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ABSTRACT. We compute the essential dimension of the functors Formsn,d and
Hypersurfn,d of equivalence classes of homogeneous polynomials in n variables

and hypersurfaces in Pn−1, respectively, over any base field k of characteristic 0.
Here two polynomials (or hypersurfaces) over K are considered equivalent if they
are related by a linear change of coordinates with coefficients in K. Our proof is
based on a new Genericity Theorem for algebraic stacks, which is of independent
interest. As another application of the Genericity Theorem, we prove a new result
on the essential dimension of the stack of (not necessarily smooth) local complete
intersection curves.
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1. INTRODUCTION

Let k be a base field of characteristic 0, K/k be a field extension, and F(x) be
a homogeneous polynomial (which we call a form) of degree d in the n variables
x = (x1, . . . , xn), with coefficients in K. We say that F descends to an intermediate
field k ⊂ K0 ⊂ K if there exists a linear change of coordinates g ∈ GLn(K) such that
every coefficient of F(g · x) lies in K0.

It is natural to look for a “smallest” subfield K0 to which a given form F(x)
descends. A minimal such field K0 with respect to inclusion may not exist, so we
ask instead for the minimal transcendence degree trdegk K0. This number, called
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the essential dimension edk F of F, may be thought of as measuring the “complexity”
of F. A major goal of this paper is to compute the maximum of edk F, taken over all
fields K/k and all forms F(x1, . . . , xn) of degree d. This integer, usually called the
essential dimension edk Formsn,d of the functor of forms Formsn,d depends only
on n and d; it may be viewed as a measure of complexity of all forms of degree d
in n variables.

We will also be interested in a variant of this problem, where the form F(x) ∈
K[x1, . . . , xn] of degree d is replaced by the hypersurface

(1.1) H
def
= {(a1 : · · · : an) | F(a1, . . . , an) = 0}

in Pn−1. Here we say that H descends to K0 if there exists a linear change of coor-
dinates g ∈ GLn(K) and a scalar c ∈ K∗ such that every coefficient of cF(g · x) lies
in K0. Once again, the essential dimension edk(H) of H is defined as the minimal
value of trdegk K0, with the minimum taken over all fields K0/k such that H de-
scends to K0. We will be interested in the essential dimension edk(Hypersurfn,d),

defined as the maximal value of edk(H), where the maximum is taken over all K/k
and all forms F(x) ∈ K[x1, . . . , xn] of degree d. Here H is the zero locus of F, as
in (1.1).

The study of forms played a central role in 19th century algebra. The problems
of computing edk Formsn,d and edk Hypersurfn,d are quite natural in this context.

However, to the best of our knowledge, these questions did not appear in the liter-
ature prior to the (relatively recent) work of G. Berhuy and G. Favi, who showed
that edk Hypersurf3,3 = 3; see [BF04].

In this paper we compute edk Formsn,d and edk Hypersurfn,d for all n, d ≥ 1.

Our main result is as follows.

Theorem 1.1. Assume that n ≥ 2 and d ≥ 3 are integers and (n, d) 6= (2, 3), (2, 4) or
(3, 3). Then

(a) edk Formsn,d = (n+d−1
d )− n2 + cd(GLn/µd) + 1 .

(b) edk Hypersurfn,d = (n+d−1
d )− n2 + cd(GLn/µd) .

The values of edk Formsn,d and edk Hypersurfn,d for n, d ≥ 1 not covered by The-

orem 1.1 are computed in Section 8; the results are summarized in the following
table.

n d edk Formsn,d edk Hypersurfn,d
arbitrary 1 0 0

1 ≥ 2 1 0
arbitrary 2 n n− 1

2 3 2 1
2 4 3 2
3 3 4 3

The quantity cd(GLn/µd) which appears in the statement of Theorem 1.1 is
the canonical dimension of the algebraic group GLn/µd. For the definition and
basic properties of canonical dimension we refer the reader to Section 2.2; see
also [BR05, KM06] for a more extensive treatment of this notion. The exact value

of cd(GLn/µd) is known in the case where e
def
= gcd(n, d) is a prime power pj. In
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this case

cd(GLn/µd) =

{
pi − 1, if j > 0,

0, otherwise,

where pi is the highest power of p dividing n; see [BR05, Section 11]. More gen-

erally, suppose e = p
j1
1 . . . p

jr
r is the prime decomposition of e (with j1, . . . , jr ≥ 1)

and piss is the highest power of ps dividing n. A conjecture of J.-L. Colliot-Thélène,
N. A. Karpenko, and A. S. Merkurjev [CTKM07, (2)] implies that

(1.2) cd(GLn/µd) =
r

∑
s=1

(piss − 1).

This has only been proved if e is a prime power (as above) or n = 6 [CTKM07, The-
orem 1.3]. In these two cases Theorem 1.1 gives the exact value of edk Formsn,d and
edk Hypersurfn,d. For other n and d Theorem 1.1 reduces the problems of comput-

ing edk Formsn,d and edk Hypersurfn,d to the problem of computing the canonical

dimension cd(GLn/µd). For partial results on the latter problem, see [BR05, Sec-
tion 11].

The notions of essential dimension for forms and hypersurfaces are particular
cases of Merkurjev’s general definition of essential dimension of a functor [BF03].
A special case of this, uponwhich our approach is based, is the essential dimension
of an algebraic stack. For background material on this notion we refer the reader
to [BRV09]. In particular, edk Formsn,d = edk[An,d/GLn] and edk Hypersurfn,d =

edk[P(An,d)/GLn], where An,d is the (
n+d−1

d )-dimensional affine space of forms of

degree d in n variables and P(An,d) is the associated (n+d−1
d )− 1 dimensional pro-

jective space of degree d hypersurfaces in Pn−1. (Here, as in the rest of the paper,
we will follow the classical convention of defining the projectivization P(V) of a
vector space V over k as the projective space of lines in V, that is, as Proj Symk V

∨.
In the present context, this seems more natural than Grothendieck’s convention
of defining P(V) as Proj Symk V.) The group GLn naturally acts on these spaces,
and [An,d/GLn] and [P(An,d)/GLn] denote the quotient stacks for these actions;
see [BRV09, Example 2.6].

The essential dimension of the “generic hypersurface” of degree d is Pn−1, i.e.,
of the hypersurface Hgen cut out by the “generic form”

(1.3) Fgen(x1, . . . , xn) = ∑
i1+···+in=d

ai1,...,inx
i1
1 . . . xinn = 0 ,

where ai1,...,in are independent variables and K is the field generated by these vari-
ables over k, was computed in [BR05, Sections 14-15]. The question of computing
the essential dimension of the generic form Fgen itself was left open in [BR05]. For
n and d as in Theorem 1.1 we will show that edk Fgen = edk Hgen + 1; see Proposi-
tion 3.4.

The key new ingredient in the proof of Theorem 1.1 is the following “Genericity
Theorem”. Let X be a connected algebraic stack with quasi-affine diagonal that
is smooth of finite type over k, in which the automorphism groups are generically
finite (for sake of brevity, we say thatX is amenable). Thenwe can define the generic
essential dimension of X , denoted by gedk X , as the supremum of the essential
dimensions of the dominant points SpecK → X . If X is Deligne–Mumford, that
is, if all stabilizers are finite, then edk X = gedk X ; see [BRV09, Theorem 6.1].
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This result, which we called the Genericity Theorem for Deligne–Mumford stacks
in [BRV09], is not sufficient for the applications in the present paper. Here we
prove the following stronger theorem conjectured in [BRV09, Question 6.6].

Theorem 1.2. Let X be an amenable stack over k. Let L be a field extension of k, and ξ
be an object of X (Spec L), such that the automorphism group scheme AutL ξ is reductive.
Then

edk ξ ≤ gedk X .

In particular, if the automorphism group of any object of X defined over a field is reductive,
then edk X = gedk X .

Note that Theorem 1.2 fails if the stabilizers are not required to be reductive
(see [BRV09, Example 6.5(b)]), even though a weaker statement may be true in this
setting (see Conjecture 5.3). We also remark that the locus of points with reductive
stabilizer is constructible but not necessarily open in X . Thus for the purpose of
proving Theorem 1.2 it does not suffice to consider the case where all stabilizers
are reduced.

Theorem 1.2 implies, in particular, that if the automorphism group of a form
f (x1, . . . , xn) is reductive then edk f ≤ edk Fgen. To complete the proof of Theo-
rem 1.1(a) we supplement this inequality with additional computations, carried
on in Section 6, which show that forms f (x1, . . . , xn) whose automorphism group
is not reductive have low essential dimension; for a precise statement, see Theo-
rem 6.3. The proof of Theorem 1.1(b) is more delicate because the quotient stack
[P(An,d)/GLn] is not amenable, so the Genericity Theorem cannot be applied to it
directly. We get around this difficulty in Section 7 by relating edk[P(An,d)/GLn] to
the essential dimension of the amenable stack [P(An,d)/PGLn].

