a standard family of Thom lasses for speial linear vetor bundles and hene forsympleti bundles. The sympleti Thom lasses an all be derived from a single lass
thBO ∈ BO4,2(ThUHP∞) = BO4,2(MSp2), the sympleti Thom orientation.In [6℄ we onstruted the ommutative ring T -spetrum MSp of algebrai sympleti obor-dism. It is a ommutative monoid in the model ategory of symmetri T∧2-spetra, just as
MSL and Voevodsky's MGL are ommutative monoids in the model ategory of symmetri
T -spetra. The anonial map Σ∞

T MSp2(−2) → MSp gives the sympleti Thom orienta-tion thMSp ∈ MSp4,2(MSp2). It is the universal sympletially oriented ommutative ring
T -spetrum.Date: September 20, 2010.The work was supported by Universite de Nie - Sophia-Antipolis , the Presidium of RAS Program �Funda-mental Researh in modern mathematis", the joint DFG-RFBR grant 09-01-91333 NNIO-a, and the RFBR-grant 10-01-00551. 1



2 I. PANIN AND C. WALTERTherefore there is a unique morphism ϕ : MSp→ BO of ommutative monoids in SH(S)with ϕ(thMSp) = thBO. Our main result is the following theorem. Our notation is that for amotivi spae Y and a bigraded ohomology theory we write A∗,∗(Y ) =
⊕

p,q∈ZA
p,q(Y ) and

A4∗,2∗(Y ) =
⊕

i∈ZA
4i,2i(Y ). A motivi spae Y is small if HomSH(S)(Σ

∞
T Y,−) ommuteswith arbitrary oproduts.Theorem 1.1. Let S be a regular noetherian separated sheme of �nite Krull dimension with

1
2 ∈ Γ(S,OS). For all small pointed motivi spaes Y over S the map

ϕ̄ : MSp∗,∗(Y )⊗MSp4∗,2∗(pt) BO4∗,2∗(pt)→ BO∗,∗(Y ).indued by ϕ is an isomorphism.This has as a onsequene the result mentioned in the abstrat. For a pair (X,U) onsistingof a smooth S-sheme of �nite type X and an open subsheme U , there is a quotient pointedmotivi spae X+/U+. We de�ne MSp∗,∗(X,U) = MSp∗,∗(X+/U+) and BO∗,∗(X,U) =

BO∗,∗(X+/U+). There are natural isomorphisms BOp,q(X,U) = KO
[q]
2q−p(X,U) with thehermitian K-theory of X with supports in X − U as de�ned by Shlihting [11℄. The weight

q is the degree of the shift in the duality used for the symmetri bilinear forms on the hainomplexes of vetor bundles.For a �eld k of harateristi not 2 the ring BO4∗,2∗(k) is not large. For all i one has
BO8i,4i(k) ∼= GW (k) and BO8i+4,4i+2(k) ∼= Z. All members of BO0,0(k) therefore ome fromomposing endomorphisms in SH(k) of the sphere T -spetrum 1 = Σ∞

T pt+ with the unit
e : 1→ BO of the monoid. (See Morel [3, Theorem 4.36℄ and Cazanave [1℄ for alulations ofthe endomorphisms of the sphere T -spetrum.) Consequently ϕ0,0 : MSp0,0(k) → BO0,0(k)is surjetive. We do not know what happens in other bidegrees.This is the fourth in a series of papers about sympletially oriented motivi ohomologytheories. All depend on the quaternioni projetive bundle theorem proven in the �rst paper[8℄. 2. PreliminariesLet S be a Noetherian separated sheme of �nite Krull dimension. We will be dealing withhermitian K-theory, and we prefer avoiding the subtleties of negative K-theory, so we willassume as we did in [7℄ that S is regular and that 1

2 ∈ Γ(S,OS). Let Sm/S be the ategory ofsmooth S-shemes of �nite type. Let SmOp/S be the ategory whose objets are pairs (X,U)with X ∈ Sm/S and U ⊂ X an open subsheme and whose arrows f : (X,U) → (X ′, U ′) aremorphisms f : X → X ′ of S-shemes with f(U) ⊂ U ′. Note that all X in Sm/S have anample family of line bundles.A motivi spae over S is a simpliial presheaf on Sm/S. We will often write pt for the basesheme regarded as a motivi spae over itself. Inverting the motivi weak equivalenes inthe ategory of pointed motivi spaes gives the pointed motivi unstable homotopy ategory
H•(S).Let T = A1/(A1 − 0) be the Morel-Voevodsky objet. A T -spetrum M is a sequene ofpointed motivi spaes (M0,M1,M2, . . . ) equipped with strutural maps σn : Mn∧T →Mn+1.Inverting the stable motivi weak equivalenes gives the motivi stable homotopy ategory
SH(S). A pointed motivi spae X has a T -suspension spetrum Σ∞

T X. For any T -spetrum
M there are anonial maps of spetra

un : Σ
∞
T Mn(−n)→M. (1)



