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Abstract. Let F be a henselian valued field with real closed residue field, C a hyper-
elliptic curve over F with good reduction. A set of independend generators for the two
component of the Brauer group of a curve C with good reduction defined by an affine
equation y2 = f(x), deg f(x) is odd, is calculated. As an application it is shown that the
Pythagoras number of the function field F (C) of such curves is 2 if F (C) is a real field
and 3 if F (C) is a non-real field.


1. Introduction and preliminary statements


A theorem of E. Becker states that a field F is hereditarily pythagorean if and only if
the Pythagoras number of the rational function field in one variable F (x) is equal to 2.
(The Pythagoras number of a field being, if it exists, the smallest integer p such that every
sum of squares in the field is a sum of p squares in the field.) It is therefore natural to
study the Pythagoras number of functions fields of curves over hereditarily pythagorean
fields. In previous papers [11], [12], the authors considered this problem. In [11] the first
and the third author considered function fields of conics over any hereditarily pythagorean
field, and in [12] the Pythagoras numbers of function fields of hyperelliptic curves with
good reduction over the real formal power series field R((t)) were determined. In fact (as
mentioned in [12]) the proofs work in completely the same way if R((t)) is replaced by a
henselian discrete valued field with real closed residue field.
The results in [12] were based on the observation that the Pythagoras number of a function
field F (C), of a smooth projective curve C over a hereditarily pythagorean field F , is strictly
bigger than 2 if and only if there is a quaternion division algebra of the form (−1,


∑


f 2
i ),


fi ∈ F (C). Moreover in the case F is a henselian valued field with real closed residue field,
R, such a quaternion division algebra must represent an element in the Brauer group of
the curve C, Br(C). An essential part of the paper [12] consisted in determining the two
component of Br(C), for hyperelliptic curves C defined by an affine equation y2 = f(x)
with good reduction, i.e. with f such that its reduction f has the same degree as f and
no multiple roots in the algebraic closure R(


√
−1) of R.


In [2] similar results on the Pythagoras number were obtained by different methods, the
condition that the hyperelliptic curves were defined by an equation with good reduction
could be replaced by weaker assumptions on the defining equation. Also partial results for
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more general hereditarily pythagorean fields are obtained in that paper. In [2] the Brauer
group is not used, the underlying idea however is similar namely that the existence of sums
of squares that are not equal to sums of two squares yields the existence of unramified 2-fold
Pfister forms over the function field F (C).
Recently K. Becher, D. Grimm and the second author observed ([1]) that using the local-
global results obtained by Harbatter, Hartmann and Krashen, [7] (see also [5]), it is possible
to prove that if F = R((t)) with R a real closed field and F (C) is the function field of any
smooth projective curve over F then Pythagoras number of F (C) is either 2 or 3. The
approach is entirely different, the Brauer group of the curve does enter in any way. This
answer to the question is of course very complete. However the fact that F = R((t)) (i.e.,
F a field complete with respect to a discrete valuation with real closed residue field) seems
to be essential for the method. In this note we return to the original method. We consider
hyperelliptic curves with good reduction over, not necessarily discrete, henselian valued
fields F with real closed residue field and extend the results obtained in [12] to this more
general situation. Apart from extending the results on the Pythagoras number we think
that the determination of the two component of the Brauer group of the curve in this more
general situation is important in its own right.


In section 2 some preliminary results are given and notation is fixed. Let F be a henselian
valued field with real closed residue field, let C be a hyperelliptic curve over F with good
reduction. In section 3 a set of generators for the two component of the Brauer group of C
is given. It is shown that for every non-trivial class D in 2Br(C) either D⊗F (C)F (C)(


√
−1)


is non trivial in 2Br(F (C)(
√
−1)) or for some real point P on C the local algebra DP (the


completion of D with respect to the discrete F -valuation on F (C) corresponding to the
point P ) is non trivial. In section 4 it is shown that the Pythagoras number of F (C) is 2.
This result is completed by noting that the Pythagoras number is also 2 in the case F (C)
is a real field, and that the Pythagoras number is 3 in the case F (C) is a non real field.