In the last section we use our Genericity Theorem 1.2 to prove a new result
on the essential dimension of the stack of (not necessarily smooth) local complete
intersection curves, strengthening [BRV09, Theorem 7.3].

Acknowledgments. We are grateful to J. Alper and P. Brosnan for helpful discus-
sions.

2. PRELIMINARIES

2.1. Special groups. A linear algebraic group scheme G over k is said to be special

if for every extension K/k we have H1(K,G) = {1}. Special groups were stud-
ied by Serre [CAS58, Exposé 1] and classified by Grothendieck [CAS58, Exposé 5]
(over an algebraically closed field of characteristic 0). Note that G is special if and
only if edk G = 0; see [TV10, Proposition 4.3].

The group GLn is special by Hilbert’s Theorem 90, and so is the special linear
group SLn. Direct products of special groups are easily seen to be special. More-
over, in characteristic 0 the group G is special if and only if the Levi subgroup of
G (which is isomorphic to G/Ru G) is special; see [San81, Theorem 1.13]. Here
Ru G denotes the unipotent radical of G. We record the following fact for future
reference.

Let A be a non-zero nilpotent n×n-matrix with entries in k and GA be the image
of the map Ga → GLn given by t→ exp(tA). Note that this map is algebraic, since
only finitely many terms in the power series expansion of exp(tA) are non-zero.

Lemma 2.1.
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(a) The centralizer C of A (or equivalently, of GA) in GLn is special.
(b) The normalizer N of GA in GLn is special.

Proof. (a) By [Jan04, Propositions 3.10 and 3.8.1] C is a semidirect product U ⋊ H,
where U ⊳ C is unipotent and H is the direct product of general linear groups GLr

for various r ≥ 0; cf., also [McN06, Section 2]. Thus H = Levi subgroup of C is
special, and part (a) follows.

(b) The normalizer N acts on GA ≃ Ga by conjugation. This gives rise to a homo-
morphism π : N → Gm = Autk Ga whose kernel is the centralizer C = CGLn(A). If
π is trivial then N = C is special by part (a). If π is non-trivial then it is surjective,
and we have an exact sequence

1 −→ C −→ N −→ Gm −→ 1 .

The long non-abelian cohomology sequence for H0 and H1 associated with this

short exact sequence shows that H1(K,N) = {1} for every field K/k, as desired.
♠

2.2. Canonical dimension. Let K be a field and X be either a geometrically inte-
gral smooth complete K-scheme of finite type or a G-torsor for some connected
linear algebraic K-group G. The canonical dimension cdX of X is the minimal
value of dimY, where Y ranges over all integral closed K-subschemes of X admit-
ting a rational map X 99K Y defined over K. Equivalent definitions via generic
splitting fields and determination functions can be found in [BR05, KM06].

If we fix a base field k and an algebraic k-group G, the maximal value of cdX
as K ranges over all field extensions K/k and X → SpecK ranges over all GK-
torsors, is denoted by cdG. Moreover, cdG = cdXver, where Xver → SpecKver

is a versal G-torsor. In particular, we can construct a versal G-torsor by starting
with a generically free linear representation V of G defined over k and setting

Kver
def
= k(V)G. Then V has a G-invariant open subset U which is the total space of

a G-torsorU → B, where k(B) = k(V)G. Restricting to the generic point η of B, we

obtain a versal torsor Xver
def
= Uη → SpecKver. For details of this construction we

refer the reader to [GMS03, I.5].

Lemma 2.2.

(a) Let X1 and X2 be Brauer-equivalent Brauer–Severi varieties over a field K/k. Then

cdX1 = cdX2 .

In other words, the canonical dimension cd α of a Brauer class α ∈ H2(K,Gm) is well
defined.

(b) Let G = GLn or SLn and let C be a central subgroup scheme of G. Then for any
field K/k and any (G/C)-torsor X → SpecK we have cdX = cd α, where α is the

image of the class of X under the coboundary map ∂K : H1(K,G/C)→ H2(K,C) ⊆
H2(K,Gm) induced by the exact sequence 1→ C→ G → G/C→ 1.

(c) Let K/k be a field extension and α ∈ H2(K,Gm) be a Brauer class of index dividing
n and exponent dividing d. Then cd α ≤ cd(GLn/µd).

Proof. (a) follows from the fact that X1 and X2 have the same splitting fields L/K;
see [BR05, Section 10] or [KM06, Section 2].
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(b) By Hilbert’s Theorem 90, G is special, i.e., H1(L,G) = {1} for any field L.

Hence, the coboundary map ∂L : H1(L,G/C) → H2(K,C) has trivial kernel for
any L, and the desired conclusion follows from [BR05, Lemma 10.2].

(c) By our assumption, α lies in the image of the coboundary map

∂K : H1(K, GLn/µd) −→ H2(K,C) ;

cf., e.g., [BR05, Lemma 2.6]. Part (c) now follows from part (b). ♠

The following result will be used repeatedly in the sequel.

Proposition 2.3.

(a) Let X → SpecK be a Gm-gerbe over a field K. Denote the class of this gerbe in

H2(K,Gm) by α. Then edK X = cd α.
(b) Let e ≥ 1 be an integer and X → SpecK be a µe-gerbe over a field K. Denote the

class of this gerbe in H2(K, µe) by β. Then edK X = cd β + 1.

Proof. See [BRV09, Theorem 4.1]. ♠

2.3. Gerbes and Brauer classes. Let φ : X → X be a Gm-gerbe over a stack X . If

L is a field and ξ ∈ X (L) then, pulling back X to Spec L we obtain a Gm-gerbe
Xξ over L. We will denote by ind(Xξ) and exp(Xξ) the index and exponent of the
Brauer class of Xξ . The following lower semi-continuity properties of ind and exp
(as functions of ξ) will be used in the proof of Theorem 1.1(b).

Lemma 2.4. Let φ : X → X be a Gm-gerbe over an integral regular algebraic stack X , as

above. Assume further thatX is generically a scheme, with generic point η : SpecK → X .

Then for any field L/k and any ξ ∈ X (L),

(a) ind(Xξ) divides ind(Xη), and
(b) exp(Xξ) divides exp(Xη).

Proof. (a) The key fact we will use is that if B is a Brauer–Severi variety over a field
L then ind(B) divides d if and only if B has a linear subspace of dimension d− 1
defined over L; see [Art82, Proposition 3.4].

By [LMB00a, Theorem 6.3] there exists a smooth map T → X such that ξ lifts
to a point Spec L → T; we may assume that T is affine and integral. The index
of the pullback of Xη to the function field k(T) divides ind(Xη); hence we can

substitute X with T, and assume that X = T is an affine regular integral variety.

The étale cohomology group H2(T,Gm) is torsion, because T is regular; hence,
by a well known result of O. Gabber [Gab81] the class of X is represented by a
Brauer–Severi scheme P→ T.

Let d be the index ind(X η)
def
= ind(Pη) and Gr(P, d − 1) → T be the Grass-

mannian bundle of linear subspaces of dimension d − 1 in P. The generic fiber
Gr(P, n− 1)η has a K-rational point; this gives rise to a section U → Gr(P, n− 1)
over some open substack U of T. Let Y be the complement of U in T. If our point

ξ : Spec L → X lands in U, then the pullback Pξ has a linear subspace of dimen-
sion d− 1 defined over L, and we are done. Thus we may assume that ξ ∈ Y(L).
The morphism ξ : Spec L → T extends to a morphism SpecR → T, where R is a
DVR with residue field L, such that the generic point of SpecR lands in the com-
plement of Y in T. The pullback Gr(P, d− 1)R of Gr(P, d− 1) to SpecR then has a
section over the generic point. By the valuative criterion of properness this section
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extends to a section SpecR → Gr(P, d − 1). Specializing to the closed point of
SpecR, we obtain a desired section Spec L→ Gr(P, d− 1). This shows that Pξ has
degree dividing d, as claimed.

(b) Set e
def
= exp(Xξ) and apply part (a) to the eth power Y of the gerbe X . Since

Yη is trivial (i.e., has index 1), so is Yξ . But Yξ is the eth power of the class of Xξ ,
and we are done.

An alternative proof of part (b) is based on the fact that a Brauer-Severi variety
B→ Spec L over a field L has index dividing e if and only if P contains a hypersur-
face of degree e defined over L; see [Art82, (5.2)]. We may thus proceed exactly as
in the proof of part (a), with the same T and P→ T, but using the Hilbert scheme
H(P, e)→ T of hypersurfaces of degree e in P instead of the Grassmannian. ♠

3. AMENABLE STACKS AND GENERIC ESSENTIAL DIMENSION

Definition 3.1. Let X be an algebraic stack over k. We say that X is amenable if the
following conditions hold.

(a) X is integral with quasi-affine diagonal.
(b) X is locally of finite type and smooth over k.
(c) There exists a non-empty open substack ofX that is a Deligne–Mumford stack.