ON THE RELATION OF SYMPLECTIC ALGEBRAIC COBORDISM TO HERMITIAN K-THEORY 3Both H•(S) and SH(S) are equipped with losed symmetri monoidal strutures, and
Σ∞
T : H•(S) → SH(S) is a strit symmetri monoidal funtor. The symmetri monoidalstruture (∧,1S = Σ∞

T pt+) on the homotopy ategory SH(S) an be onstruted on themodel ategory level using symmetri T -spetra.Any T -spetrum A de�nes a ohomology theory on the ategory of pointed motivi spaes.Namely, for a pointed spae (X,x) one sets Ap,q(X,x) = HomH•(S)(Σ
∞
T (X,x),Σp,q(A)) and

A∗,∗(X,x) =
⊕

p,q∈ZA
p,q(X,x). We write (somewhat inonsistently)

A4∗,2∗(X,x) =
⊕

i∈Z

A4i,2i(X,x).For an unpointed spae X we set Ap,q(X) = Ap,q(X+,+), with A∗,∗(X) and A4∗,2∗(X) de�nedaordingly. We will not always write the pointings expliitly.Eah Y ∈ Sm/S de�nes an unpointed motivi spae whih is onstant in the simpli-ial diretion HomSm/S(−, Y ). So we regard smooth S-shemes as motivi spaes and set
Ap,q(Y ) = Ap,q(Y+,+). Given a monomorphism U →֒ Y of smooth S-shemes, we write
Ap,q(Y,U) = Ap,q(Y+/U+, U+/U+).A ommutative ring T -spetrum is a ommutative monoid (A,µ, e) in (SH(S),∧, 1).The ohomology theory A∗,∗ de�ned by a ommutative ring T -spetrum is a ring ohomologytheory satisfying a ertain bigraded ommutativity ondition desribed by Morel. Namely, let
ε ∈ A0,0(pt) be the element suh that Σ2

T ε ∈ HomSH(S)(T∧T, T∧T ) is the map exhanging thetwo fators T . Then for α ∈ Ap,q(X,x) and β ∈ Ap′,q′(X,x) we have α∪β = (−1)pp
′

εqq
′

β ∪α.In partiular, A4∗,2∗(X,x) is ontained in the enter of A∗,∗(X,x).We work in this text with the algebrai obordism T -spetrum MSp of [6, �6℄ and thehermitian K-theory T -spetrum BO of [7, �8℄. The spetrum MSp is a ommutative ring
T -spetrum beause it is naturally a ommutative monoid in the ategory of symmetri T∧2-spetra. The T -spetrum BO has a ommutative monoid struture as shown in [7, Theorem1.3℄. 3. The first Pontryagin lass p1(E,φ)Let V be a vetor bundle over a smooth S-sheme X with zero setion z : X →֒ V . TheThom spae of V is the quotient motivi spae ThV = V/(V − z(X)). It is pointed by theimage of V − z(X). It omes with a anonial struture map z : X+ → ThV indued by thezero setion. For the trivial bundle An → pt one has ThAn = T∧n.We write H for the trivial rank 2 sympleti bundle (

O
⊕2,

(
0 1
−1 0

)). The orthogonal diretsum H
⊕n is the trivial sympleti bundle of rank 2n.The most basi form a sympleti orientation is a sympleti Thom struture [8, De�nition7.1℄. We will use the following version of the de�nition.De�nition 3.1. Let (A,µ, e) be a symmetri ring T -spetrum. A sympleti Thom strutureon the ohomology theory A∗,∗ is a rule whih assigns to eah rank 2 sympleti bundle (E,φ)over an X in Sm/S an element th(E,φ) ∈ A4,2(ThE) = A4,2(E,E −X) with the followingproperties:(1) For an isomorphism u : (E,φ) ∼= (E1, φ1) one has th(E,φ) = u∗ th(E1, φ1).(2) For a morphism f : Y → X with pullbak map fE : f∗E → E one has f∗E th(E,φ) =
th(f∗E, f∗φ).



4 I. PANIN AND C. WALTER(3) For the rank 2 trivial sympleti bundle H over pt the map
−× th(H) : A∗,∗(X)→ A∗+4,∗+2(X ×A2,X × (A2 − 0))is an isomorphism for all X.The Pontryagin lass of (E,φ) is p1(E,φ) = −z∗ th(E,φ) ∈ A4,2(X) where z : X → E is thezero setion.The sign in the Pontryagin lass is simply onventional. It is hosen so that if A∗,∗ is anoriented ohomology theory with an additive formal group law, then the Chern and Pontryaginlasses satisfy the traditional formula pi(E,φ) = (−1)ic2i(E).From Mayer-Vietoris one sees that for any rank 2 sympleti bundle

