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Abstract. Let F be a field of characteristic p > 0. Let Ωn(F ) be the F -
vector space of n-differentials of F over F p. Let K = F (g) be the function

field of an irreducible polynomial g in m > 1 variables over F . We derive an
explicit description of the kernel of the restriction map Ωn(F ) → Ωn(K). As
an application in the case p = 2, we determine the kernel of the restriction
map when passing from the Witt ring (resp. graded Witt ring) of symmetric
bilinear forms over F to that over such a function field extension K.

1. Introduction

When studying algebraic objects defined over some base field, such as quadratic
forms, central simple algebras or Milnor K-groups, it is quite natural to ask how
these objects behave when extending scalars to a field extension. In particular,
one would like to be able to determine the kernel of the restriction homomorphism
between the Witt rings, the Brauer groups, and the Milnor K-groups of the base
field and of the extension field.

One of our main objectives is to derive an explicit description of the Witt kernel
for symmetric bilinear forms in characteristic 2 for a large class of field extensions,
namely extensions given by function fields of arbitrary hypersurfaces over the base
field. This includes all finite simple extensions of the base field (the one-variable
case). Our proof is based on a study of how the space of absolute Kähler differential
forms Ωn(F ) behaves under field extensions. These results on differential forms are
of considerable interest in their own right and they are proved for fields of arbitrary
positive characteristic p > 0.

The strategy of the proof for determining the Witt kernels is as follows. The
crucial ingredient is the determination of the kernel Ωn(E/F ) of the map Ωn(F ) →
Ωn(E) where E is the quotient field of F [X ]/(f(X)) for an irreducible polynomial
f(X) ∈ F [X ] where X = (X1, . . . , Xn), and char(F ) = p > 0. This is done in sev-
eral steps. We start by noticing that Ωn(E/F ) = 0 if E/F is purely transcendental
or separable algebraic (§7). This allows us to discard all irreducible polynomials
that are not in F [Xp] = F [Xp

1 , . . . , X
p
n]. Next, we treat the case n = 1 (i.e. the case

of a simple algebraic extension). The kernel can then be expressed as the subspace
of elements in Ωn(F ) that are annihilated by all differentials da where a ∈ F ∗ runs
through all nonzero coefficients of f(X) (which we may assume to be monic). This
is done in §8. We then use an induction on the number of variables n. If n > 2,
let X ′ = (X1, . . . , Xn−1). By a linear change of variables and suitable scaling, we
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then may assume that f(X) ∈ F [Xp] is monic in Xn with coefficients in F [X ′],
so we use the 1-variable case to conclude that over F (X ′), the kernel consists of
those elements in Ωn(F ) that, over F (X ′), are annihilated by differentials da(X ′)
where a(X ′) ∈ F [X ′p] runs through the coefficients of f(X) ∈ F (X ′)[Xn]. By
an induction on the number of variables, we can then show that the elements in
Ωn(F ) annihilated by da(X ′) are already annihilated by the dα where α ∈ F ∗ runs
through all nonzero F -coefficients of a(X ′). This induction is done in §10 where we
also need some results on the kernel Ωn(E/F ) in the special case where E is the
function field of a quasilinear p-form (§9).

The step from differential forms to bilinear forms in the case of characteristic
p = 2 is done in §11 using a famous theorem by Kato (Theorem 5.2) and by invoking
results by Aravire-Baeza on the kernel of the restriction map on the graded Witt
ring when passing to the function field of a bilinear Pfister form (Theorem 5.6). This
allows us to determine the kernel of the restriction map for the graded Witt ring for
function fields of hypersurfaces as defined above (Theorem 11.3) and finally, using
a fairly standard argument to reduce the situation to base fields that are finitely
generated over their prime field, we obtain the Witt kernel for such extensions
(Corollaries 11.4, 11.6).

To put this result into perspective, we give a short account of some previously
known results on Witt kernels (in characteristic not 2 and in characteristic 2) in
the next section.

To keep the paper as self contained as possible, we introduce in sections 3–5
the main objects of our study and some basic properties and theorems concerning
them: quasilinear p-forms (essentially diagonal homogeneous forms of degree p in
characteristic p > 0), bilinear forms in characteristic 2, and differential forms over
field of positive characteristic. In §6, we prove a result belonging to the realm of
basic Galois theory but which turns out to be extremely useful in the study of
differential forms under simple algebraic extensions.