Any irreducible algebraic stack has a generic gerbe, the residual gerbe at any
dominant point SpecK → X [LMB00a, § 11]. For amenable stacks, there is an
alternate description. Let X be an amenable stack over k, and U a non-empty
open substack which is Deligne–Mumford. After shrinking U , we may assume
that the inertia stack IU is finite over U . Let U be the moduli space of U , whose
existence is proved in [KM97], and let k(X) be its residue field. The generic gerbe
Xk(X) → Spec k(X) is then the fiber product Spec k(X)×U U . The dimension dimX
is the dimension of U , or, equivalently, the dimension of U.

Example 3.2. Consider the action of a linear algebraic group defined over k on a
smooth integral k-scheme X, locally of finite type. Then the quotient stack [X/G]
is amenable if and only if the stabilizer StabG(x) of a general point x ∈ X is finite.

Of particular interest to us will be the GLn-actions on An,d, the (n+d−1
d )-dimen-

sional affine space of forms of degree d in n variables, and P(An,d) = (n+d−1
d )− 1

dimensional projective space of degree d hypersurfaces in P
n−1, as well as the

PGLn-action on P(An,d).
Since the center of GLn acts trivially on P(An,d), the stack [P(An,d)/GLn] is

not amenable. On the other hand, it is classically known that the stabilizer of

any smooth hypersurface in Pn−1 of degree d ≥ 3 is finite; see, e.g., [OS78, The-
orem 2.1] or [MM64]. From this we deduce that the stacks [P(An,d)/PGLn] and
[An,d/GLn] are both amenable for any n ≥ 2 and d ≥ 3.

Moreover, if n ≥ 2, d ≥ 3 and (n, d) 6= (2, 3), (2, 4) or (3, 3) then the stabilizer of
a general hypersurface in Pn−1 of degree d is trivial; see [MM64]. For these values
of n and d the quotient stack [P(An,d)/PGLn] is generically a scheme of dimension

dimP(An,d)− dimPGLn =

(
n+ d− 1

d

)
− n2 .

Definition 3.3. The generic essential dimension of an amenable stack X is

gedk X
def
= edk(X)Xk(X) + dimX .
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Alternatively, gedk X is the supremum of the essential dimension of ζ ∈ X (K),
taken over all field extensions K/k and all dominant ζ : SpecK → X . By the
Genericity Theorem for Deligne–Mumford stacks [BRV09, Theorem 6.1], we see
that gedk X is the essential dimension of any open substack of X that is a Deligne–
Mumford stack.

We will now compute the generic essential dimension of the quotient stacks
[An,d/GLn] and [P(An,d)/GLn] for n and d as in the statement of Theorem 1.1. Re-
call that gedk[An,d/GLn] = edk Fgen and gedk[P(An,d)/GLn] = edk Hgen, where
Fgen is the generic forms of degree d in n variables and Hgen is the generic hyper-
surfaces, as in (1.3).

Proposition 3.4. Let n ≥ 2 and d ≥ 3 be integers. Assume further that (n, d) 6= (2, 3),
(2, 4) or (3, 3). Then

(a) gedk[P(An,d)/GLn] = (n+d−1
d )− n2 + cd(GLn/µd).

(b) gedk[An,d/GLn] = (n+d−1
d )− n2 + cd(GLn/µd) + 1.

Part (a) was previously known; see [BR05, Theorem 15.1]. Part (b) answers an
open question from [BR05, Remark 14.8].

Proof. Let X = [P(An,d)/GLn], Y = [An,d/GLn], and X = [P(An,d)/PGLn]. Con-
sider the diagram