2. Notation, terminology and preliminary results.


Let F be a field of characteristic 0. With ΣF 2 we denote the set of all sums of squares of
elements of F . For a ∈ ΣF 2 the minimal n ∈ N such that a is a sum of n squares in F
is called the length of a and denoted by l(a). A field F is called a real field (also called a
formally real field) if −1 6∈ ΣF 2. If F is a nonreal field then −1 ∈ ΣF 2, and s(F ) = l(−1)
is called the level of F .
The number p(F ) = sup{l(a) |a ∈ ΣF 2} is called the Pythagoras number of F . If F is
nonreal, then it is known that s(F ) ≤ p(F ) ≤ s(F )+1. A real field F is called pythagorean
if p(F ) = 1, and hereditarily pythagorean (abbreviated h. p.) if any real algebraic extension
of F is pythagorean and any nonreal extension contains


√
−1. We recall that a field F is


a h. p. field iff the Pythagoras number of the rational function field in one variable over F
is 2, ([3, Chap. III, theorem 4]). For further properties of h. p. fields we refer the reader
to [3]. We refer to [12], the paper to which this note is a sequel, for further information on
hyperelliptic curves and the Brauer group of such curves.
We give one further characterization of h. p. fields,
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Proposition 2.1. The following conditions are equivalent
a) F is hereditarily pythagorean.
b) F admits a henselian valuation such that the residue field k is hereditarily pythagorean
with at most two orderings.


Proof. See Prop. 3.5 in [4]. �


The work presented in [12] and [2], and the observation [1] that the local-global result
of [7] implies that the Pythagoras number of function fields of hyperelliptic curves over
complete discrete valued fields with real closed residue field is either 2 or 3, leads to the
natural question wether or not the Pythagoras number of a function of a curve over a h. p.
field k is less than or equal to 3. In view of the above proposition considering henselian
valued fields in general is a step towards answering this question. In the next section we
extend the results obtained in [12] on the Brauer group of curves with good reduction over
henselian discrete valued fields with real closed residue field to the case of henselian valued
fields (we keep the condition that the residue field is real closed). In section 4 we apply
this to determine the Pythagoras number of the function fields of such curves.


We will use the following fact,


Lemma 2.2. Let F be a pythagorean field. Then any square class of F (
√
−1) is represented


by an element from F ∗.


Proof. We need to prove that for any u + v
√
−1 ∈ F (


√
−1) there exists a, b, c ∈ F such


that c(u + v
√
−1) = (a + b


√
−1)2. If v = 0, then we set c = 1/u, a = 1, b = 0. Thus


without loss of generality we can assume that v = 1. Hence we have the following system
of equations


{


uc = (a2 − b2);
c = 2ab.


Set b = 1. Since F is pythagorean, then u2 + 1 ∈ F ∗2. Then there exists a ∈ F such that
a2 − 1 = 2ua. �


Throughout the rest of the paper F is a henselian valued field with real closed residue field
R, so F is a h. p. field. The valuation ring is denoted by Ov, mv is its maximal ideal. The
residues of elements in u ∈ Ov are denoted by u. As the following lemma states all the
square classes of F , except −1 mod F ∗2 are of positive value,


Lemma 2.3. Let F be a henselian valued field with real closed residue field R. Let mv be
the maximal ideal of the valuation ring Ov. Let {−1} ∪ {αj}j∈J , with {αj}j∈J ⊂ Ov, be a
basis of the F2-vector space F ∗/F ∗2. Then for all j ∈ J , αj ∈ mv.


Proof. Assume that there exists an αj , j ∈ J such that αj 6∈ mv, then αj 6∈ R∗2 and
−αj 6∈ R∗2. Contradicting the fact that R is real closed. �
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3. The two component of the Brauer group of hyperelliptic curves with


good reduction over F .


Let C be a smooth hyperelliptic curve over F given by an affine equation of the form


(3.1) y2 = f(x), f(x) ∈ Ov[x]


with


(3.2) f(x) = (x− a1)...(x− a2n+1)g1(x)...gm(x),


or


(3.3) f(x) = ±g1(x)...gm(x),


where the residues ai 6= aj if i 6= j, and gl, l = 1, . . . , m are different quadratic irreducible
polynomials over the residue field R with splitting field R(


√
−1). Without loss of generality


we also assume that the coefficients ai, i = 1, . . . , 2n + 1 are enumerated in such a way
that ai < aj if i < j.
These conditions on the lineair and the quadratic factors of f imply that the reduced
polynomial f has no multiple roots and that it is of the same degree as f . This means that
C is a curve with good reduction with respect to the valuation v. Actually if an equation
y2 = f(x), f(x) ∈ Ov[x], has good reduction up to a birational transformation of C the
polynomial f(x) can be chosen in the form (3.2) or (3.3). We refer to [12] for details, it is
easy to see that the arguments given there remain valid if the henselian valuation on F is
not necessarily a discrete valuation.
If f is of the form (3.2) and of the form (3.3) with the plus sign, F (C) is a real field and


C contains an F -rational point ((a1, 0) in the first case and (0,
√


f(0)) in the second case,


where
√


f(0) ∈ F since every sum of two squares is a square in F ). If the equation is of
the form (3.3) with the minus sign then F (C) is a nonreal field of level 2 since −f is a sum
of two squares.