2. A short history of Witt kernels

Let F be a field and denote by W (F ) the Witt ring of F , i.e. the Witt ring of
quadratic forms if char(F ) 6= 2 resp. of symmetric bilinear forms if char(F ) = 2.
If char(F ) = 2, we denote the Witt group of quadratic forms by Wq(F ) which is
a W (F )-module in a natural way. We define the Witt kernel W (E/F ) for a field
extension E/F to be the kernel of the restriction homomorphism W (F ) → W (E)
(similarly, Wq(E/F )).

It is easy to see that W (E/F ) = 0 if E/F is purely transcendental. One also
has W (E/F ) = 0 for odd degree extensions, a result often referred to as Springer’s
theorem [Sp] but that has been proved earlier by E. Artin in a communication to
E. Witt (1937).

Let us now assume that char(F ) 6= 2. A well known result states that if

E = F (
√
d) is a quadratic extension, then W (E/F ) is generated by the norm

form 〈1,−d〉 of that extension. While this is easy to show, it is considerably harder
to determine W (E/F ) for [E : F ] = 4. The case of biquadratic extensions E =

F (
√
a,
√
b) has been solved by Elman-Lam-Wadsworth [ELW1] where it is shown

that W (E/F ) is generated by 〈1,−a〉 and 〈1,−b〉, and the case of degree 4 exten-
sions containing a quadratic subextension was treated by Lam-Leep-Tignol [LLT].
The Witt kernel of arbitrary degree 4 extensions has only been determined rather
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recently by Sivatski [Si]. Little is known for Witt kernels of higher even degree ex-
tensions. For triquadratic extensions E = F (

√
a1,

√
a2,

√
a3) it is shown by Elman-

Lam-Tignol-Wadsworth [ELTW] that generally
∑3

i=1 〈1,−ai〉W (F ) ( W (E/F ),
but an explicit description of generators of W (E/F ) is not known. Of course, more
can be said if one makes strong assumptions on the base field. For example, for local
or global fields, it is known that W (F (

√
a1, . . . ,

√
an)/F ) =

∑n
i=1 〈1,−ai〉W (F ),

see Elman-Lam-Wadsworth [ELW2].
Most of the work on Witt kernels of function field extensions E/F concerns

extensions of type E = F (ϕ) := F (Xϕ), where Xϕ is the quadric defined by a
quadratic form ϕ. A famous result states that if ϕ is an anisotropic Pfister form
thenW (F (ϕ)/F ) = ϕW (F ), see Arason [Ar] (but already implicit in Arason-Pfister
[AP]). Generators for Witt kernels for function fields of other types of quadratic
forms, in particular forms of small dimension, have been determined by Fitzgerald
[F]. Witt kernels for function fields of hyperelliptic curves have been computed by
Shick [Sh], but very little else is known.

Witt kernels in characteristic 2 have only been studied more recently. First, con-
sider Witt kernels Wq(E/F ) for quadratic forms. Denote by [1, a] the nondegener-
ate quadratic form x2 + xy + ax2. Consider first the case of a quadratic extension
E = F (α). One can readily show that if E/F is inseparable, say α2 = a ∈ F ∗,
then Wq(E/F ) = 〈1, a〉bWq(F ) (Baeza [B1], Ahmad [A1]), and if E/F is separable,
say, α2 + α+ a = 0 with a ∈ F ∗, then Wq(E/F ) =Wq(F )[1, a] (Baeza [B2, 4.11]).
Witt kernels for purely inseparable quartic extensions have been determined by
Mammone-Moresi [MM] (biquadratic extension) and Ahmad [A3] (simple exten-
sion). The case of biquadratic separable extensions is due to Baeza [B2, 4.16], and
that of biquadratic non-purely inseparable extensions to Ahmad [A2]. Laghribi
[L2] generalized the result by Mammone-Moresi to arbitrary purely inseparable
multiquadratic extensions. In all these cases, generators of the Witt kernels can be
expressed in terms of the norm forms of the quadratic (inseparable or separable)
subextensions. Again, not much else is known for other types of finite algebraic
extensions.

As for function field extensions, the only case that has been studied thoroughly
is that of function fields of quadrics where the case of singular quadrics is also of
particular interest. If π is a quadratic Pfister form and E = F (π) is the function field
of π, then Wq(E/F ) = Wq(F )π (see Laghribi [L1], but already implicit in Baeza
[B1]). If B is a bilinear Pfister form and E is the function field of the quadric
defined by B(x, x) = 0 (which is the same as the function field of the quasilinear
Pfister 2-form B(x) := B(x, x), see §3), then Wq(E/F ) = BWq(F ), see Laghribi
[L1] where Witt kernels Wq(F (ϕ)/F ) for various other types of quadratic forms ϕ
have been determined, especially for quadratic forms in small dimension (including
singular ones) in analogy to Fitzgerald’s results in characteristic 2.