Yη

~~~~
~~

~~
~

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Y

����
��

��
��

µd-gerbe

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Xη

��

X

Gm-gerbe

��

η // X

For n and d as in the statement of the proposition, [P(An,d)/PGLn] is generically
a scheme (see Example 3.2). Denote the generic point of this scheme by η and
its function field by k(η). The pull-backs Yk(η) and Xk(η) are, respectively, a µd-

gerbe and a Gm-gerbe over k(η); these two gerbes give rise to the same class α ∈
H2(k(η), µd) ⊂ H2(k(η),Gm). By Proposition 2.3

edk(η) Yk(η) = cd α and edk(η)Xk(η) = cd α + 1.

Since

trdegk k(η) =

(
n+ d− 1

d

)
− n2 ,

it remains to show that

(3.1) cd α = cd(GLn/µd) .

The action of G = GLn/µd on An,d is linear and generically free. Thus it gives

rise to a versal G-torsor t ∈ H1(k(η),G), and α is the image of t under the natural

coboundary map H1(k(η),G) → H2(k(η), µd) associated with the exact sequence
1→ µd → GLn → G → 1. As we explained in Section 2.2, cd t = cd(GLn/µd). On
the other hand, by Lemma 2.2(b), cd α = cd t, and (3.1) follows. ♠
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4. GERBE-LIKE STACKS

The purpose of the next two sections is to prove the Genericity Theorem 1.2.
The proof of the genericity theorem for Deligne–Mumford stacks in [BRV09] re-
lied on a stronger form of genericity for gerbes; see [BRV09, Theorem 5.13]. Our
proof of Theorem 1.2 will follow a similar pattern, except that instead of working
with gerbes we will need to work in the more general setting of gerbe-like stacks,
defined below. The main result of this section, Theorem 4.6, is a strong form of
genericity for gerbe-like stacks.

Definition 4.1. A Deligne–Mumford stack X is gerbe-like if its inertia stack IX is
étale over X .

If X is an algebraic stack, the gerbe-like part X 0 of X is the largest open substack
of X that is Deligne–Mumford and gerbe-like.

Remark 4.2. If an algebraic stack X is Deligne–Mumford, then the inertia stack
IX → X is unramified. Hence, if X is also reduced then by generic flatness the

gerbe-like part X 0 of X is dense in X .

Lemma 4.3. Let X be a reduced Deligne–Mumford stack. Suppose that the inertia stack
IX is finite and étale over X . Then X is a proper étale gerbe over an algebraic space.

Remark 4.4. The condition that X be reduced can be eliminated. However, it
makes the proof marginally simpler, and will be satisfied in all cases of interest to
us in this paper.

Proof. Let X be the moduli space of X ; we claim that X is a proper étale gerbe over
X. This is a local problem in the étale topology of X. Hence, after passing to an
étale covering of X, we may assume that X is a connected scheme, and there exists
a finite reduced connected scheme U, with a finite group G acting on U, such that
X = [U/G]. The pullback of IX to U is the closed subscheme of G ×U defined
as representing the functor of pairs (g, u) with gu = u. The fact that this pullback
is étale over U translates into the condition that the order of the stabilizer of a
geometric point is locally constant on U. Since U is connected, this means that
there exists a subgroup H of G that is the stabilizer of all the geometric points of
G; this subgroup is necessarily normal. The induced action of (G/H) is free, and
U/(G/H) = X; hence U is étale over X, and X = [U/G] is a gerbe banded by H
over X. ♠

Lemma 4.5. Suppose that X is a gerbe-like Deligne–Mumford stack, Y → X a repre-
sentable unramified morphism. Then Y is also gerbe-like.

Proof. The inertia stack IX of a stack X is the fiber product X ×X×X X . We have
a diagram

Y ×X Y ×X IX //

''PPPPPPPPP

��

Y ×X Y

xxqqqqqqqq

��

IX

��

// X

��

X // X ×X

Y ×X Y

66nnnnnnnnn
// Y × Y

ffNNNNNNN
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in which all the squares are cartesian. This implies the equality

Y ×X Y ×X IX = (Y ×X Y)×X (Y ×X Y) ,

which in turn tells us that (Y ×X Y)×X (Y ×X Y) is étale over Y ×X Y . The hy-
potheses on Y → X imply that the diagonal Y → Y ×X Y is an open embedding.
Thus IY = YY×Y is an open substack of (Y ×X Y)×X (Y ×X Y), so it is étale over
Y ×X Y hence it is étale over Y , as claimed. ♠

From this and the results in [BRV09], it is easy to deduce the following. Given
a field L/k and ξ ∈ X (Spec L), we denote by codimX ξ the codimension of the
closure of the image of the corresponding morphism Spec L→ X .

Theorem 4.6. Let X be an integral gerbe-like Deligne–Mumford stack which is smooth
of finite type over a field k. Let L be an extension of k and ξ ∈ X (Spec L). Then

edX ξ ≤ edk(X)Xk(X) + dimX− codimX ξ.

Proof. If the inertia stack IX is finite over X , then, by Lemma 4.3, X is an étale
proper gerbe over a smooth k-scheme, and the statement reduces to [BRV09, The-
orem 5.13]. In the general case, from [BRV09, Lemma 6.4] we deduce the existence
of an étale representable morphism Y → X , such that Y is an integral Deligne–
Mumford stack with finite inertia, and the morphism Spec L→ Y factors through
Y . By Lemmas 4.3 and 4.5, the stack Y is a proper étale gerbe over a smooth alge-
braic space, hence [BRV09, Theorem 5.13] can be applied to it. Let η ∈ SpecY be a
point in Y(L) mapping to ξ. Then we have the relations

edk ξ ≤ edk η,

edk(X )Xk(X) ≥ edk(Y) and

codimX ξ = codimY η;

hence the general case of the Theorem follows from [BRV09, Theorem 5.13]. ♠

5. THE GENERICITY THEOREM

We now proceed with the proof of Theorem 1.2. As before, let Y be the closure
of the image of ξ : Spec L → X . The stack Y is integral, and since char k = 0, Y is

generically smooth. Let π : M → A1
k the deformation to the normal bundle of Y

insideX ; then π−1(A1
k r{0}) = X ×Spec k (A

1
k r{0}), while π−1(0) is isomorphic

to the normal bundle N of Y in X .

Lemma 5.1. M0 ∩N 6= ∅ .

Theorem 1.2 follows from Lemma 5.1 and Theorem 4.6 by the same argument
as in [BRV09, Theorem 6.1]. This argument is quite short, andwe reproduce it here
for sake of completeness.

Let L be an extension of k and let ξ be an object of X (L). Call Y the closure of
the image of the morphism ξ : Spec L → X , with its reduced stack structure. Set

N 0 def
=M0 ∩N . Then the fiber product Spec L×Y N is a vector bundle over Spec L,

and Spec L×XM
0 is a non-empty open subscheme. Hence ξ : Spec L→ Y can be

lifted to N 0; this gives an object η of N 0(Spec L) mapping to ξ in Y . Clearly the
essential dimension of ξ as an object of X is the same as its essential dimension

as an object of Y , and edk ξ ≤ edk η. Let us apply Theorem 4.6 to the gerbeM0.
The function field of the moduli space M ofM is k(X)(t), and its generic gerbe is
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Xk(X)(t); by [BRV09, Proposition 2.8], we have edk(X)(t)Xk(X)(t) ≤ edk(X)Xk(X). The

composite Spec L→ N 0 ⊆M0 has codimension at least 1, hence we obtain

edk ξ < edk(X)(t)Xk(X)(t)+ dimM

= edk(X)Xk(X) + dimX + 1.

This concludes the proof.

Proof of Lemma 5.1. If X is a finite dimensional representation of a group scheme G
over a field k, we will identify X with the affine space Spec(Sym•k X

∨).
Let us suppose that X is a finite dimensional representation of a linearly reduc-

tive algebraic group G and Y ⊆ X is a subrepresentation. Since G is reductive,

we have a G-equivariant splitting X ≃ Y ⊕ Y′. Set X
def
= [X/G] and Y

def
= [Y/G].

Assume that the generic stabilizer of the action of G on X is finite. Then X is
amenable, and Y ⊆ X is a closed integral substack.

It is easy to see that the deformation to the normal bundle M of Y in X is G-

equivariantly isomorphic to X×k A1
k (where the group G acts trivially on A1

k); the
projection

Y× Y′ ×k A
1
k = X×k A

1
k ≃ M −→ X×k A

1
k

is given by the formula (y, y′, t) 7→ (ty, y′, t). The deformation to the normal bun-

dleM of Y is [M/G] = [X/G]×k A1
k ; henceM

0 = X 0 ×k A1
k , and it is obvious

thatM0 ∩N 6= ∅.
The proof in the general case will be reduced to this by a formal slice argument.
We may base-change to the algebraic closure of k; so we may assume that k is

algebraically closed. By deleting the singular locus of Y , we may assume that Y
is smooth; by further restricting, we may assume that the inertia stack IY is flat
over Y , and that all geometric fibers are reductive, and have the same numbers of
connected components.

Let y0 → Spec k→ Y be a general closed point. The residual gerbe Gy0 → Spec k
[LMB00a, § 11] admits a section Spec k → Gy0 , since k is algebraically closed; hence,

if G
def
= Autk y0 it the automorphism group scheme of y0, we have Gy0 ≃ BkG. The

