ISOTROPY OF UNITARY INVOLUTIONS

NIKITA KARPENKO AND MAKSIM ZHYKHOVICH

ABSTRACT. We prove the so-called Unitary Isotropy Theorem, a result on isotropy of a
unitary involution. The analogous previously known results on isotropy of orthogonal
and symplectic involutions as well as on hyperbolicity of orthogonal, symplectic, and
unitary involutions are formal consequences of this theorem. A component of the proof
is a detailed study of the quasi-split unitary grassmannians.
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1. INTRODUCTION

Let K be an arbitrary field of characteristic different from 2, A a central simple K-
algebra, 7 an involution on A (i.e., a self-inverse ring anti-automorphism), F° C K the
subfield of T-invariant elements of K. In this paper we finish the proof of Isotropy Theorem
saying that if 7 becomes isotropic over any field extension of F' splitting A, then 7 becomes
isotropic over some finite odd degree field extension of F' (note that by the example of
3], 7 over F does not need to be isotropic).

We refer to [[] for generalities on central simple algebras with involutions. The involu-
tions T is isotropic, if the algebra A contains a non-zero right ideal I satisfying 7(I)-1 = 0.
The algebra A is split, if it represents 0 € Br(K) in the Brauer group of K, that is, if it
is isomorphic to a full matrix algebra over K.

Isotropy Theorem has been proved in [{] for algebras A of exponent 2 (for the symplectic
case see also [[I(]). More precisely, it has been reduced to the case of orthogonal 7 by J.-P.
Tignol and proved in the orthogonal case by the first named author. In the remaining
case, considered in the present paper (see Theorem P.]]), the involution 7 is of unitary
type (and, in particular, K is of degree 2 over F').
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The proof in the unitary case, made in Section [, goes along the line of the proof
of the orthogonal case, but there are (at least) two important differences. First of all,
the information on orthogonal grassmannians needed in the orthogonal case was already
available: partially from topology (in the split case), partially from more recent works
of A. Vishik [I6], [[4] (partially remaking in algebraic terms the available topological
material). In contrast with this, almost no information (even in the quasi-split case) on
unitary grassmannians was available. It seems to be, almost completely, a terra incognito
in the literature. Sections f and [ cover this gap. (More study of unitary grassmannian
is undertaken in [JJ], a successor paper).

To explain the second difference, we have to sketch the proof. It is easily reduced to
the case of A of even 2-primary index. Let Y be the F-variety of isotropic right ideals
in A of reduced dimension ind A. Let X be the F-variety of all right ideals in D of
reduced dimension (ind A)/2, where D is a central division K-algebra Brauer-equivalent
to A. Considering Chow motives with coefficients in Fy := Z/27Z of smooth projective
F-varieties, we manage to show, that certain indecomposable direct summand of the
motive of X (the so-called upper motive of X introduced in [{]) is isomorphic to a direct
summand of the motive of Y. This produces a cycle class 7 in the modulo 2 Chow group
Chgimy (Y X Y) (the corresponding projector namely). With some more effort, we come
to the case where 7 is symmetric (i.e., invariant under the factor exchange automorphism
of the Chow group). We finish by applying to m a certain operation which transforms
it to a 0-cycle class in Chg(Y x Y) of degree 1 (modulo 2) and therefore terminates the
proof.

The shortest way to explain where the operation comes from is as follows. By [[7],
the projector 7 can be lifted to the algebraic cobordism (modulo 2). Then, applying an
appropriate (modulo 2) symmetric operation of [[§ and projecting back from cobordism
to the Chow group, we get the required 0-cycle class.

Fortunately, the symmetric operations and algebraic cobordism theory are not really
needed here (and thus we are not restricted to the characteristic 0). Actually, we succeed
to compute the above symmetric operation because it can be described (on symmetric
projectors) in terms of the Steenrod operations on the modulo 2 Chow groups. (The need
of Steenrod operations explains our characteristic assumption.) This is done in Section P.

The needed operation is related with the difference of two other operations: sq, given
by the squaring, and st, given by a Steenrod operation. The proof succeeds if the value
of one operation turns out to be trivial and the value of the other one — non-trivial (see
Lemma P.10)). The value sq() is computed due to its relation with the rank of the motive
(see Lemmas R.J and R.2); the needed ranks are calculated in Section . To compute
the value st(m) we use the information on the Steenrod operations on quasi-split unitary
grassmannians obtained in Section [.

The second difference between the orthogonal and the unitary cases is as follows: st(m)
is the trivial value in the orthogonal case while sq(7) is the trivial value in the unitary
case. In particular, we have to check the non-triviality of the more sophisticated st(m)
here, which is certainly more difficult than to show its triviality (in the orthogonal case).

To finish the introduction, let us mention Hyperbolicity Theorem — a corollary of Isotropy
Theorem: if 7 becomes hyperbolic over any field extension of F' splitting A, then 7 is
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hyperbolic (over F'). This corollary has been already proved (in a different way) in [J]
(the exponent 2 case) and in [J] (the unitary case). We also note that the orthogonal
and symplectic cases of Isotropy Theorem are formal consequences of its unitary case —

Theorem B.1 (cf. [B, §5] and [[I]).

ACKNOWLEDGEMENTS. The authors thank Alexander Merkurjev for permission to in-
clude Lemma P and Burt Totaro for information about the state of study of unitary
grassmannians in topology.

2. OPERATIONS sq AND st

Let I be a field of characteristic # 2. Let X be a connected smooth projective variety
over F'.

We write CH for the integral Chow group and we write Ch for CH /2 CH (the Chow
group with coefficients in Fy).

We are going to use the following statement due to A. Merkurjev:

Lemma 2.1. Let § : X — X X X be the diagonal morphism. For any a,b € CH(X x X)
one has deg(b' - a) = deg(d*(b o a)), where - stands for the product in the Chow ring,
o stands for the composition of correspondences, and ' stands for the transposition of
correspondences.

Proof. The commutative diagram

XXX — X xXxX 3 XxXxXxX

W’ll Pﬁsl

X 2 XxX

where e(z,y) = (z,y,z) and s(z,y, z) = (x,y,y, 2), yields the commutative diagram

CH(X x X) +5— CH(X x X x X) «>— CH(X x X x X x X)

W’l*l Pﬁs*l

CH(X) +X— CH(X x X).

We have pry (b'-a) = pry,e*s*(a x b) = §*pry;,s*(a x b) = 6*(8 o), hence deg(b’-a) =
deg pry, (6" - a) = degd*(b o a). O

Our first basic operation is a map sq : Ch(X x X) — Z/47 defined as follows. For any
a € Ch(X x X) we take its integral representative a € CH(X x X) and set

sq(a) == deg(a®) mod 4,

where by a? we mean the product of cycles a-a and not the composition of correspondences
aoa. Since any other integral representative of the same « is of the form a + 2b with
some b € CH(X x X) and deg((a + 2b)?) = deg(a?®) (mod 4), the definition is correct.
We also define an auxiliary operation sq’ : Ch(X x X) — Z/4Z as follows. For any a €
Ch(X x X) we take its integral representative a € CH(X x X) and set sq'(«) := deg(a’-a)
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mod 4. Since any other integral representative of the same « is of the form a + 2b with
some b € CH(X x X) and deg((a+ 2b)" - (a + 2b)) = deg(a?) (mod 4), because

deg (b’ - a) = deg ((b" - a)") = deg(a’ - b),
the definition is correct.
Lemma 2.2. One has sq'(«) = sq(a) for any symmetric projector « € Ch(X x X).