Finally, consider Witt kernels W (E/F ) for Witt rings of bilinear forms in char-
acteristic 2. It is not difficult to show that if E/F is separable, then W (E/F ) = 0
(Knebusch [Kn1]). In [H2], Witt kernels for a large class of purely inseparable
algebraic extensions have been determined. In particular, it was shown that if E
is purely inseparable of exponent 1 over F (i.e. E2 ⊂ F ⊂ E), then W (E/F )
is generated by bilinear forms 〈1, t〉b where t ∈ E2 \ {0}. In the case of func-
tion field extensions, Laghribi [L1] determined the Witt kernel for any function
field E = F (ϕ) of an (anisotropic) quadratic form ϕ. If ϕ is not totally singular,
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then the function field can be realized as a transcendental extension followed by
a separable quadratic extension, which in view of the above results implies that
W (E/F ) = 0 in that case. If ϕ is totally singular (which means that ϕ is a quasi-
linear 2-form in the sense of §3) then the Witt kernel is generated by certain bilinear
Pfister forms that can be expressed in terms of the coefficients of ϕ. We prove a
far more general result, namely we determine the Witt kernel for bilinear forms
in characteristic 2 for arbitrary function fields of hypersurfaces, i.e. for extensions
E/F where E is the quotient field of F [X ]/(f(X)) for an irreducible polynomial
f(X) = f(X1, . . . , Xn) ∈ F [X1, . . . , Xn], see Corollary 11.4. This result readily
implies Laghribi’s, but our proof is completely different. It includes the case of
arbitrary simple algebraic extensions (n = 1).

3. Quasilinear p-forms

Quasilinear p-forms have been studied in quite some detail in [H1] where they
are called p-forms for short. In the sequel, we introduce only all those basic notions
and results about quasilinear p-forms which we will require for our purposes. For
proofs and more details we refer to [H1].

Let F be a field of characteristic p > 0 and let V be an F -vector space of
finite dimension n. A quasilinear p-form ϕ on V is a map ϕ : V → F satisfying
ϕ(x+ y) = ϕ(x)+ϕ(y) and ϕ(λx) = λpϕ(x). In the case p = 2, quasilinear 2-forms
are nothing else but totally singular quadratic forms.

If {e1, . . . , en} is an F -basis of V and ϕ(ei) = ai ∈ F , then we write ϕ =
〈a1, . . . , an〉. We adopt the usual definitions from the context of quadratic forms.
Two quasilinear p-forms (ϕ, V ) and (ψ,W ) are isometric, ϕ ∼= ψ, if there exists a
linear isomorphism t : V →W such that ψ(tx) = ϕ(x) for all x ∈ V .

The value sets are denoted by DF (ϕ) = {ϕ(x) |x ∈ V \ {0}} and D0
F (ϕ) =

DF (ϕ) ∪ {0}. Note that if ϕ = 〈a1, . . . , an〉, then D0
F (ϕ) = spanFp{a1, . . . , an}

which is a finite dimensional F p-subvector space of the F p-vector space F , and
ϕ ∼= ψ iff dimϕ = dimψ and D0

F (ϕ) = D0
F (ψ).

One defines in the obvious way an “orthogonal” sum ϕ ⊥ ψ and a product ϕ⊗ψ
of quasilinear p-forms. In particular,

〈a1, . . . , an〉 ⊗ 〈b1, . . . , bm〉 ∼= 〈a1b1, . . . , a1bm, a2b1 . . . , anbm〉 .
ϕ = 〈a1, . . . , an〉 is called anisotropic if 0 6∈ DF (ϕ), which is equivalent to saying
that dimϕ = dimFp D0

F (ϕ), i.e. the elements a1, . . . an are F p-linearly independent.
Every quasilinear p-form ϕ decomposes in a unique way (up to isometry) as ϕ ∼=
ϕan ⊥ 〈0, . . . , 0〉 with ϕan anisotropic. One then has dimϕan = dimFp D0

F (ϕ). ϕ is
called p-split if dimϕan 6 1

p
dimϕ.

For a ∈ F , we define 〈〈a〉〉 = 〈1, a, a2, . . . , ap−1〉, and a form π = 〈〈a1, . . . , an〉〉 =
〈〈a1〉〉 ⊗ . . . 〈〈an〉〉 will be called an n-fold quasilinear Pfister p-form. Note that
D0

F (π) = F p(a1, . . . , an), and that dimπan = [F p(a1, . . . , an) : F
p] = pm for some

m 6 n. So n-fold quasilinear Pfister p-forms are either anisotropic or p-split.
For each quasilinear p-form ϕ we define the norm field NF (ϕ) and the norm

degree ndegF (ϕ) as follows:

NF (ϕ) = F p(a
b
| a, b ∈ DF (ϕ), b 6= 0} ,

ndegF (ϕ) = [NF (ϕ) : F
p] .