Remark 3.1. Let C be a curve over F . Our definition of good reduction refers to the
existence of an affine equation of type y2 = f(x) such that the reduced equation y2 = f(x)
defines an irreducible affine curve of the same degree.
In general the notion of good reduction refers to the existence of “good” models of the
curve over the valuation ring Ov. In the case the valuation ring is discrete it is known that
for hyperelliptic curves both notions coincide, we refer to [8] for more details.


Throughout the remaining part of this section we assume the hyperelliptic curve C over F
is defined by an affine equation of the form (3.2). We determine the two component of the
Brauer group of such curves C by presenting a set of generators for the two-torsion part
of the unramified Brauer group, 2Br(C) (cf. also [12]).
Consider the following list of classes in 2Br(F (C)).


Ai = (−1, (x− a1)(x− ai))F (C), i = 2, . . . , 2n+ 1;(3.4)


Bk
i = (αk, (x− a1)(x− ai))F (C), i = 2, . . . , 2n+ 1, k ∈ J ;(3.5)


Cl
j = (αl, gj(x))F (C), j = 1, . . . , m, l ∈ J.(3.6)
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Where {−1} ∪ {αj}j∈J is a basis of F2-vector space F ∗/F ∗2, with αj, j ∈ J , elements of
the maximal ideal mv of the heselian valuation ring in F (cf. lemma 2.3).
We note that all the algebras in the list are unramified and therefore represent elements
in the Brauer group of the curve C. This can be seen as follows, the Brauer group of the
curve coincides with the intersection of the kernels of the ramification map associated to
the F -discrete valuations w on F (C). For quaternion algebras the map is given by the
ramification formula (for instance cf. [12]),


(3.7) ∂w((a, b)F (C)) = (−1)w(a)w(b)


(


aw(b)


bw(a)


)


∈ κ(w)∗/κ(w)∗2,


with κ(w) the residue field of w. If we apply the formula to the algebras Ai, Bk
i and Cl


j in
the list it is clear that the ramification map is zero for all discrete F -valuations w because
the valuation of (x − a1)(x − ai) and that of gj(x) is even for all w, this follows from the
equation y2 = f(x).
We claim that the classes of the algebras in the list together with the classes of the constant
algebras, by which we mean the elements in the natural image of 2Br(F ), generate 2Br(C).
The proof is based on the following theorem ([10]).


Theorem 3.2. Let K be a field of characteristic not 2. Let H be a hyperelliptic curve over
K with affine part defined by the equation


y2 = g(x),


where g(x) = (x−b)h1(x)...hr(x), deg g(x) is odd and h1(x), ..., hr(x) are irreducible monic
polynomials in K[x]. Let for i = 1, . . . , r, bi be a root of hi(x) in the algebraic closure of K.
Then any element of 2Br(H) can be represented as a tensor product of a constant algebra
(i.e. algebra defined over K) and an algebra of the form


⊗r
i=1corK(bi)(H)/K(H)((ci, (x− b)(x− bi))K(bi)(H)),


with ci ∈ K(bi).
Conversely, any algebra of the above form is an element of 2Br(H).
Let D be such an algebra then the Brauer class of D is trivial if and only if the algebra is
Brauer equivalent to a tensor product


D1 ⊗ · · · ⊗Dr,


with Di ∈ corK(bi)(H)/K(H)((si, (x − b)(x − bi))K(bi)(H)), si =
∏


j(xj − bi)
nj such that


∑


j nj(xj , yj) is a K-divisor of degree 0 on H whose support does not contain any Weier-
strass points of H.
(The Weierstrass points of a hyperelliptic curve y2 = h(x) are the points (θ, 0) with θ a
root of h(x) in case degh(x) is even and the same points plus the point P∞ at infinity in
case deg h(x) is odd.)