Proof. Indeed, such o has a symmetric integral representative: if a is any integral repre-
sentative, then a’ o a is a symmetric integral representative of . Computing sq(«) and
sq'(a) with the help of a symmetric integral representative of «, we get the same. O

The operations sq and sq’ are natural at least in the following sense:

Lemma 2.3. Fach of the operations sq and sq' commutes with the change of field homo-
morphism with respect to any field extension of F. U

The operation sq’ also enjoys the additivity with respect to sums of orthogonal corre-
spondences:

Lemma 2.4. For any orthogonal correspondences c, 5 € Ch(X x X) one has
sq/ (o + B) = sq'(a) + sq'(B).

Proof. Let a,b € CH(X x X) be integral; representatives of a, 3. It suffices to show
that deg(b’ - a) = 0 (mod 2). By Lemma P.1, deg(b’ - a) = deg(6*(b o a)). Since the
correspondences [ and « are orthogonal, boa € 2CH(X x X). 0

We are working with the Chow motives over F' with coefficients in Fy, [[ll, Chapter
XII]. A motive is split, if it is isomorphic to a (finite) direct sum of Tate motives. A
motive is geometrically split, if it splits over a field extension of F'. The rank rk M of a
geometrically split motive M is the number of Tate summands in the decomposition of
My, for a field extension E/F such that Mg is split (this number does not depend on the
choice of E). If « is a projector on a smooth projective variety X such that the motive
(X, ) is geometrically split, we set rk a := rk(X, «).

Lemma 2.5. Let a € Ch(X x X) be a projector and assume that the motive (X, «) is
geometrically split (so that the rank rk(a) € Z of « is defined). Then sq'(a) = rk(a)
mod 4.

Proof. By the naturality of sq’ (Lemma P.3), we may assume that the motive (X, a) is
split, that is, that (X, «) is isomorphic to a finite sum of Tate motives. The number of the
summands is the rank. By additivity of sq’ (Lemma B.4), we may assume that the rank is
1. In this case a has an integral representative of the form a x b with some homogeneous
a,b € CH(X) having odd deg(a - b). It follows that sq’(or) =1 mod 4. O

Now we are going to define our second basic operation. We write S® for the modulo
2 total cohomological Steenrod operation, [, Chapter XI|. Let pr : X x X — X be the
projection onto the first factor.
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Lemma 2.6. For any «, € Ch(X x X) one has

deg 5*(8' 0 a) = deg (pr.(S(a) - pr.(S(8)) - ca(~Tx)),
where Tx is the tangent bundle of X, and c, is the total (modulo 2) Chern class.

Note that deg in Lemma P.G refers to the degree homomorphism on the modulo 2 Chow
group taking its values in Z/27Z.

Here is the definition of the operation st : Ch(X x X) — Z/4Z. For any a € Ch(X x X)
we choose an integral representative a € CH(X x X) of S*(a) € Ch(X x X) and set

st(a) := deg (pr,(a)* - co(~Tx)) (mod 4),
where ¢, refers now to the integral total Chern class. Clearly, the definition is correct
because the choice of a does not affect the value of the operation.

The operation st is a sort of refinement modulo 4 of a modulo 2 operation related with
the Steenrod operation:

Lemma 2.7. We have st(a) mod 2 = deg S*(a' o «). In particular,
st(a) mod 2 = deg S*(«)
if the correspondence « is a symmetric projector.
Proof. This is the particular case f = « of Lemma B.§. O
The operation st is natural:

Lemma 2.8. The operation st commutes with the change of field homomorphism with
respect to any field extension of F. O

The operation st also enjoys a sort of additivity:
Lemma 2.9. If deg S(8' o) =0, then
st(a+ B) = st(a) + st(5).
In particular, the additivity holds for orthogonal symmetric correspondences c, 3.

Proof. Let a,b € CH(X x X) be integral; representatives of S*(«),S®(5). Then a + b is
an integral representative of S®(av + () and it suffices to show that

deg (pr*(a) 'PT’*([’) : C.(—Tx)) =0 (mod 2).
This is indeed so by Lemma P.6 and the condition on «, 3. U

The two operations sq and st are related as follows:

Lemma 2.10. Let d = dim X. For any symmetric projector o € Ch*(X x X) one
has sq(a) = st(a) (mod 2). If moreover X has no closed points of odd degree, then

sq(a) = st(a).

Proof. The value sq(«) is given by the degree of certain integral representative a of o2
By Lemma .7, the value st(«) is given by the degree of certain integral representative b
of S%. Since S¢a = o2, it follows that a — b € 2CH(X x X). Since deg CH(X x X) =
deg CH(X), we get that dega — degb € 2deg CH(X). In particular, dega — degb €
AZ + 2 deg CH(X) as claimed. O
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Lemma shows that the difference st — sq is a sort of weak replacement for a certain
symmetric operation. This replacement suffices for our further purposes. One advantage
of this replacement is that it is available over any F' with char F' # 2, not only over F
with char /' = 0 like the symmetric operation itself.

3. CHOW RING OF QUASI-SPLIT UNITARY GRASSMANNIANS

Let V be a finite-dimensional vector space over a field K (of arbitrary characteristic).
We set n := dim V. (Although in relation with our main purpose we are only interested
in the case of even n, we treat the case of odd n because it differs from the even one only
in a few places.) For any subset I C {1,2...,[n/2]} (where [n/2] = n/2 for even n and
[n/2] = (n—1)/2 for odd n), we write G;(V') for the variety of flags of subspaces in V' of
dimensions given by /. In particular, for any integer k € [1, [n/2]], the variety Gy (V)
(which we simply denote as Gi(V)) is the grassmannian of k-planes.

Let us consider the closed subvariety H; = H;(V) of the product G;(V) x Gy (V#),
where V# is the dual vector space of V, defined by the orthogonality condition: H; is the
variety of pairs of flags such that each space of the first flag is orthogonal with respect to
the corresponding space of the second flag (or, equivalently, the biggest space of the first
flag is orthogonal with the biggest space of the second flag).

Example 3.1. The variety Hj, is the variety of pairs of k-planes U C V, U' C V# such
that U - U’ = 0. It is canonically isomorphic to the variety of flags in V' consisting of a
k-plane contained in a (n — k)-plane.