Note that for an n-fold quasilinear Pfister p-form π, one has NF (π) = D0
F (π).



DIFFERENTIAL FORMS AND BILINEAR FORMS 5

By the above, using value sets, anisotropic quasilinear p-forms can be identified
with finite dimensional F p-subvector spaces of F , and anisotropic quasilinear Pfister
p-forms with finite extensions of F p inside F .

We define the set of similarity factors of ϕ by G∗

F (ϕ) = {x ∈ F ∗ |xϕ ∼= ϕ}
and put GF (ϕ) = G∗

F (ϕ) ∪ {0}. It is not difficult to prove that GF (ϕ) is a finite
extension of F p inside NF (ϕ) ([H1, Proposition 6.4]). If π is a quasilinear Pfister
p-form then NF (π) = GF (π).

Let ϕ be a quasilinear p-form over F and let E/F be a field extension. Then ϕE

denotes the quasilinear p-form over E obtained from ϕ by scalar extension.
We will need the following result on the p-splitting of p-forms under function

field extensions (see [H1, Theorem 6.10]).

Theorem 3.1. Let X = (X1, . . . , Xn) be an n-tuple of variables and put Xp =
(Xp

1 , . . . , X
p
n). Let f(X) ∈ F [X ] be an irreducible polynomial and E = F (f) be the

function field of f(X) over F , i.e. the quotient field of F [X ]/(f(X)). Let a∗ ∈ F ∗

denote the leading coefficient of f(X) (with respect to the lexicographical ordering of
monomials). Let ϕ be an anisotropic quasilinear p-form over F . Then the following
are equivalent.

(i) f(X) ∈ GF (X)(ϕ);
(ii) f(X) ∈ GF (ϕ)[X

p] (i.e., f(X) ∈ F [Xp] and each coefficient of f is in
GF (ϕ));

(iii) a∗ ∈ GF (ϕ) and ϕE is p-split.

4. Bilinear forms and the Witt ring in characteristic 2

In this section, all fields are assumed to be of characteristic 2. For all undefined
notations and statements mentioned below without proof, we refer to [EKM, Ch. I],
[M].

By a bilinear form over a field F we will always mean a finite-dimensional sym-
metric nondegenerate bilinear form over F . A bilinear form B : V × V → F
on an f -vector space V is called isotropic if there exists x ∈ V \ {0} such that
B(x) := B(x, x) = 0, i.e., 0 is contained in the value set

DF (B) = {B(x) |x ∈ V \ {0}} .
We put D0

F (B) = DF (B) ∪ {0} and D∗

F (B) = DF (B) \ {0}. Note that D0
F (B)

is an F 2-subvector space of F . The group of similarity factors of B is defined by
GF (B) = {x ∈ F ∗ |xB ∼= B}.

2-dimensional isotropic bilinear forms are called metabolic planes. Such a meta-
bolic plane is always isometric to a form of type

Ma =

(
a 1
1 0

)
, a ∈ F,

and Ma
∼= Ma′ iff aF ∗2 = a′F ∗2. The form H := M0 is called a hyperbolic plane.

A metabolic (hyperbolic) form is just an orthogonal sum of metabolic (hyperbolic)
planes.

By Witt decomposition, every bilinear form B decomposes as B ∼= Ban ⊥ Bm

with Ban anisotropic and Bm metabolic. In this decomposition, Ban is uniquely
determined up to isometry, and dimBm is also uniquely determined, but generally,
Bm is not uniquely determined up to isometry. However, the isometry class of B
is uniquely determined by the triple (Ban, dimBm, D

0
F (B)).
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A bilinear form B can be diagonalized iff DF (B) 6= {0} iff B is not hyperbolic. If
B is diagonalizable and {e1, . . . , en} is an orthogonal basis of the underlying vector
space of B, and ai = δijB(ei, ej), then we write B ∼= 〈a1, . . . , an〉b.

A form of type 〈〈c1, . . . , cn〉〉b := 〈1, c1〉b ⊗ . . . ⊗ 〈1, cm〉b (where ⊗ denotes the
usual tensor product of bilinear forms) is called an m-fold bilinear Pfister form.
Any Pfister form π is always anisotropic or metabolic and one has D∗

F (π) = GF (π).
The set of isometry classes of m-fold bilinear Pfister forms over F is denoted by
BPn(F ).