embedding of stacks BkG → Y is of finite type; hence it is easy to see that it
is a locally closed embedding, from Zariski’s main Theorem for stacks [LMB00a,
Théorème 16.5].

LetU → X be a smooth morphism, whereU is a scheme, together with a lifting

u0 : Spec k→ U of y0. Call Xn the n
th infinitesimal neighborhood of BkG inside X :

in other words, if U is an open substack of X containing BkG as a closed substack,
and we denote by I the sheaf of ideals of BkG inside U , then Xn is the closed

substack of X defined by the sheaf of ideals In+1. In particular, X0 = BkG.

Lemma 5.2. There exists a finite dimensional representation X of G with finite generic
stabilizers and a trivial subrepresentation Y ⊆ X, with the following property. If we

denote by Xn and Yn the nth infinitesimal neighborhoods of the origin, there is a se-
quence of isomorphisms Xn ≃ [Xn/G], compatible with the embeddings Xn ⊆ Xn+1

and [Xn/G] ⊆ [Xn+1/G], that induce isomorphisms of Yn with [Yn/G].

Furthermore, denote by X̂ the spectrum of the completion of the local ring of X at the
origin. Then there exists a smooth morphismU → X with a closed point u0 ∈ U mapping

to y0 in Y , and an isomorphism of X̂ with the spectrum Û of the completion of the local
ring of U at u0, such that
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(a) the sequence of composites Xn → [Xn/G] ≃ Xn ⊆ X is obtained by restriction from

the composite morphism X̂ ≃ Û → U → X , and

(b) the inverse image of Y in X̂ corresponds to the inverse image of Y in Û.

Proof. The tautological G-torsor P0
def
= Spec k → BkG extends to a G-torsor Pn →

Xn, in such a way that the restriction of Pn+1 to Xn ⊆ Xn+1 is isomorphic to Pn,
by [Alp09, Propositions 4.1 and 4.2]. Each of the stacks Pn is in fact a scheme,
because its reduced substack is; in fact, Pn must be the spectrum of a local artinian
k-algebra Rn. Clearly, Xn = [Pn/G].

If we denote by V the maximal ideal of R1, then R1 = k⊕V; the action of G on

R1 induces a linear action of G on V. The space V is isomorphic to I/I2, which is

a coherent sheaf on BkG, i.e., a representation of G. In turn, I/I2 is the cotangent
space of deformations of Spec k → X , that is, the dual to the space of isomorphism
classes of liftings Spec k[ǫ] → X of Spec k → X (here k[ǫ] denotes, as usual, the
ring of dual numbers k[x]/(x2)).

The homomorphism Rn+1 → Rn induced by the embedding Pn ≃ Pn+1|Xn ⊆
Pn+1 is surjective; its kernel is the ideal InRn+1. Denote by R the projective limit
lim←−n

Rn. (Notice that, while G acts, by definition, on each of Rn, this does not,

unfortunately, induced an action of G on R, as an algebraic group, unless G is
finite; it if did, this would make the proof conceptually much simpler.) If x1, . . . , xn
is a set of elements of R that project to a basis for V in R1, the ring R is a quotient

of the power series ring k[[x1, . . . , xn]] by an ideal J contained inm
2
R. We claim that

J = 0, i.e., R is a power series ring. For this, it is enough to check that R is formally
smooth over k, or, in other words, that if A is a local artinian k-algebra with reside
field k and B is a quotient of A, any homomorphism of k-algebras R→ B lifts to a
homomorphism R → A. Take n ≫ 0; then R → B factors through Rn. Consider
the composite

Spec B −→ SpecRn −→ Xn ⊆ X ;

since X is smooth, deformations are unobstructed, i.e., this morphism extends to
Spec A → X . If n ≫ 0, this factors as Spec A → Xn ⊆ X ; and since SpecRn is
smooth over Xn, as it is a G-torsor, the section Spec B → SpecRn of Spec B → Xn

lifts to a section Spec A → Rn, giving the desired extension R→ Rn → A.
Suppose that U → X a smooth morphism, where U is a scheme, with a lift-

ing u0 : Spec k → U of y0. Let us assume that U is minimal at u0, or, in other
words, that the tangent space of U at u0 maps isomorphically onto the deforma-
tion space of X at y0. Since U is smooth over X , the morphisms SpecRn → X
lift to a compatible system of morphism SpecRn → U, sending Spec k into u0;
these yield a morphism SpecR→ OU,u0 , inducing a homomorphism of k-algebras

ÔU,u0 → R. This is a homomorphism of power series algebras over k which gives
an isomorphism of tangent spaces; hence it is an isomorphism. This shows that
the morphisms SpecRn → X yield a flat morphism SpecR→ X .

Call d the codimension of Y in X at the point y0; after a base change in R =
k[[x1, . . . , xn]], we may assume that the inverse image of the ideal of Y in X is
(x1, . . . , xd). Call X the scheme corresponding to the dual of the vector space V =

〈x1, . . . , xn〉, that is, X
def
= Spec Sym•k V; call Y the linear subscheme defined by the

ideal (x1, . . . , xd). Then X̂ = SpecR; the representation X has all the required
properties, except that we have not yet proved that the action of G on X has finite
generic stabilizers, and the representation Y is trivial.
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To do this, let us call I the pullback of the inertia stack of [X/G] to X; in other
words, I is the subscheme of G×Spec k X defined by the equation gx = x. We need
to show that I is generically finite over X. Since I is a group scheme over X, it
has equidimensional fibers, hence it is enough that there is an étale neighborhood
I′ → I of the pair (1, u0) in I which is generically finite over X. The inverse image

of Xn in U is the nth infinitesimal neighborhood Un of u0 in U. Denote by J the
pullback of the inertia stack of X to U; we have isomorphisms Xn ≃ Un, and
compatible isomorphisms of the pullbacks of I and J to Xn and Un respectively.
These induce an isomorphism of the completions of I and J at (1, x0) and (1, u0)
respectively; by Artin approximation, the morphisms I → X and J → U are étale-
locally equivalent at (1, x0) and (1, u0). Since J is generically finite overU it follows
that the action of G on X has generically finite stabilizers. Also, this implies that
the stabilizer of a general closed point ofY is isomorphic to the isomorphism group
scheme of a general point of Spec k→ Y , hence it has the same dimension and the
same number of connected components of G; hence it equals G, and so the action
of G on Y is trivial, as claimed. ♠

Consider the complement F of (MrN )0 inMrN . Since N is a divisor on
M, the closure of F inM will not contain it; hence, if v is a general k-rational
point of N , this has neighborhood in which the only point of the inertia stack IM
where this can fail to be étale are over N ; so it is enough to show that IM is étale
overM at a general point of N . For this it suffices to show that the locus of point
of the inverse image IN of N in IM at which IM is étale overM surjects onto Y .

Denote by N the normal bundle of Y in X, and by M the deformation to the
normal bundle. If n0 is a general closed point of N, then the pullback IM of the
inertia stack of [M/G] to M is étale at n0. Notice that IM is étale at a general closed
point of the fiber of N over any y0 ∈ Y(k), since the action of G on Y is trivial, so
translation by any closed point of Y is G-equivariant. Denote byMn the inverse

image of Xn ×Spec k A1
k inM, and by Mn the inverse image of Xn ×Spec k A1

k in M.

Claim. There is sequence of isomorphisms Mn ≃ [Mn/G] compatible with the

isomorphisms Xn ≃ [Xn/G], and with the identity on A1
k .

Let us assume the claim. We know that I[M/G] is étale over M at a general

k-rational point of I[M/G] lying over the image of the origin in [N/G] ⊆ [M/G];

let v ∈ IM(k) be a general k-rational point lying over N , and let us show that
IM →M is étale at v. For this we use the infinitesimal criterion for étaleness. Let
A be a finite k-algebra with residue field equal to k, let I be a proper ideal in A,
and consider a commutative diagram

Spec(A/I) //

��

IM

��

SpecA //

99t
t

t
t

t

M

in which composite Spec k ⊆ Spec A → IM is isomorphic to v; we need to show
that we can fill in the dashed arrow in a unique way. For n ≫ 0, the morphism
Spec A → M factor throughMn. Since IMn = Mn ×M IM, the square above



14 REICHSTEIN AND VISTOLI

factors through a square

Spec(A/I) //

��

IMn

��

Spec A //

99s
s

s
s

s

Mn

in which again we have to show the existence and uniqueness of the lifting. How-
ever, the isomorphismMn ≃ [Mn/G] induces an isomorphism of the morphism
IMn → Mn with I[Mn/G] → [Mn/G]; we know that I[Mn/G] = [Mn/G]×[M/G]

I[M/G] is étale at the point corresponding to v. Hence the lifting exists and is
unique.

Now let us prove the claim. Set

R
def
= U ×X U,

Rn
def
= Un ×Xn

Un,

S
def