∪ th(E,φ) : A∗,∗(X)
∼=
−→ A∗,∗(E,E −X)is an isomorphism.The quaternioni Grassmannian HGr(r, n) = HGr(r,H⊕n) is de�ned as the open sub-sheme of Gr(2r, 2n) = Gr(2r,H⊕n) parametrizing subspaes of dimension 2r of the �bersof H⊕n on whih the sympleti form of H⊕n is nondegenerate. We write UHGr(r,n) for therestrition to HGr(r, n) of the tautologial subbundle of Gr(2r, 2n). The sympleti formof H⊕n restrits to a sympleti form on UHGr(r,n) whih we denote by φHGr(r,n). The pair

(UHGr(r,n), φHGr(r,n)) is the tautologial sympleti subbundle of rank 2r on HGr(r, n).More generally, given a sympleti bundle (E,φ) of rank 2n over X, the quaternioni Grass-mannian bundle HGr(r,E, φ) is the open subsheme of the Grassmannian bundle Gr(2r,E)parametrizing subspaes of dimension 2r of the �bers of E on whih φ is nondegenerate.For r = 1 we have quaternioni projetive spaes and bundles HPn = HGr(1, n + 1) and
HP (E,φ) = HGr(1, E, φ).The quaternioni projetive bundle theorem is proven in [8℄ using the sympleti Thomstruture and not any other version of a sympleti orientation. It is proven �rst for trivialbundles.Theorem 3.2 ([8, Theorem 8.1℄). Let (A,µ, e) be a ommutative ring T -spetrum with asympleti Thom struture on A∗,∗. Let (UHPn , φHPn) be the tautologial rank 2 sympletisubbundle over HPn and t = p1(UHPn , φHPn) ∈ A4,2(HPn) its Pontryagin lass. Then forany X in Sm/S we have an isomorphism of bigraded rings

A∗,∗(HPn ×X) ∼= A∗,∗(X)[t]/(tn+1).A Mayer-Vietoris argument gives the more general theorem [8, Theorem 8.2℄.Theorem 3.3 (Quaternioni projetive bundle theorem). Let (A,µ, e) be a ommutative ring
T -spetrum with a sympleti Thom struture on A∗,∗. Let (E,φ) be a sympleti bundle of rank
2n over X, let (U, φ|U) be the tautologial rank 2 sympleti subbundle over the quaternioniprojetive bundle HP (E,φ), and let t = p1(U, φ|U) be its Pontryagin lass. Then we have anisomorphism of bigraded A∗,∗(X)-modules

(1, t, . . . , tn−1) : A∗,∗(X)⊕A∗,∗(X) ⊕ · · · ⊕A∗,∗(X)→ A∗,∗(HP (E,φ)).De�nition 3.4. Under the hypotheses of Theorem 3.3 there are unique elements pi(E,φ) ∈
A4i,2i(X) for i = 1, 2, . . . , n suh that

tn − p1(E,φ) ∪ t
n−1 + p2(E,φ) ∪ t

n−2 − · · ·+ (−1)npn(E,φ) = 0.



ON THE RELATION OF SYMPLECTIC ALGEBRAIC COBORDISM TO HERMITIAN K-THEORY 5The lasses pi(E,φ) are alled the Pontryagin lasses of (E,φ) with respet to the sympletiThom struture of the ohomology theory (A, ∂). For i > n one sets pi(E,φ) = 0, and onesets p0(E,φ) = 1.Corollary 3.5. The Pontryagin lasses of a trivial sympleti bundle vanish: pi(H⊕n) = 0.The Cartan sum formula holds for Pontryagin lasses [8, Theorem 10.5℄. In partiular:Theorem 3.6. Let (A,µ, e) be a ommutative ring T -spetrum with a sympleti Thom stru-ture on A∗,∗. Let (E,φ) and (F,ψ) be sympleti bundles over X. Then we have
p1
(
(E,φ) ⊕ (F,ψ)

)
= p1(E,φ) + p1(F,ψ). (2)We also have the following result [8, Proposition 8.5℄.Proposition 3.7. Suppose that (E,φ) is a sympleti bundle over X with a totally isotropisubbundle L ⊂ E. Then for all i we have

pi(E,φ) = pi

(
(L⊥/L, φ)⊕

(
L⊕ L∨,

( 0 1L∨

−1L 0

)))
.This is beause there is an A1-deformation between the two sympleti bundles.De�nition 3.8. The Grothendiek-Witt group of sympleti bundles GW−(X) is the abeliangroup of formal di�erenes [E,φ] − [F,ψ] of sympleti vetor bundles over X modulo threerelations:(1) For an isomorphism u : (E,φ) ∼= (E1, φ1) one has [E,φ] = [E1, φ1].(2) For an orthogonal diret sum one has [(E,φ) ⊕ (E1, φ1)] = [E,φ] + [E1, φ1].(3) If (E,φ) is a sympleti bundle over X with a totally isotropi subbundle L ⊂ E, thenwe have [E,φ] = [L⊥/L, φ] +