Two bilinear forms B, B′ are called Witt-equivalent if Ban
∼= B′

an, or, equiva-
lently, if B ⊥ −B′ is metabolic. The Witt classes of bilinear forms make up the Witt
ring W (F ) of F , with addition induced by the orthogonal sum and multiplication
induced by the tensor product.

The Witt classes of even-dimensional bilinear forms form the fundamental ideal
I(F ), and we put In(F ) := I(F )n, the n-th power of I(F ). In(F ) is additively
generated by BPn(F ). The quotients In(F ) := In(F )/In+1(F ) give rise to the
graded Witt ring. The Arason-Pfister Hauptsatz states that if 0 6= B ∈ In(F ) is
anisotropic then dimB > 2n, and if dimB = 2n then B ∼= λπ for some λ ∈ F ∗ and
some π ∈ BPn(F ), see, e.g., [L3, Lemma 4.8]. (This Hauptsatz for bilinear forms in
characteristic 2 is already contained in the original article by Arason-Pfister [AP],
but the proof there contains an error.)

We will later on need the following lemma which is well known (see, e.g., [M]),
but we will give a quick proof for the reader’s convenience.

Lemma 4.1. Let F be a field of characteristic 2 that is finitely generated, say, by
n elements, over its subfield F 2. Then every bilinear form over F of dimension
> 2n is isotropic and In+1(F ) = 0.

This holds in particular if F can be generated by 6 n elements over its prime
field F = F2.

Proof. Say, F = F 2(x1, . . . , xn). Since x
2
i ∈ F 2, we clearly have [F : F 2] 6 2n. Let

B = 〈a1, . . . , am〉b be any nonhyperbolic bilinear form over F . Then D0
F (B) is the

F 2-vector space spanned by {a1, . . . , am} in F . Suppose m > 2n, then a1, . . . , am ∈
F are necessarily F 2-linearly dependent, implying that B is isotropic. In particular,
if π ∈ BPn+1(F ), then π is isotropic, hence metabolic, i.e. π = 0 ∈ W (F ), and
thus In+1(F ) = 0.

If F = F(x1, . . . , xn), then clearly F 2 = F(x21, . . . , x
2
n) and thus F = F 2(x1, . . . , xn)

and we can apply the above. �

If E/F is a field extension, then for a bilinear form B over F , scalar extension
yields the form BE = B ⊗ E over E, and we have the natural restriction homo-
morphisms WF → WE, In(F ) → In(E), and In(F ) → In(E). The study of the
kernels of these maps for function field extensions will be the subject of Section 11.

5. Differential forms

Let F be a field of characteristic p > 0. The space Ω1(F ) of absolute differential
1-forms or 1-differentials over F is defined to be the F -vector space generated by
symbols da, a ∈ F , subject to the relations given by additivity, d(a+ b) = da+ db,
and the product rule, d(ab) = adb + bda. In particular, one has d(F p) = 0 for
F p = {ap | a ∈ F}, and d : F → Ω1(F ) is an F p-derivation.
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The space of n-differentials Ωn(F ) (n > 1) is then defined by the n-fold exterior
power, Ωn(F ) :=

∧n
(Ω1(F )), which is therefore an F -vector space generated by

symbols da1 ∧ . . . ∧ dan, ai ∈ F . The derivation d extends to an operator d :
Ωn(F ) → Ωn+1(F ) by d(a0da1∧. . .∧dan) = da0∧da1∧. . .∧dan. We put Ω0(F ) = F ,
Ωn(F ) = 0 for n < 0, and Ω∗(F ) =

⊕
n>0 Ω

n(F ), the algebra of differential forms

over F with multiplication naturally defined by (a0da1∧. . .∧dan)(b0db1∧. . .∧dbm) =
a0b0da1 ∧ . . . ∧ dan ∧ db1 ∧ . . . ∧ dbm.

A subset S of F is called p-independent if for every finite subset {s1, . . . , sn} ⊂ S,
si 6= sj for all i 6= j, one has [F p(s1, . . . , sn) : F p] = pn. A p-basis B of F is a
p-independent subset of F such that F p(B) = F . In other words, a p-basis is a
minimal generating set for the extension F/F p.

Let B = {bi | i ∈ I} be a p-basis of F for some well-ordered index set I = (I,<).
For any subset S ⊂ B, we define

∧n
S = {dbi1 ∧ . . . ∧ dbin | bij ∈ S, i1 < i2 < . . . < in} .

In particular, it is then well known that
∧n

B
is a basis of the F -vector space Ωn(F ).

Furthermore, we define the sub-vector space

Ωn
S(F ) = spanF {

∧n
S} .