= X×[X/G] X = G×Spec k X,

Sn
def
= Xn ×[Xn/G] Xn = G×Spec k Xn .

The compatible isomorphisms φn : Xn ≃ Un and Xn ≃ [Xn/G] yield yield isomor-
phisms of schemes in groupoids of Rn ⇉Un with Sn ⇉ Xn, for each n ≥ 0.

Denote by IU the sheaf of ideals of the inverse image of Y × {0} ⊆ X ×A1 in

U ×A
1, and by IR the sheaf of ideals of its inverse image in R×A

1. Also denote
with JU the sheaf of ideals of Y × {0} ⊆ X × {0} in U × {0}, pushed forward

to U ×A1, and by JR the sheaf of ideals of its inverse image in R× {0}, pushed
forward to R×A1. There are natural surjection IU ։ JU and IR ։ JR. Set

U′
def
= ProjU×A1

( ∞⊕

m=0

ImU

)
, R′

def
= ProjR×A1

( ∞⊕

m=0

ImR

)
,

U′′
def
= ProjU×A1

( ∞⊕

m=0

JmU

)
, R′′

def
= ProjR×A1

( ∞⊕

m=0

JmR

)
.

Then R′⇉U′ is a scheme in groupoids, R′′⇉U′′ is a closed subgroupoid, and
the difference groupoid R′r R′′⇉U′rU′′ gives a smooth presentation ofM. Let
us denote by U′n and U′′n the inverse images ofUn in U′ andU′′, and by R′n and R′′n
the inverse images ofUn×Un in R′ and R′′. Then the groupoid R′nrR′′n ⇉U′nrU′′n
gives a smooth presentation ofMn; furthermore, we have

U′n = ProjUn×A1

( ∞⊕

m=0

ImU ⊗OU×A1
OUn×A1

)
,

R′n = ProjRn×A1

( ∞⊕

m=0

ImR ⊗OU×A1
ORn×A1

)
,

U′′n = ProjUn×A1

( ∞⊕

m=0

JmU ⊗OR×A1
OUn×A1

)
,
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R′′n = ProjRn×A1

( ∞⊕

m=0

JmR ⊗OR×A1
ORn×A1

)
.

In a completely analogous manner, denote by IX the sheaf of ideals of Y × {0}
inU×A1, and by IS the sheaf of ideals of its inverse image in S×A1. Also denote

with JX the sheaf of ideals of Y× {0} in X× {0}, pushed forward to X×A1, and

by JS the sheaf of ideals of its inverse image in S× {0}, pushed forward to S×A1.
Set

X′n
def
= ProjXn×A1

( ∞⊕

m=0

ImX ⊗OX×A1
OXn×A1

)
,

S′n
def
= ProjSn×A1

( ∞⊕

m=0

ImS ⊗OS×A1
OSn×A1

)
,

X′′n
def
= ProjU×A1

( ∞⊕

m=0

JmU ⊗OR×A1
ORn×A1

)
,

S′′n
def
= ProjR×A1

( ∞⊕

m=0

JmR ⊗OR×A1
ORn×A1

)
.

By the same argument as before, we see that [Mn/G] has a smooth presentation
S′nrS′′n ⇉X′nrX′′n ; hence, to complete the proof we need to establish the existence
of isomorphisms U′n ≃ X′n and R′n ≃ S′n, compatible with the groupoid structures,
the isomorphisms φn : Un ≃ Xn and ψn : Rn ≃ Sn, and the embeddings ?n−1 ⊆?n.

Let us denote by R̃ and Ũ the formal schemes obtained by completing R ×

A1 and U ×A1 respectively along the inverse images of u0 ∈ U, and by S̃ and

X̃ the formal schemes obtained by completing S ×A1 and X ×A1 respectively
along the inverse images of the origin in X. The structure maps of the schemes
in groupoids Rn ⇉Un and Sn ⇉ Xn pass to the limit, yielding formal schemes in

groupoids R̃⇉ Ũ and S̃⇉ X̃. The isomorphisms φn : Un ≃ Xn and ψn : Rn ≃

Sn give isomorphisms of formal schemes φ̃ : Ũ ≃ X̃ and ψ̃ : R̃ ≃ S̃, yielding an

isomorphism of formal schemes in groupoids of R̃⇉ Ũ with S̃⇉ X̃.
Denote by IŨ and IR̃ the sheaves of ideals of the inverse images of Y × {0} ⊆

X ×A1 in Ũ and R̃ respectively, and by JŨ and JR̃ the pushforwards to U and R̃

of the sheaves of ideals of the pullbacks of the inverse images of Y × {0} in the
inverse images of X ×{0}. Analogously, denote by IX̃ and I

S̃
the sheaves of ideals

of the inverse images of [Y/G]× {0} ⊆ [X/G]×A
1 in X̃ and S̃ respectively, and

by JX̃ and J
S̃
the pushforwards to X̃ and S̃ of the sheaves of ideals of the pullbacks

of the inverse images of [Y/G]× {0} in the inverse images of [X/G]× {0}.
The natural morphisms ũ : Ũ → U ×A1, r̃ : R̃ → R ×A1, x̃ : X̃ → X ×A1

and s̃ : S̃ → S×A1 are flat (this is actually the key point of this part of the proof).

Furthermore, the inverse images of Y × {0} ⊆ X ×A1 and of Y × {0} ⊆ X ×A1

in Ũ and R̃ and the inverse images of [Y/G]× {0} ⊆ [X/G]×A1 and of [X/G]×

{0} ⊆ [X/G]×A
1 in Ũ and R̃ correspond under φ̃ and ψ̃; hence for each m ≥ 0
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we obtain canonical isomorphisms of coherent sheaves

ũ∗ ImU ≃ φ̃∗x̃∗ ImX , r̃∗ ImR ≃ ψ̃∗S̃∗ ImS ,

ũ∗ JmU ≃ φ̃∗x̃∗ JmX , r̃∗ JmR ≃ ψ̃∗S̃∗ JmS .

By restricting to Un and Rn we obtain isomorphism of coherent sheaves

ImU ⊗OU×A1
OUn×A1 ≃ φ∗n

(
ImX ⊗OX×A1

OXn×A1

)
,

ImR ⊗OR×A1
ORn×A1 ≃ φ∗n

(
ImS ⊗OX×A1

OSn×A1

)
,

JmU ⊗OU×A1
OUn×A1 ≃ φ∗n

(
JmX ⊗OX×A1

OXn×A1

)
,

JmR ⊗OR×A1
ORn×A1 ≃ φ∗n

(
JmS ⊗OX×A1

OSn×A1

)
.

By summing up over all m we obtain isomorphism of the corresponding Rees al-
gebras, which yield the desired isomorphisms U′n ≃ X′n and R′n ≃ S′n.

This ends the proof of Lemma 5.1, and of the Theorem. ♠

On the basis of examples, the following generalization of Theorem 1.2 seems
plausible.

Conjecture 5.3. Let X be an amenable stack over k. Let L be an extension of k, and let ξ
be an object of X (Spec L). Then edk ξ ≤ gedk X + dimRu(AutL ξ).

Here Ru G denotes the unipotent radical of G, as in Section 2.1. Unfortunately,
the approach used in this section breaks down in the more general setting of the
above conjecture: if the stabilizer is not reductive, the slice theorem does not apply.

6. ESSENTIAL DIMENSION OF GLn-QUOTIENTS

Suppose that G is a special affine algebraic group over k acting on a scheme X
locally of finite type over k. For each field L/k we have an equivalence between
[X/G](L) and the quotient category for the action of the discrete group G(L) on
the set X(L); hence the essential dimension of [X/G] equals the essential dimen-
sion of the functor of orbits

OrbG,X : (Field/k) −→ (Set)

from the category (Field/k) of extensions of k to the category of sets, sending L to

the set of orbits OrbG,X(L)
def
= X(L)/G(L); see [BRV09, Example 2.6].

For the rest of this section wewill assume that X is an integral scheme, locally of
finite type and smooth over k, and GLn acts on X with generically finite stabilizers.
Then the quotient stack [X/GLn] is amenable; however the Genericity Theorem 1.2
does not tell us that edk[X/GLn] = gedk[X/GLn] because we are not assuming
that the stabilizer of every point of X is reductive. Nevertheless, in some cases
one can still establish this equality by estimating edk ξ from above and proving, in
an ad-hoc fashion, that edk(ξ) ≤ gedk[X/GLn] for every ξ ∈ [X/GLn](L) whose
automorphism group is not reductive. The rest of this section will be devoted to
such estimates. These estimates will ultimately allow us to deduce Theorem 1.1
from Proposition 3.4.

For each positive integer λ, denote by Jλ the λ × λ Jordan block with eigen-

value 0, that is, the λ× λ matrix, that is, the linear transformation kλ → kλ defined
by e1 7→ 0 and ei 7→ ei−1 for i = 2, . . . , λ, where e1, . . . , eλ is the canonical basis of

kλ. Let λ be a partition of n; that is, λ = (λ1, . . . , λr) is a non-increasing sequence
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of positive integers with λ1 + · · ·+ λr = n. We denote by Aλ the n× n nilpotent
matrix which is written in block form as

Aλ
def
=




Jλ1
0 . . . 0

0 Jλ2
. . . 0

...
...

. . .
...

0 0 . . . Jλr




Every nilpotent n×nmatrix is conjugate to a unique Aλ. Consider the 1-parameter
subgroup ωλ : Ga → GLn defined by ωλ(t) = exp(tAλ). We will usually assume
that λ 6= (1n); under this assumption ωλ is injective. Denote by Nλ the normalizer
of the image of ωλ; the group Nλ acts on the fixed point locus Xωλ .

Lemma 6.1. Let L be a field extension of k, and ξ be an object of [X/GLn](L) whose
automorphism group scheme AutL ξ is not reductive. Then

edk ξ ≤ max
λ

edk[X
ωλ/Nλ] ,

where the maximum is taken over all partitions λ of n different from (1n).

Proof. Suppose ξ corresponds to the GLn-orbit of a point p ∈ X(L). The auto-
morphism group scheme AutL ξ is isomorphic to the stabilizer Gp of p in GLn.
Since we are assuming that this group is not reductive, Gp will contain a copy of
Ga, which is conjugate to the image of ωλ for some λ 6= (1n). After changing
p to a suitable GLn-translate, we may assume that the image of ωλ is contained
in Gp; hence p ∈ Xωλ . The composite Xωλ →֒ X → [X/GLn] factors through
[Xωλ/Nλ]; hence ξ is in the essential image of [Xωλ/Nλ](L) in [X/GLn](L), and
edk ξ ≤ edk[X

ωλ/Nλ]. ♠

Lemma 6.2. edk[X
ωλ/Nλ] ≤ dimXωλ for any λ 6= (1n).

Proof. By Lemma 2.1, Nλ is special. Hence,

edk[X
ωλ/Nλ] = edk OrbNλ,X

ωλ ≤ dimXωλ ,

as claimed. ♠

We now further specialize X to the affine space An,d of forms of degree d in the
n variables x = (x1, . . . , xn) over k. The general linear group GLn acts on An,d in

the usual way, via (A f )(x)
def
= f (x · A−1) for any A ∈ GLn. We are now ready for

the main result of this section.