[
L⊕ L∨,

(
0 1
−1 0

)].The Grothendiek-Witt group of orthogonal bundles GW+(X) is de�ned analogously.Theorem 3.9. Let (A,µ, e) be a ommutative ring T -spetrum with a sympleti Thom stru-ture on A∗,∗. Then the assoiated �rst Pontryagin lass indues a well-de�ned additive map
p1 : GW

−(X)→ A4,2(X)whih is funtorial in X.In [10℄ Shlihting onstruted hermitian K-theory spaes for exat ategories. This giveshermitian K-theory spaes KO(X) and KSp(X) for orthogonal and sympleti bundles onshemes. Their π0 are GW+(X) and GW−(X) respetively. In [11℄ he onstruted Hermitian
K-theory spaes KO[m](X,U) for omplexes of vetor bundles on X ayli on the opensubsheme U equipped with a nondegenerate symmetri bilinear form for the duality shiftedby m. For an even integer 2n an orthogonal bundle (U,ψ) gives a hain omplex U [2n]equipped with a nondegenerate symmetri bilinear form ψ[4n] : U [2n]⊗OX

U [2n]→ OX [4n] inthe symmetri monoidal ategory Db(V BX). For an odd integer 2n + 1 a sympleti bundle
(E,φ) gives a hain omplex E[2n+1] equipped with a nondegenerate symmetri bilinear form
φ[4n+2]: E[2n+1]⊗OX

E[2n+1]→ OX [4n+2]. These funtors indue homotopy equivalenesof spaes KO(X)→ KO[4n](X) and KSp(X)→ KO[4n+2](X) [11, Proposition 6℄.The simpliial presheaves X 7→ KO[n](X) are pointed motivi spaes. Dévissage givesshemewise weak equivalenes KO[n](X) → KO[n+1](X × A1,X × (A1 − 0)) whih areadjoint to maps KO[n] × T → KO[n+1]. These are the strutural maps of a T -spetrum
(KO[0],KO[1],KO[2], . . . ) of whih our BO is a �brant replaement [7, ��7�8℄. One has



6 I. PANIN AND C. WALTER
KO

[n]
i (X,U) = BO4n−i,2n(X+/U+) for all i ≥ 0 and n. Hene BO4n,2n(X+/U+) is theGrothendiek-Witt group for the usual duality shifted by n of symmetri hain omplexes ofvetor bundles on X whih are ayli on U .De�nition 3.10. The right isomorphisms areunsign.trans4n : GW+(X)

∼=
−→ KO

[4n]
0 (X) = BO8n,4n(X)

[U,ψ] 7−→
[
U [2n], ψ[4n]

]and sign.trans4n+2 : GW−(X)
∼=
−→ KO

[4n+2]
0 (X) = BO8n+4,4n+2(X)

[E,φ] 7−→ −
[
E[2n + 1], φ[4n + 2]

]The sign in sign.trans4n+2 is hosen so that it ommutes with the forgetful maps to K0(X),where we have [E] = −
[
E[2n + 1]

]. Most authors of papers on Witt groups do not use thissign beause Witt groups do not have forgetful maps to K0(X).De�nition 3.11. The periodiity elements β8 ∈ BO8,4(pt) and β−1
8 ∈ BO−8,−4(pt) orre-spond to the unit 1 = [OX , 1] ∈ GW

+(X) under the isomorphisms BO8,4(pt) ∼= GW+(pt) ∼=
BO−8,−4(pt) of De�nition 3.10.We have the omposition

p̃A1 : BO4,2(X)
sign.trans2←−−−−−−

∼=
GW−(X)

p1
−→ A4,2(X) (3)The Thom lasses for hermitian K-theory are onstruted by the same method that Ne-nashev used for Witt groups [4, �2℄. Suppose we have an SLn-bundle (E,λ) onsisting of avetor bundle π : E → X of rank n and λ : OX

∼= detE an isomorphism of line bundles. Thepullbak π∗E = E ⊕ E → E has a anonial setion ∆E, the diagonal. There is a Koszulomplex
K(E) =

(
0→ Λnπ∗E∨ → Λn−1π∗E∨ → · · · → Λ2π∗E∨ → E∨ → OE → 0

)in whih eah boundary map the ontration with ∆E. It is a loally free resolution of theoherent sheaf z∗OX on E. There is a anonial isomorphism Θ(E,λ) : K(E) → K(E)∨[n]indued by λ whih is symmetri for the shifted duality.De�nition 3.12. In the standard speial linear Thom struture on BO the Thom lass of thespeial linear bundle (E,λ) of rank n is
thBO(E,λ) = [K(E), Θ(E,λ)] ∈ KO

[n]
0 (E,E −X) = BO2n,n(E,E −X)In the standard sympleti Thom struture on BO the Thom lass of the sympleti bundle

(E,φ) of rank 2r is
thBO(E,φ) = thBO(E,λφ) ∈ BO4r,2r(E,E −X)for λφ = (Pf φ)−1 where Pf φ ∈ Γ(X,detE∨) denotes the Pfa�an of φ ∈ Γ(X,Λ2E∨).The orresponding �rst Pontryagin lass of a rank 2 sympleti bundle is therefore
pBO
1 (E,φ) = −[K(E), Θ(E,λφ)]|X ∈ BO4,2(X).A short alulation shows that this is the lass whih orresponds to [E,φ]− [H] ∈ GW−(X)under the isomorphism sign.trans2. The sympleti splitting priniple [8, Theorem 10.2℄ andTheorem 3.6 now give the next proposition.