Any isomorphism of the vector spaces V and V# provides a (non-canonical) isomor-
phism of the varieties G;(V) and G;(V#). Since the automorphism group of V acts
trivially on CH(G(V)), the ring CH(G(V)) is canonically identified with CH(G(V#)).
In particular, we obtain a canonical involution (i.e., a self-inverse automorphism) of the
ring

CH(G[(V) x G(V¥)) = CH(G[(V)) ® CH(G(V*)) = CH(G[(V)) ® CH(G[(V))
given by the exchange of the factors in the last tensor product.

Lemma 3.2. There ezists one and only one involution of CH(Hy) such that the following
square of the involutions and a pull-back commutes:

CH(G;(V) x G1(V#)) —— CH(G1(V) x G{(V#))

| J

CH(H;) — CH(H,).

Proof. The uniqueness is a consequence of the surjectivity of the pull-back which we have
because the ring CH(H7) is generated by the Chern classes of the tautological bundles on
Hj which are pull-backs of the tautological bundles on G (V) x Gr(V#).

To show the existence, we fix a non-degenerate symmetric bilinear form on V' (giving
a self-dual isomorphism V ~ V#). This provides the variety G;(V) x G;(V#) with the
switch involution (inducing our involution on the Chow group), and the subvariety H; is
stable under it. O
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The canonical involution on CH(H7) just constructed will be denoted by o.

Example 3.3. Assume that the field K is separable quadratic over some subfield F' C K
and let h be a K/F-hermitian form on V. Let Y7 be the flag variety of totally isotropic
subspaces in V. The K-variety (Y7)g is canonically isomorphic to H;. The non-trivial
automorphism of K/F induces an automorphism of CH(Y7)x identified with 0. The im-
age of the change of field homomorphism CH(Y;) — CH(H;) is contained in the sub-
ring CH(H;)? C CH(H;) of the o-invariant elements. Moreover, if h is hyperbolic,
the change of field homomorphism CH(Y;) — CH(H;) is injective and its image coin-
cides with CH(H[)? so that we have a canonical identification CH(Y;) = CH(H/)?; the
ideal (1 + o) CH(H;) C CH(H/)? coincides with the image of the norm homomorphism
CH(Y7)x — CH(Y7).

We are going to study the subring CH(H;)” C CH(H;) of the o-invariant elements.
More precisely, we will study the quotient of this subring by its “elementary part” — the
norm ideal (1 + o) CH(H;). We are basically interested in the case of #/ = 1.

We start with the case I = {1}. Let h be the hyperplane class in CH'(G1(V)) or in
CH'(G1(V#)) and let us define the elements a,b € CH'(H,) as the pull-backs of h x 1
and 1 x h. For any i > 0, one has a’ = ¢;(—A) and b = ¢;(—B), where A and B are the
corresponding tautological vector bundles on H;.

The ring CH(H,) is generated by the two elements a, b subject to the relations a™ = 0
and @' + a""2(=b) + -+ + (=b)""! = 0 (implying b = 0). The involution o exchanges
the generators a and b.

Let 7 be the vector bundle on H; whose fiber over a point (U,U’) is U & U’ (i.e.,
T = A& B). (Note that the isomorphism (Y1) = H; of Example transforms 7 to
the tautological vector bundle on (Y])x (defined over F).) We write ¢; for ¢;(—T). We
have ¢; = a' + a" "o+ -- -+ b° € CH(H,)°.

The elements ¢, _1, c,, ... are divisible by 2. Indeed,

Cn71/2 — anfl + anf?;bQ N abn72 — an72b N bnfl
and ¢, 11:/2 = (¢,_1/2) - a' = (cp_1/2) - V" for any i > 0.

Lemma 3.4. The ring CH(H,)?/(1+0) CH(H,) is additively generated by the classes of
the following elements:

COyCly vy Cng and Cp_1/2,¢,/2,. ...
Moreover, for any odd i < n — 2 the class of ¢; 1s 0, for any even v > n — 1 the class of
¢i/2 s 0, and for any i > 2n — 3 the class of ¢;/2 is 0.

Proof. The group CH<""'(H,) is freely generated by a’t’ with i +j < n — 1. Therefore
the quotient CH(H,)?/(1 + o) CH(H;) in codimensions < n — 1 is (additively) generated
by the classes of a'd® (2i < n — 1) which are also represented by cy;.
For any i =n —1,n,...,2n — 3, the group CH*(H}) is generated by the elements
anflbif(nfl)’ an72bi7(n72)’ o 7aif(nfl)bnfl
whose alternating sum is 0, and this is the only relation on the generators. The quotient

of the subgroup of o-invariant elements by the norms is therefore trivial for even ¢ and
generated by the class of ¢;/2 for odd i.



8 N. KARPENKO AND M. ZHYKHOVICH
Finally, for i > 2n — 3 = dim H,, the group CH*(H,) is trivial. O
Remark 3.5. Here is a complete analysis of the graded ring
R:=CH(H,)?/(1+ o) CH(H,),

which is now easily done. Similarities as well as differences with the Chow ring of a split
projective quadric are striking.

In the case of even n, the ring R is generated (as a ring) by two elements: (the classes
of) ab € R?* and ¢ :=¢,,_1/2 € R"! (R? and R"! are the graded components of R). The
relations are: (ab)™? = 0 and ¢? = 0. The non-zero homogeneous elements of R are as
follows:

(ab)" = ¢y, c(ab)’ = c,_112i/2, withi=0,1,...,(n—2)/2.

If n is odd, the ring R is generated by two elements: (the classes of) ab € R? and
c:=c,/2 € R". The relations are: (ab)"~1/2 = 0 and ¢? = 0. The non-zero homogeneous
elements of R are as follows:

(ab)' = coi, c(ab)’ = cny0:i/2, withi=0,1,...,(n—3)/2.

The geometric description of the generators (for arbitrary parity of n) is as follows. The
element (ab) is the pullback of A x h' € CH* (G (V) x G1(V#)). To describe c(ab)’, we
take some orthogonal subspaces U C V and U’ C V# of dimension [n/2] —i. Then c(ab)’

is the class of the (closed) subvariety L; C H; of pairs of lines: one line in U, the other in
U'.

Now we start to study the case of I = {k} where k satisfies 1 < k < [n/2]. We write
T for the vector bundle on Hy whose fiber over a point (U,U’) is U @& U’ (in particular,
71 = T). Note that the isomorphism (Y;)x = Hj of Example B.J transforms 7y, to the
tautological vector bundle on (Yy)x (defined over F).

We consider the natural projections my : Hyypy — Hy and 7y, 1 Hyy iy — Hy.