Theorem 6.3. Let L be a field extension of k, and ξ be an object of [An,d/GLn](L) whose
automorphism group schemeAutL ξ is not reductive. Assume that either d ≥ 4 and n ≥ 2

or d = 3 and n ≥ 3. Then edk ξ ≤ (n+d−1
d )− n2.

Proof. By Lemma 6.1 it suffices to show that

(6.1) edk[X
ωλ/Nλ] ≤

(
n+ d− 1

d

)
− n2 .

for any λ 6= (1n). The space A
ωλ

n,d consists of the forms f (x) such that

f
(
exp(−tAλx)

)
= f (x) .
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By differentiating and applying the chain rule, this is equivalent to

(6.2) ▽ f (x) · Aλ = 0 ,

where ▽ f = (∂ f/∂x1, . . . , ∂ f/∂xn) is the gradient of f . We now proceed with the
proof of (6.1) in three steps.

Case 1: Assume d ≥ 4. By Lemma 6.2 it suffices to show that

(6.3) dim A
ωλ

n,d ≤

(
n+ d− 1

d

)
− n2 .

for any λ 6= (1n). For λ 6= (1n) formula (6.2) tells us that ∂ f/∂x1, is identically zero.
In other words, f (x) is a form in x2, . . . , xn. Such forms lie in an affine subspace of
An,d isomorphic to An−1,d. Hence,

dim A
ωλ

n,d ≤ dim An−1,d =

(
n+ d− 2

d

)
,

and it suffices to prove the inequality
(
n+ d− 1

d

)
−

(
n+ d− 2

d

)
≥ n2

or equivalently,

(6.4)

(
n+ d− 2

d− 1

)
≥ n2 .

Since (n+d−2
d−1 ) = (n+d−2

n−1 ) is an increasing function of d for any given n ≥ 1, it
suffices to prove (6.4) for d = 4. In this case

(
n+ d− 2

d− 1

)
− n2 =

(
n+ 2

3

)
− n2 =

n(n− 1)(n− 2)

6
≥ 0

for any n ≥ 2, as desired.

Case 2: d = 3 and λ 6= (1n) or (2, 1n−1). Once again, it suffices to prove (6.3).

If λ 6= (1n) or (2, 1n−1) then (6.2) shows that for every f (x) in A
ωλ

n,d at least two

of the partial derivatives ∂ f/∂x1, and ∂ f/∂xi are identically zero. For notational
simplicity we will assume that i = 2. Then f (x) is a form in the variables x3, . . . , xn.
Hence,

dim A
ωλ

n,3 ≤ dim An−2,3 =

(
n

3

)
=

(
n+ 2

3

)
− n2 ,

as desired.

Case 3: Finally assume d = 3 and λ = (2, 1n−1). Set ω
def
= ω(2,1n−1) and N

def
=

N(2,1n−1). By Lemma 2.1(b) N is a special group. Hence, we may identify the set of

isomorphism classes in [Aω
n,3/N](K) with the set of N(K)-orbits in [Aω

n,3](K), for
every field K/k.

By (6.2) Aω
n,d consists of degree d forms f (x1, . . . , xn) such that ∂ f/∂x1 = 0. That

is, f (x1, . . . , xn) ∈ Aω
n,d if and only if f is a form in the variables x2, . . . , xn. Thus

Aω
n,d is an affine subspace of An,d isomorphic to An−1,d. Our goal is to show that

(6.5) edk f ≤

(
n+ 2

3

)
− n2

for any f (x) ∈ Aω
n,d(K).
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The normalizer N contains a subgroup

Γ ≃ GLn−2 ⋉G
n−2
a

consisting of matrices of the form



1 0 0 . . . 0
0 1 0 . . . 0
0 a3
...

... A
0 an




where (a3, . . . , an) ∈ Gn−2
a and A ∈ GLn−2. We may assume without loss of gener-

ality that the stabilizer of f in Γ does not contain a non-trivial unipotent subgroup.

Indeed, if it does then f is a Γ-translate of an element of A
ωλ

n,3 for some λ 6= (1n) or

(2, 1n−1). For such f the inequality (6.5) was established in Case 2.
Since both Γ and N are special, it is obvious that the essential dimension of

f , viewed as an element of [Aω
n,3/N](K) = OrbN,Aω

n,3
(K) is no greater than the

essential dimension of f , viewed as an element of [Aω
n,3/Γ](K) = OrbΓ,Aω

n,3
(K).

Since we are assuming that the stabilizer of f in Γ does not contain any non-trivial
unipotent subgroups, the Genericity Theorem 1.2 tells us that

edk f ≤ gedk[A
ω
n,3/Γ] .

By Lemma 6.4 below for n ≥ 4 the action of Γ ⊂ GLn−1 on the space An−1,3 of
forms of degree 3 in the n− 1 indeterminates x2, . . . , xn is generically free. Thus
[An,3/Γ] is an amenable stack and is generically a scheme. Consequently,

gedk[A
ω
n,3/Γn−2] = dim An−1,3 − dim Γn−2 =

(
n+ 1

3

)
− (n− 2)2 − (n− 2) .

A simple computation shows that
(
n+ 1

3

)
− (n− 2)2 − (n− 2) ≤

(
n+ 2

3

)
− n2 ,

for any n ≥ 4; indeed,
(
n+ 2

3

)
− n2 −

((
n+ 1

3

)
− (n− 2)2 − (n− 2)

)
=

(n− 2)(n− 3)

2
− 1 ≥ 0. ♠

Lemma 6.4.

(a) Assume that the base field k is algebraically closed and G is a connected linear algebraic
k-group such that N ∩ Z(G) 6= {1} for every closed normal subgroup {1} 6= N ⊳ G.
Here Z(G) denotes the center of G. (For example, G could be almost simple or GLn.)
Let H1, H2 be closed subgroups of G such that H1 is finite and H2 contains no non-

trivial central elements of G. Then for g ∈ G(k) in general position, H1 ∩ gH2g
−1 =

{1}.
(b) Assume d ≥ 3 and n ≥ 1. Let GLn−1 be the subgroup of GLn acting on the variables

x2, . . . , xn. Then for f ∈ An,d in general position, StabGLn−1
( f ) = {1}.

Proof. (a) Assume the contrary. Consider the natural (translation) action of H1 on
the homogeneous space G/H2. By our assumption this action is not generically
free. Since H1 is finite, we conclude that this action is not faithful, i.e., some 1 6=
h ∈ H1 acts trivially on G/H2. Then h lies in N =

⋂
g∈G gH2g

−1. Consequently,
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N is a non-trivial normal subgroup of G. By our assumption N (and hence, H2)
contains a non-trivial central element of G, a contradiction.

(b) We may assume that k is algebraically closed. By [Ric72, Theorem A], there
exists a subgroup Sn,d ⊂ GLn and a dense open subset U ⊂ An,d such that
StabGLn ( f ) is conjugate to S for every f ∈ U. Moreover, for d ≥ 3 (and any n ≥ 1)
Sn,d is a finite group; see Example 3.2.

Write f (x1, . . . , xn) = ∑
d
i=0 x

d−i
1 fi(x2, . . . , xn), where fi is a form of degree i in

x2, . . . , xn. Clearly g ∈ GLn−1 stabilizes f if and only if it stabilizes f1, f2, . . . , fd. In
other words,

StabGLn−1( f ) =
d⋂

i=1

StabGLn−1
( fi) .

Moreover, each StabGLn−1
( fi) is a conjugate of Sn−1,i in GLn−1. Thus it suffices to

show that for g1, . . . , gd in general position in GLn−1,

(6.6) g1Sn−1,1g
−1
1 ∩ · · · ∩ gdSn−1,dg

−1
d = {1} .

This is a consequence of part (a), with G = GLn, H1 = Sn−1,1 and H2 = Sn−1,d. ♠

Remark 6.5. We note that if d ≥ 4 and n ≥ 3 or d = 3 and n ≥ 5 then (6.6) is
immediate, since Sn−1,d = {1}; see Example (3.2). However, this argument does
not cover the case where d = 3 and n = 3 or 4, which are needed for the proof of
Theorem 6.3 above.

7. PROOF OF THEOREM 1.1

Theorem 1.1(a) is an immediate consequence of what we have done so far. In-
deed, by Proposition 3.4(a),

gedk[An,d/GLn] =

(
n+ d− 1

d

)
− n2 + 1+ cd(GLn/µd) .

Thus it suffices to show that for any field extension K/k and any K-point ζ of
[An,d/GLn](K), we have

edk ζ ≤ gedk[An,d/GLn] .

If the automorphism group scheme AutK(ζ) is reductive, this is a direct conse-
quence of Theorem 1.2, and if AutK(ζ) is not reductive, then Theorem 6.3 tells us
that

edk ζ ≤

(
n+ d− 1

d

)
− n2 < gedk[An,d/GLn] .

This completes the proof of Theorem 1.1(a). The rest of this section will be de-
voted to proving Theorem 1.1(b). The main complication here is that the stack
[P(An,d)/GLn] is not amenable (see Example 3.2) and thus our Genericity Theo-
rem 1.2 does not apply. Wewill get around this difficulty by relating [P(An,d)/GLn]
to the amenable stack [P(An,d)/PGLn].

Proposition 7.1. Let X = [P(An,d)/GLn] and X
def
= [P(An,d)/PGLn], with the natu-

ral projection φ : X → X . Then for any extension L/k and any L-point ξ : Spec L→ X ,

edk ξ ≤ edk φ(ξ) + cd(GLn/µd) .
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Proof. Note that X is a gerbe banded by Gm over X .
By the definition of edk φ(ξ) there exists an intermediate field k ⊂ K ⊂ L such

that φ(ξ) descends to SpecK and trdegk K = edk φ(ξ). Moreover, ξ : Spec L→ XK

factors through a point ξ0 : Spec L→ XK, as in the diagram below.

XK
//

��

X

φ

��

ξ : Spec L

ξ0

99ssssssssss

// SpecK // X ,

Note that XK is a Gm-gerbe over K. So ξ0 (and hence, ξ) descends to some inter-
mediate subfield of K ⊂ K0 ⊂ L such that trdegK K0 ≤ edk(XK) = cd(XK), where

the last equality is Proposition 2.3(a). Let η be the generic point of X . We know
that the Brauer class of Xη has index dividing n and exponent dividing d; see the
proof of Proposition 3.4. By Lemma 2.4 the same is true of the Brauer class of XK.
Therefore, by Lemma 2.2(c), cd(XK) ≤ cd(GLn/µd). In summary,

edk ξ ≤ trdegk K0 = trdegk K+ trdegK K0 ≤ edk(φ(ξ)) + cd(XK),

as claimed. ♠

Proof of Theorem 1.1(b). Let X
def
= [P(An,d)/GLn], X

def
= [P(An,d)/PGLn], and Y

def
=

[An,d/GLn] and consider the following diagram of natural maps.

Y

xxqqqqqqqqqqqqq

ψ, a µd-gerbe

���
�
��

�
�
�
��

�
�
��

�
�
�
�

X

φ, a Gm-gerbe

��

X

In view of Proposition 7.1, it suffices to show that for every field extension L/k

and every L-point ξ : Spec L→ X ,