ON THE RELATION OF SYMPLECTIC ALGEBRAIC COBORDISM TO HERMITIAN K-THEORY 7Proposition 3.13. Let (E,φ) be a sympleti bundle of rank 2r on X. Then pBO
1 (E,φ) ∈

BO4,2(X) is the lass whih orresponds to [E,φ] − r[H] ∈ GW−(X) under the isomorphismsign.trans2.Let X =
⊔
Xi be the onneted omponents of X. We onsider the elements and funtions

1Xi
∈ BO0,0(X), rkXi

: BO4,2(X)→ Z, h ∈ BO4,2(pt). (4)The �rst is the entral idempotent whih is the image of the unit 1Xi
∈ BO0,0(Xi). The seondis the rank funtion on the Grothendiek-Witt group KO[2]

0 (X) of bounded hain omplexesof vetor bundles. The third is the lass orresponding to [H] ∈ GW−(pt) under the rightisomorphism sign.trans2 : GW−(pt) ∼= BO4,2(pt).Let p̃BO
1 : BO4,2(X)→ BO4,2(X) be the map of (3).Corollary 3.14. For all α ∈ BO4,2(X) we have α = p̃BO

1 (α) + h
∏

i
1
2(rkXi

α)1Xi
.4. Sympletially oriented ommutative ring T -spetraEmbed H

⊕n ⊂ H
⊕∞ as the diret sum of the �rst n summands. The ensuing �ltration

H ⊂ H
⊕2 ⊂ H

⊕3 ⊂ · · · for eah r a diret system of shemes
pt = HGr(r, r) →֒ HGr(r, r + 1) →֒ HGr(r, r + 2) →֒ · · · .The ind-sheme and motivi spae

BSp2r = HGr(r,∞) = colimn≥rHGr(r, n)is pointed by hr : pt = HGr(r, r) →֒ BSp2r. Eah HGr(r, n) has a tautologial sympletisubbundle (UHGr(r,n), φHGr(r,n)), and their olimit is an ind-sheme UBSp2r whih is a vetorbundle over the ind-sheme BSp2r. It has a Thom spae ThUBSp2r just like for ordinaryshemes. We write
MSp2r = ThUBSp2r = ThUHGr(r,∞) = colimn≥r ThUHGr(r,n).We refer the reader to [6, �6℄ for the omplete onstrution of MSp as a ommutative monoidin the ategory of symmetri T∧2-spetra. The unit omes from the pointings hr : pt →֒ BSp2r,whih indue anonial inlusions of Thom spaes

er : T
∧2r →֒MSp2r.Let (A,µ, e) be a ommutative ring T -spetrum. The unit of the monoid de�nes the unitelement 1A ∈ A0,0(pt+). Applying the T -suspension isomorphism twie gives an element

Σ2
T 1A ∈ A

4,2(T∧2) = A4,2(ThA2).De�nition 4.1. A sympleti Thom orientation on a ommutative ring T -spetrum (A,µ, e)is an element th ∈ A4,2(MSp2) = A4,2(ThUHP∞) with th |T∧2 = Σ2
T 1A ∈ A

4,2(T∧2).The element th should be regarded as the sympleti Thom lass of the tautologial quater-nioni line bundle UHP∞ over HP∞.Example 4.2. The standard sympleti Thom orientation on algebrai sympleti obor-dism is the element thMSp = u2 ∈ MSp4,2(MSp2) orresponding to the anonial map
u2 : Σ

∞
T MSp2(−2)→MSp desribed in (1).The main theorem of [6℄ gives seven other strutures ontaining the same information as asympleti Thom orientation. First:



8 I. PANIN AND C. WALTERTheorem 4.3 ([6, Theorem 10.2℄). Let (A,µ, e) be a ommutative monoid in SH(S). Thereis a anonial bijetion between the sets of(a) sympleti Thom strutures on the ring ohomology theory A∗,∗ suh that for the trivialrank 2 sympleti bundle H over pt we have th(H) = Σ2
T1A in A4,2(T∧2), and(α) sympleti Thom orientations on (A,µ, e).Thus a sympleti Thom orientation determines Thom and Pontryagin lasses for all sym-pleti bundles.Lemma 4.4. In the standard speial linear and sympleti Thom strutures on BO we have

th(A1, 1) = ΣT 1BO and th(H) = Σ2
T1BO.Proof. The strutural maps KO[n] ∧ T → KO[n+1] of the spetrum are by de�nition [7, �8℄adjoint to maps KO[n] → Hom•(T,KO[n+1]) whih are �brant replaements of maps ofsimpliial presheaves