Lemma 3.6 (cf. [0, Proposition 2.1]). For any integer i one has
ci(—=Te) = (Wk)*ﬂciw(k—n(—ﬂ)-
Proof. For any smooth scheme X with a rank & vector bundle £ one has
¢i(=&) = mciph—1(—0(=1)),
where 7 is the morphism P(£) — X and O(—1) is the tautological (line) bundle on P(€). If

now &1, & are two rank k vector bundles on X and 7 is the morphism P(&;) x xP(&2) — X,
we get that

(=& @ &)) = W*Cz’+2(k71)( — (O @ (92(—1)))-

In particular, taking = = 7w, we see that

ci(=Th) = (Mi)sCiva—1) (= (O1(=1) ® Oa(=1))).
Since Oy(—1) ~ 7 A and Oy(—1) ~ 77 B, we are done. O
Corollary 3.7. The (o-invariant) elements

Cn72k+1<_77€)7 Cn72k+2<_77c)7 S C2n72k71(_77~c) € CH<Hk)U
are divisible by 2. O
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We consider the projections m @ Hyypq1y — Hy and w0 Hyg gy — Hppqo The
vector bundle 77}, is a subbundle of the vector bundle 7}, 711 (the quotient is a direct
sum of two line bundles), and we write a € CHZ(H{MH}) for co (11 T /7 Th)-

Lemma 3.8 (cf. [[@, Lemma 2.5]). Forie€ {0,1,...,n— 2k} one has
TrCi(=Ti) = TpaCi(=Tir1) + @ - ci2(=Ths1)  (mod 14 0).
Fori>n—2k+1 one has
TeCi(=Ti) /2 = M1 ¢i(=Te1) /2 + - cia(=Ti41) /2 (mod 1+ o).

Proof. We play with the following commutative diagram

Hp gy

N

Hgrs1y

T/f\T

Hpryy 2 Hipprny

Hiq

where H is defined as the fiber product of Hyy 11y and Hyg 41y over Hyi 1. The variety
H{i k11 s naturally a closed subvariety (of codimension 2) in H and 6 is the closed
imbedding. Note that 7, = 8 and 7,1 = 12. By Lemma B.6, the elements c;(—7;) and
¢i(=Tr)/2 are 3,1%(x) for certain x € CH(H;)?. Let us compute y := 8*3,1*(z) for an
arbitrary x € CH(H;).

The square 3-8-7-2 is transversal cartesian. Therefore 8*3, = 7,2*. By commutativity
of the square 1-2-5-4, 2*1* = 5*4* so that y = 7.5*4*(z). By commutativity of the
triangles 5-6-9 and 6-7-10, y = 10,6,6"9*4"(x) = 10.[Hp gps1y) - 9°4%(x). The class
[H{1 s 4413 € CH?(H) is computed modulo 1+ o as 9*4*(ab) + 10*(c). It follows that
y = 10,9"4*(abzx) + o - 10,9%*4*(x). Since the square 9-10-12-11 is transversal cartesian,
10,9* = 12*11,, so that we finally get y = 12*11,4*(abx) + o - 12*11,4*(x) (mod 1 + o).

We get the first (resp. second) desired congruence taking = ¢;o,—1)(—71) (resp. =
Civae—1)(—7T1)/2) by Lemma B.§, because abc;yop—1)(—T1) = Ciropr1)(—Ti) (mod 1+ o)
(resp abcirok—1)(=T1)/2 = citopr1)(=T1)/2 (mod 1 + o)) for the corresponding values
of 7 (cf. Remark B.5). O

Proposition 3.9 (cf. [[[d, Proposition 2.9]). The ring CH(Hy)? is generated (as a ring)
modulo the ideal (1 + o) CH(Hy) by the elements ¢;(—Tx) with even i satisfying 0 < i <
n — 2k and the elements c;(—Ty)/2 with odd i satisfyingn — 2k +1 <i < 2n — 2k — 1.

Proof. For each integer [ with 1 < [ < k, we consider the projection m : Hy
and the elements

.....

(%) 7/ c;(=T;) with even i satisfying 0 < i <n — 2l and
7 ci(—=T;)/2 with odd i satisfying n — 2l +1 <7 <2n— 2] — 1.
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Lemma 3.10 (cf. [[§, Lemma 2.10]). The ring CH(Hy, k)7 is generated modulo the
ideal (14 o) CH(Hy) by the elements (%) (with | running over 1,... k).

Proof. Since the statement does not depend on the base field K, we may assume that K
is quadratic separable over some subfield F. Then we fix a hyperbolic K/F-hermitian
form on V and replace CH(Hj)? by CH(Y}) (see Example B.3).

We do induction on k. The case k = 1 is Lemma B.4. To pass from k£ —1 to k, we apply
a variant of [[f, Statement 2.11] taking as Y — X the projection Y12 1 — Y12, k-1}
and taking as B the subgroup generated by the norms and the elements (%) with [ = k.
Each fiber of this projection is a hermitian quadric given by a hyperbolic hermitian space
of dimension n — 2(k — 1). Let us check that condition (a) of [[f, Statement 2.11] is
verified. The restriction of 7T to the generic fiber of the projection is isomorphic to the
direct sum of 77 and a trivial vector bundle (of rank 2(k — 1)). Therefore the pull-backs
of the elements (x) to the generic fiber give the elements

¢;(=Tx) with even ¢ satisfying 0 <i < n — 2k and
¢i(—=Tx)/2 with odd 7 satisfying n — 2k +1 < < 2n — 2k — 1.

which generate the group CH(Y') modulo the norms by Lemma B.4] (note that 2(n—2(k —
1)) —3 < 2n—2k—1).

However condition (b) of [If, Statement 2.11] is not satisfied: the specialization homo-
morphism from the Chow group of the generic fiber to the Chow group of the fiber over a
point x is not surjective in general. It is surjective if the residue field of = does not contain
a subfield isomorphic to K. We finish the proof by showing that in the opposite case the
image of CH(Y,) in the associated graded group of the filtration on CH(Y") is in the image
of 1 + 0. We are speaking about the filtration on CH(Y') whose term F" CH(Y') is the
subgroup generated by the classes of cycles on Y whose image in X has codimension > r.

Let T be the closure of z in X. Let Yr =Y xXx T — Y be the preimage of T" under
Y — X. The image of the homomorphism CH(Y,) — F"CH(Y)/F " CH(Y), where
r = codimy z, is in the image of the push-forward CH(Yr) — F" CH(Y)/F ' CH(Y).
Since z is the generic point of 7' and F'(z) = F(T) D K, a non-empty open subset U C T'
possesses a morphism to Spec K. Its preimage Yy C Yr is open and also possesses a
morphism to Spec K. Therefore (Yy)x ~ Yy [[Yv and, in particular, the push-forward
CH((Yy)x) — CH(Yy) is surjective.

We play with the following commutative diagram:

Y Y X
J J J
(Yr)k Yr T
J J J
(Yu)x Y U

It follows that the image of the push-forward CH((Y7)x) — CH(Y7) generates CH(Y7)
modulo the image of CH(Y7 \ Yy). Since the image of CH(Yr \ Yy) — CH(Y) is in
FTLCH(Y), it follows that the image of CH(Yr) in the quotient of the filtration on
CH(Y') is contained in the image of F" CH(Yx), that is, in the image of 1+ o. O
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Let I =11, k] ={1,2,...,k}. For every i € I, let A; and B; the the tautological vector
bundles on H; (so that 7; = A; @ B;). We define a;,b; € CH'(H;) as the first Chern
classes of the linear bundles (H; — H;)*A;/(H; — H;_1)*A;_1 and (H; — H,;)*B;/(H; —
Hi 1)*Bi1.