Corollary 3.3. Let C be an hyperelliptic curve over F defined by the affine equation (3.2)
with odd degf(x).







6 S.V. TIKHONOV, J. VAN GEEL, V.I. YANCHEVSKII


(a) Then every element of 2Br C is represented as a tensor product of a constant algebra
and an algebra from


corF (
√
−1)(C)/F (C)((c1, (x− a1)(x− θ1))F (


√
−1)(C))⊗ . . .


⊗ corF (
√
−1)(C)/F (C)((cm, (x− a1)(x− θm))F (


√
−1)(C))


⊗ (d2, (x− a1)(x− a2))F (C) ⊗ · · · ⊗ (d2n+1, (x− a1)(x− a2n+1))F (C),


with θi a root of gi and di ∈ F , ci ∈ F (
√
−1).


(b) Every element of 2Br(C) is equivalent to a tensor product of a constant algebra and
algebras taken from the set Ai, i = 2, . . . , 2n + 1, Bk


j , j = 2, . . . , 2n + 1, k ∈ J , Cl
j,


j = 1, . . . , m, l ∈ J .


Proof. The first point (a) follows directly from theorem 3.2.
(b) Since the splitting field of all the polynomials gj(x) is F (


√
−1) it follows form lemma 2.2


that all the elements ci, i = 1, . . . , m, can be taken in F . The corestriction can then be
calculated using the formula


corF (
√
−1)(C)/F (C)((a, (x− a1)(x− θi))F (


√
−1)(C)) = (a, gi(x))F (C)


for a ∈ F . The statement now follows from part (a) of the corollary. �


Lemma 3.4. Let E be a non-trivial constant algebra over F (C), then for every F -rational
point P on C the algebra E⊗F (C)F (C)P is non trivial in the Brauer group of the completion
F (C)P .


Proof. The completion of F (C) at an F -rational point is isomorphic to the field of formal
power series F ((π)) over F . A central simple algebra is a division algebra iff its reduced
norm polynomial has no non-trivial zero. Since the reduced norm polynomial of a cen-
tral division F -algebra remains without non-trivial zeros over F ((π)), the restriction map
Br(F ) −→ Br(F ((π))) is injective. �


Lemma 3.5. For every j = 1, . . . , n, the algebras A2j and A2j+1 are Brauer equivalent.


Proof. For i = 1, . . . , m, let θi = ui + vi
√
−1, with ui, vi ∈ F , be a root of the quadratic


polynomial gi occurring in the factorisation of f , cf. equation 3.2. Let j be any element in
{1, . . . , n}. Choose d1, d2 ∈ F such that d1 6= ui, d2 6= ui, for all i = 1, . . . , m, a2j−1 < d1 <


a2j , and a2j+1 < d2 < a2j+2 if 1 ≤ j < n, a2j+1 < d2 if j = n. It follows from this choice


of d1 and d2 that f(d1) and f(d2) are squares in F . Hence (d1,
√


f(d1)) and (d2,
√


f(d2))


are F -rational points of the affine part of C. The divisor (d1,
√


f(d1)) − (d2,
√


f(d2)) is
an F -rational divisor of degree 0 and its support does not contain any Weierstrass points.
Applying theorem 3.2 we see that the following algebra


D = ⊗m
i=1corF (


√
−1)(C)/F (C)((d1 − θi)(d2 − θi), (x− a1)(x− θi))F (


√
−1)(C)⊗


⊗2n+1
l=2 ((d1 − al)(d2 − al), (x− a1)(x− al))F (C)


is trivial in 2Br(C).
The choice of d1 and d2 also yields that for s 6= 2j, 2j+1, we have that (d1−as)(d2−as) > 0,
implying that (d1 − as)(d2 − as) ≡ 1 mod F ∗2. For s = 2j, 2j + 1 we have (d1 − as)(d2 −
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as) < 0 implying that (d1 − as)(d2 − as) ≡ −1 mod F ∗2. For i = 1, . . . , m, the elements
(d1 − θi)(d2 − θi) have nonzero residues in R(


√
−1), so the elements are in F (


√
−1)∗2 by


the henselian property. It follows that


D ∼ ((d1 − a2j)(d2 − a2j), (x− a1)(x− a2j))F (C)⊗
((d1 − a2j+1)(d2 − a2j+1), (x− a1)(x− a2j+1))F (C)