(−⊠ (K(O), Θ(O, 1)))∗ : KO
[n](−)→ KO[n+1](− ∧ T )whih at on the homotopy groups as − ∪ [K(O), Θ(O, 1)] = − ∪ th(A1, 1). So we have

ΣT 1BO = th(A1, 1). It then follows that we have th(H) = th(A1, 1)∪2 = Σ2
T 1BO. �The standard sympleti Thom struture on BO thus satis�es the normalization onditionof Theorem 4.3. It orresponds to the standard sympleti Thom orientation on hermitian

K-theory thBO ∈ BO4,2(MSp2). It is given by the formulas of De�nition 3.12 for (E,φ) =
(UHP∞ , φHP∞) tautologial subbundle on HP∞ = BSp2.A sympletially oriented ommutative T -ring spetrum is a pair (A,ϑ) with A a ommu-tative monoid in SH(S) and ϑ a sympleti Thom orientation on A. We ould write theassoiated Thom and Pontryagin lasses as thϑ(E,φ) and pϑi (E,φ).A morphism of sympletially oriented ommutative T -ring spetra ϕ : (A,ϑ) → (B,̟) isa morphism of ommutative monoids with ϕ(ϑ) = ̟. For suh a ϕ one has ϕ(thϑ(E,φ)) =
th̟(E,φ) and ϕ(pϑi (E,φ)) = p̟i (E,φ) for all sympleti bundles.Theorem 4.5 (Universality of MSp). Let (A,µ, e) be a ommutative monoid in SH(S). Theassignments ϕ 7→ ϕ(thMSp) gives a bijetion between the sets of(ε) morphisms ϕ : (MSp, µMSp, eMSp)→ (A,µ, e) of ommutative monoids in SH(S), and(α) sympleti Thom orientations on (A,µ, e).This is [6, Theorems 12.3, 13.2℄. Thus (MSp, thMSp) is the universal sympletially ori-ented ommutative T -ring spetrum.Let ϕ : (A,ϑ) → (B,̟) be a morphism of sympletially oriented ommutative T -ringspetra. For a spae X the isomorphisms X ∧ pt+ ∼= X ∼= pt+ ∧ X make A∗,∗(X) into atwo-sided module over the ring A∗,∗(pt) and into a bigraded-ommutative algebra over theommutative ring A4∗,2∗(pt). The morphism ϕ indues morphisms of graded rings

ϕ̄X : A∗,∗(X) ⊗A4∗,2∗(pt) B
4∗,2∗(pt)→ B∗,∗(X)

ϕ̄X : A4∗,2∗(X) ⊗A4∗,2∗(pt) B
4∗,2∗(pt)→ B4∗,2∗(X)

(5)whih are natural in X, with the pullbaks ating on the left side of the ⊗.Theorem 4.6 (Weak quaternioni ellularity of MSp2r). Let ϕ : (A,ϑ) → (B,̟) be a mor-phism of sympletially oriented ommutative T -ring spetra. Then for all r the natural mor-phism of graded rings
ϕ̄MSp2r

: A4∗,2∗(MSp2r)⊗A4∗,2∗(pt) B
4∗,2∗(pt)→ B4∗,2∗(MSp2r)



ON THE RELATION OF SYMPLECTIC ALGEBRAIC COBORDISM TO HERMITIAN K-THEORY 9is an isomorphism.Proof. Let t1, . . . , tr be independent indeterminates with ti of bidegree (4i, 2i). By [6, Theo-rems 9.1, 9.2, 9.3℄ there is a ommutative diagram of isomorphisms
A∗,∗(pt)[[t1, . . . , tr]]

hom ti 7→pϑi (UBSp2r
,φBSp2r

)

∼=
//

×tr ∼=
��

A∗,∗(BSp2r)

∪ thϑ(UBSp2r
,φBSp2r

)∼=
��

trA
∗,∗(pt)[[t1, . . . , tr]]

hom
∼=

// A∗+4r,∗+2r(MSp2r)The notation on the left refers to homogeneous formal power series. There is a similar diagramfor (B,̟). The maps ϕ : A∗,∗ → B∗,∗ ommute with the maps of the two diagrams beause
ϕ sends the Thom and Pontryagin lasses of (A,ϑ) onto the Thom and Pontryagin lasses of
(B,̟). The morphism ϕ̄4∗,2∗

MSp2r
is an isomorphism beause

trA
4∗,2∗(pt)[[t1, . . . , tr]]

hom ⊗A4∗,2∗(pt) B
4∗,2∗(pt)→ trB

4∗,2∗(pt)[[t1, . . . , tr]]
homis an isomorphism. �5. Where the lass p1 takes the plae of honourWe suppose that (U,u)→ (BO, thBO) is a morphism of sympletially oriented ommuta-tive ring T -spetra. We set̄