For any [ € I, we identify CH(H} j)) with a subring in CH(H ) via the pull-back. Note
that a;,b; € CH(Hy ) for i € [ +1 k]

By induction on I € I, we prove the following statement: the ring CH(H, 4)? is gen-
erated modulo (1 + o) by the elements of Proposition B.9 and the elements {a;b; }icpi+1, x-
Note that this statement for [ = k is the statement of Proposition .9.

The induction base [ = 1 follows from Lemma B.1( and Lemma B.§ (the latter showing
that the missing generators of Lemma B.1( are expressible in terms of the kept generators
and the added generators). Let us do the passage from [ — 1 to [.

The projection Hy_y, 3 — Hp, g is (canonically isomorphic to) a product of two rank
[ — 1 projective bundles (given by the dual of the rank [ tautological vector bundles A,
and B; on Hj, ). The CH(Hy, y))-algebra CH(H|_y, ) is therefore generated by the two
elements a;, b; subject to the two relations

! I
Z cl-(.Al)aﬁ_i = O, E Ci(Bl)bg_i =0.

i=0 i=0
In particular, the CH(Hj, 4)-module CH(H|_y, 4)) is free, a basis is given by the products
aib] with i,5 € [0, 1 —1].

The involution ¢ exchanges a and b. Therefore the module CH(H};_4, 4)?/(1 + o) over
the ring CH(Hyp, 1))? /(1+0) is free of rank [, a basis is given by the (classes of the) products
ajb; with ¢ € [0, [—1]. In particular, the CH(Hy, x)?/(1+40)-algebra CH(H_1, )" /(1+0)
is generated by a;b;. This generator satisfy the relation

l -
> cai(T) (b)) =0
=0

(this is an equality in the quotient CH(H_y,4))?/(1 + o) !). This is the only relation on
the generator because its powers up to [ — 1 form a basis.

Now let C' € CH(Hyp, 17)?/(1 + o) be the subring generated by the elements of Propo-
sition B.9 and the elements {@ib; }icpi41, - Note that the coefficients of the above re-
lation are in C: they are expressible in terms of ¢;(—7;) (which are non-zero modulo
1+ o0 only for i = 0,2,...,n — 2l by Lemmas and B.4. Therefore the subring of
CH(Hpy-1,1)7/(1 + o) generated by C' and a;b; is also a free C-module of rank /. On the
other hand, this subring coincides with the total ring by the induction hypothesis and it
follows that C' = CH(Hy, )7 /(1 + o). O

Remark 3.11 (Geometric description of the generators). Proposition B.9 provides
us with generators of the ring CH(Y}) modulo the K/F—norms via the identification
CH(Y;) = CH(H;)° of Example B.3. These generators have precisely the same geometric
description as the standard generators of the Chow ring of an orthogonal grassmannian.
Namely, they are obtained as via the composition (Y15 — Yi). 0 (Y ey — Y1)* out of
the additive generators of CH(Y];) modulo the norms. Moreover, for any odd i satisfying
n—2k+1 <1< 2n— 2k — 1, the generator ¢;(—7x)/2 is the class of the Schubert
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subvariety of the subspaces intersecting non-trivially a fixed totally isotropic subspace in
V of certain K-dimension. This is a consequence of Remark B.5 and Lemma B.G.

4. STEENROD OPERATIONS FOR SPLIT UNITARY GRASSMANNIANS

In this section, dimension n of the K-vector space V is supposed to be even.

Let H = Hj. One more tool for study of CH(H) is given by the morphism in : H — X,
where X is the variety of totally isotropic 2k-planes of the hyperbolic quadratic form
H(V) =V @ V#. The morphism associates to a point (U,U’) of H the point U & U’ of
X. This is a closed imbedding by [[, Corollary 10.4].

Note that the image of the pull-back in* : CH(X) — CH(H) is contained in CH(H).
Indeed, fixing a non-degenerated symmetric bilinear form on V' giving an identification
of V with V# we get the exchange involution on H (inducing o on CH(H)) and an
involution on X given by the automorphism V @ V# = V# @ V. The imbedding H — X
commute with these involutions, and the involution induced on CH(X) is the identity
because V' is of even dimension.

The power of this tool of studying CH(H) is explained by the fact that CH(X) (in
contrast to CH(H)) is very well studied. One more advantage of the variety X is that (in
contrast to H) it has twisted forms with “high” degrees of the closed points.

The meaning of the imbedding H — X is as follows. Assume that V' is endowed with
a K /F-hermitian form h. We consider the variety Y;. Let Xy, be the variety of 2k-planes
in the vector F-space V totally isotropic with respect to the quadratic form on V' given
by h. We have a natural closed imbedding in : Y, < Xy which becomes the above
imbedding over K. Choosing a hyperbolic h, we get another proof of the fact that the
image of CH(X) — CH(H) is in CH(H)?: this is so because CH(X) = CH(Xy) and
CH(Yy) = CH(H)".

Recall (see [[d)) that the ring CH(X) is generated by certain elements w; € CH'(X),
i=0,1,...,n—2kand z; € CH(X), i =n—2k,n—2k+1,...,2n—2k — 1. They satisfy
w; = ¢;(—Tx) for all i and z; = ¢;(—Tx)/2 for i # n — 2k, where Tx is the tautological
vector bundle on X.

Lemma 4.1. The pull-back CH(X) — CH(H)? /(1 + o) is surjective. The image of each
z; with even i # n — 2k is 0.

Remark 4.2. One may show (see [B]) that the pull-back in* : CH(Xy,) — CH(Y:)/(1 +
o) is surjective (for any h). Moreover, the push-forward in, induces an injection in, :
CH(Y%)/(14+0) — Ch(Xy), where Ch := CH /2. It follows that the ring CH(Y})/(1+ o)
is naturally identified with Ch(Xy;) modulo the kernel of the multiplication by [Y;] €
Ch(Xa;). In the case of k& = n/2 and hyperbolic h, the computation of the class [Y%]
given below together with the computation of Ch(Xs;) given [l], provides the following
presentation of CH(Y,,5)/(1 + o) by generators and relations: generators are e; € CH’,
i=1,3,...,n— 1; relations are e7 = 0 for each i.

Proof of Lemma [{.1. The generators of the ring on the right-hand side given in Proposi-
tion B.9 come from CH(X) because the pull-back of the tautological vector bundle Tx on
X to H is T and the Chern classes ¢;(—7Tx) are divisible by 2 for ¢ > n — 2k. This gives
the surjectivity.
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The image of z; with even ¢ # n — 2k is 0 by Lemmas B.6 and B.4. n
Lemma 4.3. The element [H] € CH(X) is a square.