∼ A2j ⊗A2j+1


So the latter algebra is trivial, which proves that A2j ∼ A2j+1 in 2Br(C). �


Lemma 3.6. Let A = ⊗i∈IAi, with I ⊂ {2, 4, . . . , 2n}, and E a non-trivial constant
algebra.
(1) For the algebras A⊗ E ǫ, ǫ ∈ {0, 1}, there exists an F -rational point P on C such that
A ⊗ E ǫ ⊗ F (C)P is non-trivial, where F (C)P is the completion of F (C) at the discrete
valuation associated to the point P .
(2) For any non-trivial constant algebra E , the algebras A, and A⊗E represent non-trivial
elements in 2Br(F (C)).


Proof. It is clear that (2) follows from (1).
Write A = Ai1 ⊗ · · · ⊗ Air in such a way that ij < ik if j < k. Choose c ∈ F such that


air−1 < c < air . Then f(c) > 0 and therefore f(c) ∈ F ∗2. Hence P = (c,
√


f(c)) is an
F -rational point of C. It is well known that the completion of F (C) at P is isomorphic
to F ((x − c)), so it is a real field. We obtain (since for a unit a ∈ Ov[[x − c]], (x − a) ≡
(c− a) mod F ((x− c))∗2),


AP := A⊗F (C) F (C)P
∼ (−1, (c− a1)(c− air))F (C)P


∼ (−1,−1)F (C)P 6∼ 1.


Let E be a constant algebra over F (C) not in the Brauer class of the algebra (−1,−1)F (C),
we have (using lemma 3.4) that


(AP ⊗ EF (C)P ) ∼ ((−1,−1)F (C)P ⊗ EF (C)P ) 6∼ 1.


Finally for the rational point Q = (d,
√


f(d)), where d is chosen such that d > a2n+1, we
have


AQ ⊗ (−1,−1)F (C)Q ∼ (−1,−1)F (C)Q 6∼ 1.


This completes the proof of the lemma. �


Lemma 3.7. The algebras


D =








⊗


(i,k)∈M1


Bk
i





⊗








⊗


(j,l)∈M2


Cl
j





⊗ E ⊗F (C) F (
√
−1)(C),


where M1 and M2 are finite subsets respectively of {2, . . . , 2n+ 1} × J and {1, . . . , m} × J
and E is any constant F -algebra, represent non-trivial elements in 2Br(F (


√
−1)(C)).
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Proof. At first assume that E ⊗ F (
√
−1)(C) is trivial. We can rewrite D as


⊗


k





αk,
∏


i,(i,k)∈M1


(x− a1)(x− ai) ·
∏


j,(j,k)∈M2


gj(x)








F (C)


⊗F (C) F (
√
−1)(C),


We will use the induction on the number of αk’s appearing in the latter algebra. Assume
that there is only one αk, i.e. D = (αk, h(x))F (C), where


h(x) =
∏


i,(i,k)∈M1


(x− a1)(x− ai) ·
∏


j,(j,k)∈M2


gj(x).


Let v be the unique valuation on F (
√
−1) which extends the valuation of F (uniqueness


follows from the fact that the residue field of any extension isR(
√
−1)). Defining, for g(x) =


∑


alx
l ∈ F (


√
−1)[x], w(g(x)) := minl{v(al)} we obtain a valuation w on F (


√
−1)(x)


extending the valuation v.
We have v(αk) = w(αk) 6∈ 2Γv, where Γv is the valuation group of v. Indeed, if v(αk) ∈ 2Γv,
then there exists β ∈ F (


√
−1) such that v(αk) = v(β2). Hence v(αk/β


2) = 0. Since


R(
√
−1) is algebraically closed, one has that αk/β


2 ∈ F (
√
−1)∗


2
. Contradiction.


The residue field of w is R(
√
−1)(x). Since the polynomial f(x) has no multiple roots,


f(x) is not a square in the residue field R(
√
−1)(x). Hence, the field F (


√
−1)(C) =


F (
√
−1)(x)(


√


f(x)) is an unramified extension of F (
√
−1)(x). So the valuation w on


F (
√
−1)(x) can be extended to a valuation w′ on F (


√
−1)(C) in such a way that w′(αk) 6∈


2Γw′. The residue field R(
√
−1)(x)(


√


f(x)) of w′ is a quadratic extension of R(
√
−1)(x).