U∗,∗(X) = U∗,∗(X)⊗U4∗,2∗(pt) BO4∗,2∗(pt),

Ū4∗,2∗(X) = U4∗,2∗(X) ⊗U4∗,2∗(pt) BO4∗,2∗(pt),and we write ϕ̄X for the morphisms of (5).Theorem 5.1. Let (U,u) → (BO, thBO) be a morphism of sympletially oriented om-mutative ring T -spetra. Suppose there exists an N suh that for all n ≥ N the maps
ϕ̄U2n : Ū

4i,2i(U2n) → BO4i,2i(U2n) are isomorphisms for all i. Then for all small pointedmotivi spaes X and all (p, q) the homomorphism ϕ̄X : Ūp,q(X) → BOp,q(X) is an isomor-phism.Before turning to the theorem itself, we prove a series of lemmas. The �rst three demonstratethe signi�ane of the �rst Pontryagin lass for this problem.Lemma 5.2. The funtorial map ϕ̄X : Ū4,2(X)→ BO4,2(X) has a setion sX whih is fun-torial in X.Proof. Write HGr = colimrHGr(r,∞). Aording to Theorem [7, Theorem 10.1, (11.1)℄there is an isomorphism à la Morel-Voevodsky τ̄ : (Z × HGr, (0, x0)) ∼= KSp in H•(S) suhthat the restritions are
τ̄ |{i}×HGr(n,2n) = [UHGr(n,2n), φHGr(n,2n)] + (i− n)[H]in KSp0(HGr(n, 2n)) = GW−(HGr(n, 2n)). Composing with the isomorphisms in H•(S)

(Z×HGr, (0, x0))
τ̄
−→ KSp

trans1−−−→ KO[2] −1
−−→ KO[2].where the trans1 omes from the translation funtor (F, φ) 7→ (F[1], φ[2]), and the −1 is theinverse operation of the H-spae struture. It gives us an element

τ2 ∈ KO
[2]
0 (Z×HGr, (0, x0)) = BO4,2(Z×HGr, (0, x0))



10 I. PANIN AND C. WALTERorresponding to the omposition. By Corollary 3.14 we have
τ2|{i}×HGr(n,2n) = p1(UHGr(n,2n), φHGr(n,2n)) + ih.For any sympletially oriented ohomology theory A∗,∗ we have [7, (9.3)℄
A∗,∗(Z×HGr) =

(
A∗,∗(pt)[[p1, p2, p3, . . . ]]

hom)×Z
.For suh a theory let

1
2 rk

A = (i1HGr)i∈Z ∈ A
0,0(Z×HGr), pA1 = (p1)i∈Z ∈ A

4,2(Z×HGr)Then τ2 = pBO
1 + 1

2rk
BO

h. Consider the element
s = pU1 ⊗ 1BO + 1

2rk
U ⊗ h ∈ Ū4,2(Z×HGr).Clearly one has ϕ̄(s) = τ2. The element s may be regarded as a morphism of funtors

HomH•(S)(−,Z ×HGr)→ Ū4,2(−) by the Yoneda lemma. The omposite map
HomH•(S)(−,Z ×HGr)

s
−→ Ū4,2(−)

ϕ̄
−→ BO4,2(−)oinides with a funtor transformation given by the adjoint Σ∞

T (Z × HGr)(−2) → BO ofthe motivi weak equivalene τ2 : Z × HGr → KO[2]. Thus for every pointed motivi spae
X the map

sX : BO4,2(X) = HomH•(S)(X,KO[2]) = HomH•(S)(X,Z ×HGr)
s
−→ Ū4,2(X)is a setion of the map ϕ̄X : Ū4,2(X)→ BO4,2(X) whih is natural in X. �Lemma 5.3. For any integer i the funtorial map ϕ̄X : Ū8i+4,4i+2(X)→ BO8i+4,4i+2(X) hasa setion tX whih is funtorial in X.Proof. We have BO8∗+4,4∗+2 = BO4,2[β8, β

−1
8 ] for the periodiity element β8 ∈ BO8,4(pt) ofDe�nition 3.11. So any element of BO8∗+4,4∗+2(X) may be written uniquely in the form a∪βi8with a ∈ BO4,2(X) and i ∈ Z. We de�ne

tX(a ∪ βi8) = sX(a) ∪ (1U ⊗ β
i
8) ∈ Ū8∗+4,4∗+2(X).Then tX is a setion of ϕ̄X whih is natural in X. �Lemma 5.4. If X is a small pointed motivi spae and i is an integer, then for any α ∈

Ū4i,2i(X) there exists an n ≥ 0 with tX∧T∧2n ◦ ϕ̄X∧T∧2n(Σ2n
T α) = Σ2n

T α.Proof. We may assume that α = a⊗ b with a ∈ U4d,2d(X) and b ∈ BO4i−4d,2i−2d(pt). For asmall motivi spae X there is a anonial isomorphism [12, Theorem 5.2℄
U4d,2d(X) = colimmHomH•(S)(X ∧ T