Proof. Let x € CH(X) be the class of the Schubert subvariety S C X of the subspaces
U CV @®V# satisfying dimU NV > k. We claim that [H] = 2%, Indeed, x can be also
represented by the Schubert subvariety S’ C X of the subspaces U C V & V# satisfying
dimUNV# > k. Since SNS’ = H and codimy H = codimx S+codimy S, [H] = [S]-[5]
by [[, Corollary 57.22]. O

We now pass to the modulo 2 Chow group Ch(X) = CH(X)/2 and we use the notion
of level for elements of Ch(X) introduced in [{]. Namely, an element of Ch(X) is of level ]
if it can be written as a polynomial in the generators of the z-degree <[ (we use the same
notation w;, z; for the classes of the integral generators). We recall that (see [H, proof of
Proposition 12]) that by the formula of [[Lf, Proposition 2.8] the cohomological Steenrod
operation preserves the level. In particular, the squaring preserves the level.

We also recall that the generators satisfy the relation

% = zici(=Tx) = zip1cia (= Tx) + zip2cio(=Tx) — . ..
which shows that any element of Ch(X) can be written as a polynomial in the generators

of z;-degree < 1 for each 7. A polynomial satisfying this restriction is called standard
below.

Corollary 4.4. The element [H] € Ch(X) is of level k.

Proof. Since squaring does not affect the level, it suffices to show that the level of a
homogeneous element x with 22 = [H] is k. The codimension of z is equal to

(dim X — dim H)/2 = (k(4n — 6k — 1) — k(2n — 3k)) /2 = (k/2)(2n — 3k — 1) =
n—2k)+(n—-2k+1)+---+(n—Fk—1),

and the minimal codimension of an element which is not of level k is this number plus
n — k. O

Theorem 4.5 (cf. [[, Proposition 12]). Let F' be a field of characteristic # 2, K/F
a quadratic field extension, V a vector space over K of even positive dimension n, h a
K/ F-hermitian form on V', k an integer satisfying 1 < k <n/2, Y the variety of totally
isotropic k-planes in V.. Then for any i > k(n — 2k), one has deg S Ch;(Yy) = 0, where
S is the cohomological Steenrod operation and deg is the degree homomorphism on the
modulo 2 Chow groups.

Proof. Assume that deg S Ch/(Y) # 0 for some j. Then degSCh’(H)” # 0. Since S
commutes with o, S is trivial on (1 + o). Therefore deg.S Ch/(H)?/(1 + o) # 0. It
follows by Lemma [] that degin* S Ch?(X) # 0, or, equivalently, deg S in* Ch/(X) # 0.
Let y € Ch?(X) be a standard monomial in the generators with deg S in*(y) # 0. Since
in*(y) # 0, the monomial y does not contain any z; with even i # n = 2k by the second
half of Lemma [L.T. We may also assume that y does not contain z, . Indeed, in*(2,_ox)
is a polynomial in the generators of Ch(H)?/(1+0) of codimension < n—2k. In particular,
in* (2,_gx) is a polynomial in ¢;(—7z) with i < n — 2k. Let P € Ch" ?*(X) be the same
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polynomial in ¢;(—7Tx) = w;. Then in*(P) = in*(z,_2) and we may replace z, o by P
in y without changing in*(y).
We have
0 # degin* S(y) = degin, in* S(y) = deg S([H] - y).

Since degree of any level 2k — 1 element is 0, [[], proof of Proposition 12|, the element
S([H]y) is not of level 2k—1. Since the Steenrod operation preserves the level, the product
[H] -y is not of level 2k — 1. Since [H] is of level k by Corollary .4, vy is not of level k — 1.
The smallest possible codimension of a monomial of level not k — 1 without z-generators
of even codimension is the sum of & summands

m—2k+1)+(n—2k+3)+---+(n—1)=k(n—2k+1)+k(k—1)=k(n— k).
It follows that j < k(n — k). Since dimY — k(n — k) = k(n — 2k), we are done. O

5. SOME RANKS OF SOME MOTIVES

Let K/F be a separable quadratic field extension. Let M be a motive over F' with
coefficients in Fy. We assume that there exists a field extension F'/F such that F' is
algebraically closed in F” and the motive My decomposes in a sum of shifts of the motives
of Spec F' and Spec K’, where K’ is the field K ®r F’. Note that the number of F’ and
the number of K’ appearing in the decomposition do not depend on the choice of F”: if
F" is another field like that, the Krull-Schmidt principle over the field F’ @ F” gives the
equalities. The number of F” in the decomposition is the F'-rank rkr of M, the number
of K’ is the K-rank rkx of M. The usual rank rk M is also defined for such M and is
equal to tkp M + 2rkg M.

Recall that there are functors

tr,cor : CM(K,Fy) — CM(F,Fy).
]

The first one (non-additive and not commuting with the shift, see [{]) is induced by the
Weil transfer. The second one (additive and commuting with the shift, see [[[T]) is induced
by the functor associating to a K-variety the same variety considered as a variety over F
via the composition with Spec K’ — Spec F'.

Here is an example of computation of ranks.

Lemma 5.1. Let M be a motive over K isomorphic to a sum of n shifts of the Tate motive.
Then tkptr M =tk M =n, tkx tr M = n(n —1)/2, rkp cor M = 0, and rkg cor M = n.

Proof. Since cor M (Spec K) = M(Spec K), the formulas for cor follow. The formulas for
tr follow from [[], Lemma 2.1]. O

Let D be a central division K algebra admitting a K/ F-unitary involution, and assume
that deg D = 2™ for some n > 0. For an integer k € [0, n — 1], let X} be the Weil transfer
with respect to K/F of the generalized Severi-Brauer variety X (2%, D). The motive
M (X}y) satisfy the above conditions (one may take as F” the function field of the variety
Xp) so that the ranks rkp M and rkx M are defined for any summand M of M(X}). In
particular, the ranks rkr U(X}) and rky U(X}) are defined for the upper (indecomposable)
motive U(Xg).

Proposition 5.2. vy(tkp U(Xy)) =n —k, vo(tkg U(Xy)) =n—k — 1.



ISOTROPY OF UNITARY INVOLUTIONS 15

Proof. We induct on k. Let us do the induction base k = 0. According to [, Theorem
1.2], U(Xy) = M(Xp). Since tk M(X(1,D)) = 2", it follows from Lemma p.1 that
I'kF U(Xo) = 2”7 I'kK U(Xo) = 2n—1(2n — 1)

Now we assume that k > 0. Since tk M (X (2¥, D)) = b := @:), it follows from Lemma
b.1 that rkp M (Xy) = b and rkx M (X)) = b(b — 1)/2. In particular, vy(rkp M (X})) =
n—k > 0 and vy(rkxg M(Xy)) = n — k — 1. Therefore, it suffices to show that for each
summand M of the complete motivic decomposition of X, different from U(X}) we have
vo(tkp M) > n — k and vy(rtkx M) >n —k — 1.

By [ and [}, M is a shift of the motive U(X;) with some [ € [0, k — 1] or a shift of
the motive corg,r U(X (2!, D)) with some [ € [0, k]. In the first case we are done by the

induction hypothesis. In the second case we have rkp M = 0 and rkx M = (227) U

6. UNITARY ISOTROPY THEOREM

Let K be a field of characteristic # 2, A a central simple K-algebra, 7 a unitary
involution on A, F' the subfield of the elements of K fixed under 7. We say that 7 is
isotropic, if 7(I) -1 = 0 for some non-zero right ideal I C A; otherwise we say that 7 is
anisotropic.