So Ωn
B
(F ) = Ωn(F ).

There exists a well-defined group homomorphism Ωn(F ) → Ωn(F )/dΩn−1F , the
Artin-Schreier map ℘, which acts on logarithmic differentials as follows:

℘ : Ωn(F ) → Ωn(F )/dΩn−1F : a
da1
a1

∧ . . . ∧ dan
an

7−→ (ap − a)
da1
a1

∧ . . . ∧ dan
an

We define νn(F ) := ker(℘). Kato [K1] has shown the following:

Theorem 5.1. νn(F ) is additively generated by the logarithmic differentials of the

form da1

a1
∧ . . . ∧ dan

an
, ai ∈ F ∗.

The groups νn(F ) are intimately related to bilinear forms as shown by Kato
[K1]:

Theorem 5.2. Let F be a field of characteristic 2. Then there is an isomorphism
βn,F : νn(F )

∼−→ In(F )/In+1F defined on generators as follows:

βn,F : νn(F ) → In(F )/In+1F :
da1
a1

∧ . . . ∧ dan
an

7−→ 〈〈a1, . . . , an〉〉 mod In+1F .

Remark 5.3. (i) Our notations differ slightly from those used by Kato and others
who write νF (n), Ω

n
F . We chose our notations to give our functors a more uniform

appearance in line with what one commonly uses, for example, for the Witt ring
W (F ) and the higher powers of its fundamental ideals In(F ).

(ii) The cokernel coker(℘) is denoted by Hn+1
p (F ). We will not consider this

group here but only remark that it is of importance in the study of quadratic
forms in the case p = 2. More precisely, Kato [K1] has shown that Hn+1

2 (F ) ∼=
In(F )Wq(F )/I

n+1(F )Wq(F ), where Wq(F ) denotes the Witt group of quadratic
forms over F considered as module over the Witt ring W (F ) of symmetric bilinear
forms over F .

Symbols in Ω∗(F ) and quasilinear Pfister p-forms are related by the following
observations (see [H1, Lemma 8.1]).



8 A. DOLPHIN AND D. W. HOFFMANN

Lemma 5.4. (a) Let F be a field of characteristic p > 0 and let a1, . . . , an ∈ F .
The following are equivalent:

(i) The ai are p-independent, i.e. [F p(a1, . . . , an) : F
p] = pn;

(ii) da1 ∧ . . . ∧ dan 6= 0 ∈ Ωn(F );
(iii) The quasilinear Pfister p-form 〈〈a1, . . . , an〉〉 is anisotropic.

(b) If the equivalent conditions in (a) hold then for b1, . . . , bn ∈ F the following are
equivalent:

(i) F p(a1, . . . , an) = F p(b1, . . . , bn);
(ii) Fda1 ∧ . . . ∧ dan = Fdb1 ∧ . . . ∧ dbn;
(iii) 〈〈a1, . . . , an〉〉 ∼= 〈〈b1, . . . , bn〉〉.

Let W ⊂ Ωm(F ). The annihilator subspace of W in Ωn(F ) is defined to be

annΩn(F )(W ) = {η ∈ Ωn(F ) | η ∧ ω = 0 for all ω ∈W} .

Similarly, one defines the subspace annΩ∗(F )(W ) of Ω∗(F ).

Proposition 5.5. Consider a subset S ⊂ F such that [F p(S) : F p] = pn for some
n > 1, and let dS = {da | a ∈ S}. Let a1, . . . , an ∈ F be such that F p(S) =
F p(a1, . . . , an). Extend a1, . . . , an to a p-basis B = {a1, . . . , an} ∪ T of F . Then

annΩm(F )(dS) =

{
0 if m < n
Ωm−n

T (F ) ∧ da1 ∧ . . . ∧ dan if m > n

In particular, annΩ∗(F )(dS) = Ω∗

T (F ) ∧ da1 ∧ . . . ∧ dan = Ω∗(F ) ∧ da1 ∧ . . . ∧ dan.

Proof. First, let us remark that for S as above, the existence of such ai with
F p(S) = F p(a1, . . . , an) is evident. Indeed, the ai can be chosen among the el-
ements of S, and in view of Lemma 5.4(b), it suffices to show the proposition in
this case.