For the sake of contradiction we assume that the algebra D = (αk, h(x))F (C) is trivial in


2Br(F (
√
−1)(C)). Then there exist x1,x2 ∈ F (


√
−1)(C) such that h(x) = x2


1 − αkx
2
2.


Since h(x) is monic and since w′(x2
1) ∈ 2Γw′ and w′(αkx


2
2) 6∈ 2Γw′, it follows that 0 =


w′(h(x)) = w′(x2
1 − αkx


2
2) = min(w′(x2


1), w
′(αkx


2
2)) = w′(x2


1). So h(x) = x2
1 in the residue


field R(
√
−1)(x)(


√


f(x)). Equivalently we find that h(x) ∈ R(
√
−1)(x)∗2 or f(x)h(x) ∈


R(
√
−1)(x)∗2. Since h(x), f(x)h(x) are elements if R(x), either h(x) ≡ −1 mod R(x)∗2


or f(x)h(x) ≡ −1 mod R(x)∗2. This is impossible since f(x) has no multiple roots which
implies that h(x) and f(x)h(x) contain irreducible factors to an odd power. We obtained
a contradiction implying that the algebra D is non-trivial in 2Br(F (


√
−1)(C)).


Assume that we have proved the non-triviality of D in the case where there are n elements
αk occurring in the representation of the algebra as a tensor product of quaternions. Let
D be such that there are n + 1 elements αk occurring in its representation.
Let also αs appears in D. Since αs 6∈ −F ∗2, then the field F (


√
αs) is real and hence it


is a h.p. field. Note that the elements αk, k 6= s, are linear independent in F2-vector
space F (


√
αs)


∗/F (
√
αs)


∗2. So we can apply the induction hypothesis for the algebra D ⊗
F (C)(


√
αs). It follows that the latter algebra is non-trivial. Hence D is non-trivial. This


finishes the case where E ⊗ F (
√
−1) is trivial.
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Now assume that E ⊗ F (
√
−1) represents a non-trivial element in Br(F (


√
−1)). Let P be


the F -rational point (x0,
√


f(x0)) on C, with the first coordinate x0 ∈ F ∗ such that x0 > ai,


i = 1, . . . , 2n + 1, in R. Then (D ⊗ E) ⊗F (C) F (
√
−1)(C)P ∼ E ⊗F (C) F (


√
−1)(C)P 6∼ 1,


(lemma 3.4). �


Theorem 3.8. The algebras A2j, j = 1, . . . , n, Bk
i , i = 2, . . . , 2n + 1, k ∈ J , and Cl


j,
j = 1, . . . , m, l ∈ J , together with the constant algebras form a set of generators for the
two component of the Brauer group of the curve C.


Proof. This follows from corollary 3.3, lemma 3.5 and lemma 3.6. �


4. The Pythagoras number of F (C).


The next lemma links the Brauer group of a curve over F to the Pythagoras number of
the function field F (C).


Lemma 4.1. Let C be any irreducible smooth projective curve over h.p. field F . Let
fi ∈ F (C), i = 1, . . . , r. Then the quaternion algebra A = (−1,


∑r
i=1 f


2
i )F (C) over F (C)


is trivial over all completions at F -discrete valuations on F (C), and therefore it is an
unramified algebra.


Proof. Let w be an F -discrete valuation correspondig to a non-real point. Then the residue
field of w contains


√
−1 since F is hereditarily pythagorian. It follows that F (C)w contains√


−1 and therefore the algebra of the form (−1,
∑r


i=1 f
2
i )F (C) is trivial over F (C)w.


Let w be a valuation corresponding to a real-point of C, then the residue field of w is a real
extension of F and therefore hereditarily pythagorian. It follows that F (C)w is hereditarily
pythagorian and so


∑r
i=1 f


2
i is equal a square, so the quaternion algebra (−1,


∑r
i=1 f


2
i )F (C)w


must be trivial. �


Theorem 4.2. Let F be a field with henselian valuation such that the residue field is real
closed. Let also C be a smooth hyperelliptic curve over F with good reduction such that the
function field F (C) of C is a real field. Then the Pythagoras number of F (C)) is equal to
2.