(7.1) edk φ(ξ) ≤

(
n+ d− 1

d

)
− n2 .

Recall from Example 3.2 that under our assumptions on n and d, we have that

X = [P(An,d)/PGLn] is amenable and is generically a scheme of dimension

dimP(An,d)− dimPGLn =

(
n+ d− 1

d

)
− n2 .

If the automorphism group scheme AutL(φ(ζ)) is reductive then (7.1) holds by the

Genericity Theorem 1.2 applied to X .
We may therefore assume that AutL(φ(ζ)) is not reductive. Lift ξ to some

ζ : Spec L → Y . (This can be done because Y → X is a Gm-torsor.) Since the
automorphism group scheme AutL(ζ) is contained in the preimage of AutL(φ(ζ))



22 REICHSTEIN AND VISTOLI

under the natural projection map GLn → PGLn, we see that AutL(ζ) is not reduc-
tive. Now edk φ(ξ) ≤ edk ζ and in view of Theorem 6.3

edk ζ ≤

(
n+ d− 1

d

)
− n2 .

This completes the proof of (7.1) and thus of Theorem 1.1(b). ♠

8. SMALL n AND d

In this section we compute edk Formsn,d and edkHypersurfn,d in the cases not

covered by Theorem 1.1, building on the results of [BF03] and [BR05, Section 16].
To handle the case where n = 2, we need the following variant of [BR05, Lemma

16.1]. The proof is similar; we reproduce it here, with the necessary modifications,
for the sake of completeness.

Lemma 8.1. edk Forms2,d ≤ d− 1 and edk Hypersurf2,d ≤ d− 2 for any d ≥ 3.

Proof. Let f (x1, x2) = a0x
d
1 + a1x

d−1
1 x2 + · · ·+ adx

d
2 be a non-zero binary form of

degree d over a field K/k. We claim that that f is equivalent (up to a linear coor-
dinate changes by elements of GL2(K)) to a binary form with (i) a0 = 0 or a1 = 0
and (ii) ad−1 = 0 or ad−1 = ad. In each case f descends to the field k(a0, . . . , ad)
and the hypersurface in P1 cut out by f descends to the field k(ai/aj |aj 6= 0). If
(i) and (ii) are satisfied then the transcendence degrees of these fields over k are
clearly ≤ d− 1 and d− 2, respectively. So, the lemma follows from the claim.

To prove the claim, we first reduce f to a form satisfying (i). If a0 = 0, we are
done. If a0 6= 0, then performing the Tschirnhaus substitution

x1 7→ x1 −
a1
da0

x2 , x2 7→ x2

we reduce f to a binary form with a1 = 0.
Now assume that f satisfies (i). We want to further reduce it to a form satisfying

both (i) and (ii). If ad−1 = 0, we are done. If ad−1 6= 0, rescale x1 as follows

x1 7→
ad

ad−1
x1 , x2 7→ x2 ,

to reduce f to a form satisfying (i) and ad−1 = ad. This completes the proof of the
claim and the lemma. ♠

Proposition 8.2. For any n ≥ 1 and d ≥ 2 we have

(a) edk Formsn,1 = edk Hypersurfn,1 = 0,

(b) edk Forms1,d = 1 and edk Hypersurf1,d = 0,

(c) edk Formsn,2 = n and edk Hypersurfn,2 = n− 1,

(d) edk Forms2,3 = 2 and edk Hypersurf2,3 = 1,

(e) edk Forms2,4 = 3 and edk Hypersurf2,4 = 2,

(f) edk Forms3,3 = 4 and edk Hypersurf3,3 = 3.

Proof. First we note that

(8.1) edk Formsn,d ≤ edk Hypersurfn,d+1 .



A GENERICITY THEOREM AND ESSENTIAL DIMENSION OF HYPERSURFACES 23

This is easy to see directly from the definition or, alternatively, as a special case
of the Fiber Dimension Theorem [BRV09, Theorem 3.2(b)], applied to the repre-
sentable morphism of quotient stacks [An,d r {0}/GLn]→ [P(An,d)/GLn] of rela-
tive dimension 1.

(a) Any non-zero linear form F(x1, . . . , xn) over any field K/k is equivalent to
x1.

(b) Degree d forms f1(x) = axd and f2(x) = bxd, over a field K/k are equivalent

if and only if b = acd for some c ∈ K∗ = GL1(K). The assertions of part (b) follow
easily from this.

(c) Any quadratic form F(x1, . . . , xn) over K/k can be diagonalized and hence,
is defined over an intermediate field k ⊂ K0 ⊂ K such that trdegk K0 ≤ n. This
implies that edk Formsn,2 ≤ n and edk Hypersurfn,2 ≤ n− 1. The opposite inequal-

ities follow from [BR05, Proposition 16.2(b)].

(d) By Lemma 8.1, edk Forms2,3 ≤ 2 and edkHypersurf2,3 ≤ 1, respectively. On

the other hand, by [BR05, Proposition 16.2(c)], for the generic binary form Fgen in

three variables (as in (1.3)) and the hypersurface Hgen it cuts out in P1, we have
edk Fgen = 2 and edk Hgen = 1.

Part (e) is proved in a similar manner, by combining Lemma 8.1 with [BR05,
Proposition 16.2(d)].

(f) The identity edk Hypersurf3,3 = 3 is the main result of [BF03]. By (8.1),

edk Forms3,3 ≤ 4.
In order to show that equality holds, it suffices to prove that the essential di-

mension gedk[X3,3/GL3] of the generic form Fgen of degree 3 in 3 variables is
at least 4. By [Ric72, Theorem A] the GL3-action on X3,3 has a stabilizer in gen-
eral position. Denote it by S3,3, as in the proof of Lemma 6.4. As we mentioned
there (and in Example 3.2), S3,3 is a finite subgroup of GL3. Since the dimen-
sion of [X3,3/GL3] is 1, by [BR05, Lemma 15.4 and Proposition 5.5(c)] edk Fgen ≥
edk(S3,3) + 1, where edk S3,3 denotes the essential dimension of the finite group
S3,3. (Note that in [BR05] the symbol φn,d was used in place of Fgen.) Thus it suf-
fices to show that edk(S3,3) ≥ 3.

To get a better idea about the structure of S3,3, note that a form in X3,3(k) in

general position is a scalar multiple of x31 + x32 + x33 + 3ax1x2x3 for some a ∈ k.
Hence, S contains a non-abelian subgroup H of order 27, generated by diagonal
permutation matrices diag(ζ1, ζ2, ζ3), where ζ1, ζ2 and ζ3 are cube roots of unity
satisfying ζ1ζ2ζ3 = 1, and the permutation matrices cyclically permuting x1, x2
and x3. Now

(8.2) edk(S) ≥ edk(H) ≥ 3 ,

where the second inequality is a consequence of the Karpenko-Merkurjev theorem;
see [MR10, Theorem 1.3]. This completes the proof of part (f). ♠

Remark 8.3.

(i) Since S is a finite subgroup of GL3, it has a natural faithful 3-dimensional
representation. Hence, edk S3,3 ≤ 3, and both inequalities in (8.2) are actually
equalities.
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(ii) The proof of part (e) shows that edk Fgen = 4, where Fgen is the generic form
of degree 3 in 3 variables, as in (1.3). This answers an open question posed
after the statement of Proposition 16.2 in [BR05].

9. ESSENTIAL DIMENSION OF SINGULAR CURVES

In this section we use our new Genericity Theorem (1.2) to strengthen [BRV09,
Theorem 7.3] on the essential dimension of the stack on (not necessarily smooth)
local complete intersection curves with finite automorphism group presented in
[BRV09, Theorem 7.3]. Let us recall the set-up. Denote by Mg,n the stack of all
reduced n-pointed local complete intersection curves of genus g, that is, the al-
gebraic stack over Spec k whose objects over a k-scheme T are finitely presented
proper flat morphisms π : C → T, together with n sections s1, . . . , sn : T → C,
where C is an algebraic space, the geometric fibers of π are connected reduced lo-
cal complete intersection curves of genus g, and the image of each si is contained
in the smooth locus of C → T. (We do not require the images of the sections to be
disjoint.)

The stack Mg,n contains the stackMg,n of smooth n-pointed curves of genus g
as an open substack (here the sections are supposed to be disjoint). By standard
results in deformation theory, every reduced local complete intersection curve is
unobstructed, and is a limit of smooth curves. Furthermore there is no obstruction
to extending the sections, since these map into the smooth locus. Therefore Mg,n

is smooth and connected, andMg,n is dense in Mg,n. However, the stack Mg,n

is very large (it is certainly not of finite type), and in fact it is very easy to see
that its essential dimension is infinite. Assume that we are in the stable range,
i.e., 2g− 2+ n > 0: then in [BRV09] we show that the essential dimension of the

open substack M
fin
g,n of Mg,n of curves with finite automorphism group equals the

essential dimension ofMg,n.
Let C be an object of Mg,n defined over an algebraically closed field K. We say

that C is reductive if the automorphism group scheme AutK C is reductive. The
marked curve C is not reductive if and only the smooth part Csm ⊆ C contains a

component that is isomorphic to A1
K and contains no marked points. A reductive

object of Mg,n is an object C → S, whose geometric fibers over S are reductive. It

is not hard to see that the reductive objects form an open substack M
red
g,n of Mg,n.

Then our new genericity theorem applies, and allows to conclude that the essential

dimensions of Mred
g,n and ofMg,n are the same. From [BRV09, Theorem 1.2] we

obtain the following.

Theorem 9.1. If 2g− 2+ n > 0 and the characteristic of k is 0, then

edkM
red
g,n =





2 if (g, n) = (1, 1),

5 if (g, n) = (2, 0),

3g− 3+ n otherwise.
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