Working with the particular p-basis B and the corresponding F -basis
∧n

B
of

Ωn(F ), it is easy to see that Ωk
T (F ) ∧ da1 ∧ . . .∧ dan = Ωk(F )∧ da1 ∧ . . .∧ dan for

all k > 0.
If s ∈ S then by the choice of the ai, the elements a1, . . . , an, s are p-dependent,

so by Lemma 5.4(a), da1 ∧ . . . ∧ dan ∧ ds = 0 and it follows readily that Ωk
T (F ) ∧

da1 ∧ . . . ∧ dan ⊂ annΩk+n(F )(dS).
For the converse inclusion, let 1 6 i 6 n and let Ti = {a1, . . . , an−i} ∪ T , so

T0 = B and Tn = T . Let ω ∈ annΩm(F )(dS). We use induction and assume that ω

can be written as ω = ω′ ∧ dan−i+1 ∧ . . . ∧ dan with ω′ ∈ Ωm−i
Ti

(F ) (the case i = 0
is trivial).
ω′ then decomposes as η + ρ ∧ dan−i with uniquely determined η ∈ Ωm−i

Ti+1
(F ),

ρ ∈ Ωm−i−1
Ti+1

(F ). But then 0 = dan−i∧ω implies 0 = dan−i∧η which clearly implies

η = 0 and thus ω = ρ ∧ dan−i ∧ . . . ∧ dan.
Induction then shows that ω ∈ Ωm−n

T (F ) ∧ da1 ∧ . . . ∧ dan (with Ωm−n
T (F ) = 0

for m− n < 0 by convention). �

To be able to apply our results on the behaviour of differential forms under field
extensions to the determination of Witt kernels, we have to consider those elements
in annΩm(F )(dS) as above that are in νm(F ). The crucial result that we need and
which is essentially due to Aravire-Baeza [AB2, §3] is the following:
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Theorem 5.6. Let F be a field of characteristic 2 and let a1, . . . , an ∈ F ∗ be
2-independent. Then

βm,F

(
νm(F ) ∩ Ωm−n(F ) ∧ da1 ∧ . . . ∧ dan

)

=
{
〈〈c1, . . . , cn〉〉b ⊗ ϕ

∣∣ϕ ∈ Im−n(F ), c1, . . . , cn ∈ F 2(a1, . . . , an)
∗
}

(with the usual convention that Ωm−n(F ) = 0 and Im−n(F ) = 0 whenever m < n).

Remark 5.7. (i) Aravire and Baeza didn’t state the result in the above form, but
it can very easily be extracted from Lemma 3.1, Corollaries 3.2 and 3.3 in [AB2].

(ii) In the above statement, we certainly have [F 2(c1, . . . , cn) : F
2] 6 2n, with

strict inequality iff F 2(c1, . . . , cn) ( F 2(a1, . . . , an) iff c1, . . . , cn are 2-dependent,
in which case 〈〈c1, . . . , cn〉〉b is in fact metabolic (Lemma 5.4). So without loss
of generality, the condition c1, . . . , cn ∈ F 2(a1, . . . , an)

∗ can be replaced by the
condition F 2(c1, . . . , cn) = F 2(a1, . . . , an).

6. Roots and coefficients of polynomials in positive characteristic

Lemma 6.1. Let F be a field of characteristic p with prime field F. Let g(X) =
Xn + an−1X

n−1 + . . .+ a0 ∈ F [X ] be a separable polynomial with roots α1, . . . , αn

in a separable closure F sep of F . Let m1, . . . ,mn ∈ N. Then

F(α1, . . . , αn) = F(αpm1

1 , . . . , αpmn

n , a0, . . . , an−1) .

Proof. Let E = F(a0, . . . , an−1). Then

F(α1, . . . , αn) = E(α1, . . . , αn) ,

which is a splitting field of the separable polynomial g(X) ∈ E[X ], and also

F(αpm1

1 , . . . , αpmn

n , a0, . . . , an−1) = E(αpm1

1 , . . . , αpmn

n ) ,

and we have the following diagram:

E(α1, . . . , αn)

separable

purely inseparable
RRRRRRRRRRRRR

E(αpm1

1 , . . . , αpmn

n )

llllllllllllllll

E

Since an algebraic extension that is separable over its base field will also be separable

over any intermediate field, we necessarily haveE(αpm1

1 , . . . , αpmn

n ) = E(α1, . . . , αn).
�

Corollary 6.2. With the same notations and hypotheses as in Lemma 6.1:

(i) If L/F is any field extension with α1, . . . , αn ∈ L and if m ∈ N, then

Lpm

(α1, . . . , αn) = Lpm

(a0, . . . , an−1)

.
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(ii) Let K = F (α1, . . . , αn) and let {ai1 , . . . , air}, 0 6 i1 < . . . < ir 6

n − 1, be a maximal p-independent subset of the set of coefficients C(g) =
{a0, . . . , an−1, an = 1} of g over F . Then {ai1 , . . . , air} is p-independent
over K, and there exist 1 6 j1 < . . . < jr 6 n such that

Kp(αj1 , . . . , αjr ) = Kp(α1, . . . , αn)
= Kp(C(g))
= Kp(ai1 , . . . , air ) .