Proof. We first deal with the case that C is given by an equation of the form (3.2).
To prove that the Pythagoras number p(F (C)) = 2, it is enough to prove that for any
sum of squares


∑


f 2
i ∈ F (C), the quaternion algebra A = (−1,


∑


f 2
i )F (C) is trivial in


2Br(F (C)). From lemma 4.1 it follows that A ∈ 2Br(C).
We can make use of lemma 3.6 and lemma 3.7.
Since A ∈ 2Br(C) we have


A ∼ ⊗i∈IAi








⊗


(i,k)∈M1


Bk
i





⊗








⊗


(j,l)∈M2


Cl
j





⊗ E ǫ,


with I ⊂ {2, 4, . . . , 2n}, M1 and M2 finite subsets of respectively, {2, . . . , 2n+ 1} × J and
{1, . . . , m} × J , E any constant F -algebra, and ǫ ∈ {0, 1}. If M1 6= ∅ or M2 6= ∅, then
A⊗F (


√
−1)(C) 6∼ 1 by lemma 3.7. ButA⊗F (


√
−1)(C) = (−1,


∑


f 2
i )F (C)⊗F (


√
−1)(C) ∼







10 S.V. TIKHONOV, J. VAN GEEL, V.I. YANCHEVSKII


1 so it follows that A ∼ ⊗i∈IAi ⊗E ǫ. Either A ∼ 1 or by lemma 3.6 there is an F -rational
point P such that A ⊗ F (C)P 6∼ 1. The latter contradicts lemma 4.1 so we obtain that
A = (−1,


∑


f 2
i )F (C) ∼ 1 and therefore p(F (C)) = 2.


In the case C is given by the affine equation (3.3) with positive sign we have f = g2 + h2,


g, h ∈ F [x]. In this case F (C) is the totally positive quadratic extension F (x)(
√


g2 + h2) of
F (x). The result now follows from the more general fact that if K is a field with p(K) = 2
and if K(


√
α) is a totally positive quadratic extension of K then p(K(


√
α)) = 2 (see [6,


proposition 3.2]) (note that the reduced height as defined in [6, page 22] is exactly the
Pythagoras number). This finishes the proof of our theorem. �


Theorem 4.3. Let F be a field with non-trivial henselian valuation such that the residue
field R is real closed. Let C be a smooth hyperelliptic curve over F with good reduction and
such that F (C) is non-real. Then p(F (C)) = 3.


Proof. The hypothesis implies that C is defined by an affine equation of the form y2 =
−f(x), with f a sum of two squares in F [x]. It follows that −1 is a sum of two squares in
F (C). Thus s(F (C)) = 2 and every element of F (C) is a sum of squares. As mentioned in
the introduction it is well known that since the level is finite we have s(F (C)) ≤ p(F (C)) ≤
s(F (C))+1, this because for every element h ∈ F (C) one has 4h = (h+1)2− (h−1)2 (see
also cf. [9, chap. 7, lemma 1.3]). So to prove the theorem it is enough to find an element
in F (C) which is not a sum of two squares.
Consider the algebra A = (−1, α)F (C), where α 6= −1 is an element of the basis of F2-vector


space F ∗/F ∗2 (such α exists since F is not real closed). We claim that A is non-trivial in


2Br(F (C)).
Let us, as before, define w(g(x)) := minl{v(al)} for g(x) =


∑


alx
l ∈ F [x]. We obtain a


valuation w on F (x) extending the valuation v. We further extend w to a valuation w′ on
F (C).
We have v(α) = w′(α) 6∈ 2Γw′, where Γw′ is the valuation group of w′, cf. page 8. The


residue field of w′ is equal to R(x)(
√


−f (x)).


Now suppose for the sake of contradiction that A is trivial. Then −1 = x2
1−αx2


2, for some
x1, x2 ∈ F (C). We have 0 = w′(−1) = w′(x2


1−αx2
2) = min(w′(x2


1), w
′(αx2


2)) = w′(x2
1) since


w′(x2
1) ∈ 2Γw′ and w′(αx2


2) 6∈ 2Γw′. Hence −1 = x2
1 in the residue field R(x)(


√


−f(x)), or


equivalently −1 ∈ R(x)∗2 or f(x) ∈ R(x)∗2. The first is clearly not true and the second
is impossible since f(x) has no multiple roots. So we obtained the desired contradiction.
Thus the algebra A is non-trivial. Hence α is not a sum of two squares. �


Remark 4.4. If F is a real closed field (i.e., a henselian valued field as in the theorem but
with trivial valuation), then it is known by a theorem of Witt (cf. [PD, Theorem 3.4.11])
that for any K, function field in one variable over F , the Pythagoras number p(K) = 2.
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