Theorem 6.1 (Unitary Isotropy Theorem). If 7 becomes isotropic over any field
extension F'/F such that K' :== K ®p F' is a field and the central simple K'-algebra
A== A®p F' is split, then T becomes isotropic over some finite odd degree field extension
of F.

Proof. We can easily reduce this theorem to the case of 2-primary ind A. Indeed, it suffices
to find a finite odd degree field extension L/F', such that A becomes 2-primary over L.
For such L/F we can take the field extension of F' corresponding to a Sylow 2-subgroup of
the Galois groups of the normal closure of E'/F | where E is a separable finite odd degree
field extension of K such that ind(A ®p F) is 2-primary.

Because of the above redaction, we assume that the index of A is a power of 2.

We follow the lines of the proof of [, Theorem 1]. We prove Theorem [6.]] over all fields
simultaneously using an induction on ind A. The case of ind A = 1 is trivial. From now we
are assuming that ind A = 2" for some integer » > 1, and we fix the following notations:

I is a field of characteristic different from 2;

K/F is a quadratic field extension;

A is a central simple K-algebra of the index 2" (with r > 1);

7 is an F-linear unitary involution on A;

D is a central division F-algebra (of degree 2") Brauer-equivalent to A;

V' is a right D-module of D-dimension v with an isomorphism Endp(V) ~ A (in
particular, rdimV = deg A = 2" - v, where rdim V' := dimpV/deg D is the reduced
dimension);

we fix an arbitrary F-linear unitary involution ¢ on D;

h is a hermitian (with respect to €) form on V' such that the involution 7 is adjoint to
h;

Y = X(27;(V,h)) ~ X(27; (A, 1)) is the variety of totally isotropic submodules in V' of
reduced dimension rdim = 2" which is isomorphic (via Morita equivalence) to the variety
of right totally isotropic ideals in A of the same reduced dimension;
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X is the Weil transfer (with respect to K/ F') of the generalized Severi-Brauer K-variety
X (24 D).

Let F” be the function field of the Weil transfer of the Severi-Brauer variety X (1; D
of D. Clearly, K’ is a field and A’ is split for such F’. We assume that the involution 7/
(and therefore, the hermitian form hg) is isotropic and we want to show that A (and 1)
becomes isotropic over a finite odd degree extension of F. According to [B, Theorem 1.4],
the Witt index of hps is a multiple of 2" = ind A. In particular, v > 2. If the Witt index
is greater than 2", we replace V' by a submodule in V' of D-codimension 1 and we replace
h by its restriction on this new V. The Witt index of hgs drops by 2" or stays unchanged.
We repeat the procedure until the Witt index becomes equal to 2". In particular, v is still
> 2.

The variety Y has an F’-point and the index of the central simple K ®p F(X)-algebra
A ®@p F(X) is equal to 27! (note that K ®@p F(X) is a field). Consequently, by the
induction hypothesis, the variety Yr(x) has an odd degree closed point. We prove Theorem
by showing that the variety Y has an odd degree closed point.

We will use and we recall the following statement from [f].

Proposition 6.2. Let X be a geometrically split, geometrically irreducible F'-variety sat-
isfying the nilpotence principle and let Y be a smooth complete F-variety. Assume that
there exists a field extension E/F such that

(1) for some field extension E(X)/E(X), the image of the change of field homomor-
phism Ch(YVg@x)) — Ch(ym) coincides with the image of the change of field
homomorphism Ch(YVrx)) = Ch(Vgmy):

(2) the E-variety Xg is p-incompressible;

(3) a shift of the upper indecomposable summand of M(X)g is a summand of M(Y)g.

Then the same shift of the upper indecomposable summand of M(X) is a summand of

M(Y).

We are going to apply Proposition [ (withp =2) X = X, Y =Y, and E = F(Y).
We need to check that conditions (1) - (3) are satisfied for these X, Y, E. First of all, we
need a motivic decomposition of Y over a field extension F'/F, such that Y (F) # @ and
K = K @p F is a field. Over such F, the hermitian form h decomposes in the orthogonal
sum of the hyperbolic D-plane and a hermitian form 7’ on a right D-module V' with
rdim V' = 2" (v — 2), where D is central simple K-algebra D ®@p F. Let L/F(X) be a
finite odd degree extension such that Y (L) # (). Recall that a smooth projective variety
is anisotropic, if it has no odd degree closed points (by [[, lemma 6.3], the motive of an
anisotropic variety does not contain a Tate summand).

Lemma 6.3. The shift of the motive of Xz and two Tate motives are the motivic sum-

mands of Y. In the case F' = L, any other motivic summand of Yy, is a shift of some
anisotropic L-variety.

Proof. According to [, Theorem 15.8], the variety Yz is a relative cellular space (as defined
in ([, §66]) over the (non-connected) variety Z of triples (I, J, N), where I and J are right
ideals in D, and where N is a submodule in V"’ such that the submodule I & J& N C V
is a point of Y (that is, ez(I) - J =0, N is totally isotropic, and the reduced dimension
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of the D-module I ®.J@® N C V is equal to deg D). Therefore, by [, Corollary 66.4], the
motive of Y} is the sum of shifts of the motives of the components of Z.

The shift of the motive of X is given by the motive of the component of the triples
{(I,J,0)|rdim I = rdimJ = (deg D)/2}. The rational points (0, D,0) and (D,0,0) of
Z are components of Z which produce the two promised Tate summands. In the case
F = L we have ind D = (deg D)/2 = 2"~'. Therefore to prove the second statement
of this lemma, we only need to check that the component of Z of triples (0,0, N) is

anisotropic. It is true, because this component is naturally identified with anisotropic
L-variety Y' = X (27; (V', 1)). O

Remark 6.4. Two Tate motives mentioned in Lemma 6.3 are clearly Fy and Fy(dimY).
In the case F' = L, by duality, the motivic summand M (X}) of Y, has as the shifting
number the integer

n:= (dimY — dim X)/2.

Since Y(F(Y)) # 0, the condition (3) of Proposition [6.3 is checked by Lemma .3 Let
us check now the condition (2). By [l, Theorem 1.1}, the variety X p(y) is 2-incompressible
if (and only if) the K @z F(Y)-algebra D ®p F(Y) is division. This is indeed the case:

Lemma 6.5. The algebra D ®@p F(Y') is division, that is, ind(D ®p F(Y)) = ind D.