∧m,U2d+m).This isomorphism implies that there exists an integer n ≥ 0 suh that Σ2n
T a = f∗[u2d+2n] foran appropriate map f : X ∧ T∧2n → U2d+2n in H•(S). We may assume that d + n ≥ N andthat n+ i is odd.We have [u2d+2n]⊗ b ∈ Ū4n+4i,2n+2i(U2d+2n). By hypothesis

ϕ̄U2d+2n
: Ū4n+4i,2n+2i(U2d+2n)→ BO4n+4i,2n+2i(U2d+2n)is an isomorphism. So its setion tU2d+2n

is the inverse isomorphism. Hene we have
(tU2d+2n

◦ ϕ̄U2d+2n
)([u2d+2n]⊗ b) = [u2d+2n]⊗ b.
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Σ2n
T α = f∗([u2d+2n]⊗b) = f∗ ◦ tU2d+2n

◦ ϕ̄U2d+2n
([u2d+2n]⊗b) = tX∧T∧2n ◦ ϕ̄X∧T∧2n(Σ2n

T α). �Lemma 5.5. Suppose for some (p, q) that the homomorphism ϕ̄X : Ūp,q(X) → BOp,q(X) isan isomorphism for all small pointed motivi spaes X. Then the same holds for (p − 1, q)and (p− 1, q − 1).Proof. For (p − 1, q) this is beause the suspension ΣS1 indues isomorphisms Up−1,q(X) ∼=
Up,q(X ∧ S1) and similar isomorphisms for Ū and BO, and these are ompatible with ϕ and
ϕ̄. For (p− 1, q − 1) use the suspension ΣGm . �Proof of Theorem 5.1. First suppose (p, q) = (8i + 4, 4i + 2) for some i. Then for any smallmotivi spae X the map ϕX : Ū8i+4,4i+2(X) → BO8i+4,4i+2(X) is surjetive beause it hasthe setion tX of Lemma 5.3. To show it injetive, we suppose α is in its kernel. The suspension
ΣT is ompatible with ϕ and ϕ̄, so we have ϕ̄X∧T∧2n(Σ2n

T α) = Σ2n
T ϕX(α) = 0. By Lemma5.4 we therefore also have Σ2n

T α = 0. But Σ2n
T indues an isomorphism of ohomology groups.So we have α = 0. Thus ϕ̄X : Ūp,q(X) → BOp,q(X) is an isomorphism for all small motivispaes X for (p, q) = (8i+ 4, 4i + 2).The result for other values of (p, q) follows from Lemma 5.5 and a numerial argument. �6. Last detailsProof of Theorem 1.1. By the universality of the sympletially oriented ommutative ring

T -spetrum (MSp, thMSp) (Theorem 4.5) there is a unique morphism ϕ : MSp → BO ofommutative ring T -spetra with ϕ(thMSp) = thBO. It indues the morphisms of (5):
ϕ̄X : MSp∗,∗(X)⊗MSp4∗,2∗(pt) BO4∗,2∗(pt)→ BO∗,∗(X),

ϕ̄X : MSp4∗,2∗(X)⊗MSp4∗,2∗(pt) BO4∗,2∗(pt)→ BO4∗,2∗(X).The seond morphism, with the bidegrees (4i, 2i) only, is an isomorphism for X = MSp2r forall r by Theorem 4.6. So all the hypotheses of Theorem 5.1 hold with (U,u) = (MSp, thMSp).The onlusions of Theorem 5.1 imply Theorem 1.1. �Referenes[1℄ C. Cazanave, Algebrai homotopy lasses of rational funtions. Preprint, 2010.[2℄ P. E. Conner and E. E. Floyd, The relation of obordism to K-theories, Leture Notes in Mathematis,No. 28, Springer-Verlag, Berlin, 1966.[3℄ F. Morel, A1-Algebrai topology over a �eld. Notes, 2006.[4℄ A. Nenashev, Gysin maps in Balmer-Witt theory, J. Pure Appl. Algebra, 211 (2007), pp. 203�221.[5℄ I. Panin, K. Pimenov, and O. Röndigs, On the relation of Voevodsky's algebrai obordism to Quillen's
K-theory, Invent. Math., 175 (2009), pp. 435�451.[6℄ I. Panin and C. Walter, On the algebrai obordism spetra MSL and MSp. Preprint, 2010.[7℄ , On the motivi ommutative ring spetrum BO. Preprint, 2010.[8℄ , Quaternioni Grassmannians and Pontryagin lasses in algebrai geometry. Preprint, 2010.[9℄ M. Shlihting, Hermitian K-theory, derived equivalenes and Karoubi's fundamental theorem. Draft,2006.[10℄ , Hermitian K-theory of exat ategories, J. K-Theory, 5 (2010), pp. 105�165.[11℄ , The Mayer-Vietoris priniple for Grothendiek-Witt groups of shemes, Invent. Math., 179 (2010),pp. 349�433.[12℄ V. Voevodsky, A1-homotopy theory, Do. Math., Extra Vol. I (1998), pp. 579�604 (eletroni).
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