Proof. The proof is similar to the proof of [, Lemma 6]. Assume that ind(D ®@r F(Y)) <
ind D. Then we could prove as in [, Lemma 6], that the upper indecomposable motivic
summand of X is a motivic summand of Y. This implies (because the variety X is 2-
incompressible) that the complete motivic decomposition of the variety Yz x) contains the
Tate summand Fy(dim X). By Lemma .3 and Remark p.4 we get a contradiction. [

We have checked condition (2) of Proposition p.2. To check the remaining condition
(1), we will need the same property for the variety Y as in [f, Lemma 7]. We can prove it
for more general class of varieties. Let Z be a projective homogeneous variety under an
arbitrary absolutely simple adjoint affine algebraic group G of type A, over a field k (we
can replace “absolutely simple of type A,,” by the condition, that G is semisimple and
becomes of inner type over some quadratic separable field extension of k). In other words,
Z is a variety of flags of isotropic right ideals of a central simple algebra over a quadratic
separable field extension of k£ endowed (the algebra) with a unitary k-linear involution.

Lemma 6.6. Let k'/k be a finite odd degree field extension and let k be an algebraic
closure of k containing k'. Then Im(Ch(Z) — Ch(Z;)) = Im(Ch(Z) — Ch(Z})).

Proof. For any field extension E C k of k, we write I for the image of Ch(Zg) — Ch(Z3)).
We only need to show that Iy C I because, clearly, I, C Ij.

If G is of inner type, the variety Z is a variety of flags of right ideals of a central
simple k-algebra. Therefore the group Aut(k/k) acts trivially on Ch(Z;). It follows that
[k : k] - Iy C I}, and therefore I, C Ij.

Now we assume that G is of outer type. Let K C k be the separable quadratic field
extension of k such that G is of inner type. Consider two subgroups Aut(k/K) and
Aut(k/k') of the group Aut(k/k). Acting on Ch(Z}), they act trivially on I;,. The index
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of the first subgroup is 2 while the index of the second one is odd (a divisor of [k : k]).
Indeed,
Aut(k/k) = Aut(keep/k), Aut(k/K) = Aut(keep/K),

where kg, is the separable closure of k in k, so that Aut(k/k)/ Aut(k/K) = Aut(K/k);
if k" is the separable closure of k in &', then Aut(k/k") = Aut(k/k"), so that the index of
Aut(k/K') in Aut(k/k) is [K" : K].

It follows that Aut(k/k) acts trivially on I;,. Therefore we still have the inclusion
[k‘l : k‘] - Iy C Iy, giving Iy C I. ]

Corollary 6.7. U(X)(n) is a motivic summand of Y.

Proof. As planned, we apply Proposition top=2,X=X,Y=Y,and £ = F(Y).
Since E(X) C L(Y), we have the commutative diagram

CH(Ypx)) —— CH(Yiy)) —— CH(Ymy)

w T

where the maps are the change of field homomorphisms and where L(Y') is an algebraic
closure of L(Y). We check condition (1) for E(X) = L(Y). For any field extension
F C L(Y) of F, we write I for the image of Ch(YVr) — Ch(Yyy). We only need to
show that Igx)y C Ipx). We have Igx) C Ipy). Since Y(L) # 0, the field extension
L(Y')/L is purely transcendental. Therefore res L(y)/r is surjective and Iryy = I. Finally,
by Lemma .G, I, = Ir(x). We obtain the necessary inclusion Igx) C Iry) = I = Ipx).

As already pointed out, condition (2) is satisfied by Lemma [.5, and condition (3)
is satisfied by Lemma [.3. Therefore, by Proposition [6.9, a shift of U(X) is a motivic
summand of Y. By Remark (.4, it follows that the shifting number of this motivic
summand U(X) is equal to n. O

As in [[] we need the following enhancement of Corollary [6.1.

Proposition 6.8. There exists a symmetric projector m on'Y such that the motive (Y, )
is isomorphic to U(X)(n).

Proof. We can follow the lines of the proof of [, Proposition 9] if we know that the
complete motivic decomposition of Yp(x) could not contain two copies of Fy(n). This is

true by Lemma .3 and Remark .4 U
The following proposition finishes the proof of Theorem [.]].

Proposition 6.9. Let F' be a field of characteristic # 2. Let K/F be a separable quadratic
field extension. Let D be a central division K algebra of degree 2" with some r > 1
admitting a K/F-unitary involution. Let X be the Weil transfer of the generalized Severi-
Brauer variety X(2"7%, D). Let A be a central simple K -algebra Brauer-equivalent to D
endowed with a K/F-unitary involution. Let'Y be the variety of isotropic rank 2" right
ideals in A. Assume that there is a symmetric projector m € Chaimy (Y X Y') such that
the motive (Y, ) is isomorphic to a shift of the upper motive of X. Then'Y has a closed
point of odd degree.
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Proof. By Lemma P.10, it is enough to show that sq(m) # st(7). Computing sq and st, we
may go over any field extensmn of F. There exists a field extension F /F over which D is
split, but K := K ® F F is still a field. Since the motive of X over F is a sum of shifts of
the motives of Spec I and Spec K, m decomposes in a sum of two orthogonal projectors
o and § such that (Y, a) is a sum of shifts of the motive of Spec F' and (Y3, ) is a sum
of shifts of the motive of Spec K.

The projectors o and  are symmetric. Indeed, the subspace Ch, (Y, 8) C Ch.(Yjz,m)
coincides with

(14 0)Chy(Yg,7) = Im (Ch.(Yz, ) — Chy(Yp, ) — Ch. (Y, 7).

Since 7 is also a sum of the orthogonal projectors o, 5 and (X, o) is still a sum of shifts
of the motive of Spec F' and (Y, 8 is still a sum of shifts of the motive of Spec K, we
also have that the subspace Ch, (Y%, 5") C Ch,(Y%, ) coincides with (1 + o) Ch,(Yz, 7).
This shows that [ is symmetric. Therefore a = 7w — § also is symmetric.

Now we have (see Lemmas P.3 and R.J): sq(a) = rkp(Y,7) (mod 4) = rkp U(X)
(mod 4) = 2 and sq(f) = 2rkg (Y, 7) (mod 4) = 2rkx U(X) (mod 4) = 2 by Proposition
5.2 On the other hand, st(a) = 0. Indeed, a over F is a sum of ax b with a,b € Chs4(Y7),
where d := (dimY — dim X)/2 = (k(2n — 3k) — k?/2)/2 with k := 2" = ind A and
n = deg A. Since d > k(n—2k), deg S(b) = 0 by Theorem [I.5. Therefore pr, S(axb) = 0.
It follows that pr,(a) is divisible by 2 for an integral representative a of S(axb). Therefore
pr,(a) is divisible by 2 if now a is an integral representative of S(«a). It follows that pr,(a)?
is divisible by 4 and consequently st(a) = 0.

Finally, let us check that st(5) = 2. The point is that § is in

(14 0) Ch(Yy) = Im (Ch(Yz) — Ch(Y;) — Ch(Yy)).

Therefore 3 over K is rational even if h is anisotropic (in which case the variety Y has
no odd degree closed points). By Lemma .10, this shows that st(3) = sq(5).
We have calculated the values of the operations sq and st on o and 5. We have by

Lemmas P.2, B4, and B.9 that sq(7) = sq(«) +sq(5) = 0 and st(7) = st(a) + st(5) = 2.
In particular, sq(mw) # st(m). O

Theorem p.]] is proved. U
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