In particular, Kdαj1 ∧ . . . ∧ dαjr = Kdai1 ∧ . . . ∧ dair in Ωr(K).

Proof. (i) Since F = Fpm

, we clearly have F(αpm

1 , . . . , αpm

n ) ⊂ Lpm

and the claim
follows readily from Lemma 6.1.

(ii) Using (i), we haveKp(C(g)) = Kp(α1, . . . , αn). NowK/F is separable, so any
maximal p-independent subset of C(g) over F will also be a maximal p-independent
subset of C(g) over K. Hence, [Kp(C(g)) : Kp] = [F p(C(g)) : F p] = pr, and by part
(i), any maximal p-independent subset of {α1, . . . , αn} over K will have r elements,
so any such p-independent subset, say, {αj1 , . . . , αjr}, 1 6 j1 < . . . < jr 6 n will
satisfy Kp(αj1 , . . . , αjr ) = Kp(α1, . . . , αn) = Kp(C(g)). The statement about the
wedge products then follows from Lemma 5.4(b). �

Remark 6.3. In a certain sense, Lemma 6.1 says that the roots of a separable equa-
tion in characteristic p > 0 can be expressed rationally in terms of the coefficients
of the polynomial and the pmi-th powers of the respective roots αi

To illustrate this in the case p = 2, let g(X) = Xn + an−1X
n−1 + . . . + a0 be

a separable polynomial as above, and let α be one of its roots. Write g(X) =
h0(X

2) +Xh1(X
2). Taking derivatives and using p = 2, we get g′(X) = h1(X

2).
Since α is a root of the separable polynomial g(X), we have g′(α) = h1(α

2) 6= 0.
But g(α) = h0(α

2) + αh1(α
2) = 0 and thus

α =
h0(α

2)

h1(α2)
,

showing that α is a rational expression (over F) in a0, . . . , an−1 and α2. Squaring
this equation and feeding it back into itself, we can express α as a rational expression
in a0, . . . , an−1 and α4 and so on. �

We finish this section with another elementary observation about roots and co-
efficients of polynomials in positive characteristic.

Corollary 6.4. Let F be a field of characteristic p. Let g(X) = Xn+an−1X
n−1+

. . .+ a0 ∈ F [X ] be a separable and irreducible polynomial with roots α1, . . . , αn in
a separable closure F sep of F . Let K = F (α1, . . . , αn). Then the following are
equivalent:

(i) αi ∈ Kp for some i ∈ {1, . . . , n}.
(ii) αi ∈ Kp for all i ∈ {1, . . . , n}.
(iii) g(X) ∈ F p[X ].

Proof. (ii)⇐⇒(iii). By Corollary 6.2, we have Kp(α1, . . . , αn) = Kp(a0, . . . , an−1).
Also, sinceK/F is separable, one hasKp∩F = F p. The equivalence follows readily.

(ii)=⇒(i) is trivial, so it remains to show (i)=⇒(ii). K is the splitting field
of g(X) over F , hence K/F is Galois, and its Galois group G = Gal(K/F ) acts
transitively on the roots of g(X) as it is irreducible over F . Suppose αi = βp
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with β ∈ K. Let αj be any root of g(X), and let σ ∈ G with σ(αi) = αj , then
αj = σ(β)p ∈ Kp. �

7. Differential forms under field extensions: first results

Throughout this section, all fields are assumed to be of arbitrary positive char-
acteristic p > 0. We may also assume that all fields considered are non perfect (and
so in particular infinite) as for perfect fields, Ωn(F ) = 0 for n > 1 and our results
are either trivially true or don’t apply.

The next two lemmas are folklore but we include a proof for the reader’s conve-
nience.

Lemma 7.1. Let E/F be a separable algebraic extension. Then Ωn(E/F ) = 0 for
all n.

Proof. If B is a p-basis of F and E/F is separable algebraic, then it is well known
that B is also a p-basis of E (see, e.g., [H1, Lemma 8.6]). Therefore, the basis∧n

B
of Ωn(F ) (over F ) is also a basis of Ωn(E) (over E), and the result follows

readily. �

Lemma 7.2. Let E/F be a purely transcendental extension. Then Ωn(E/F ) = 0
for all n.

Proof. Clearly, it suffices to show this for the case E = F (X), the rational function
field in one variable X over F . Let B be a p-basis of F . If 0 6= ω ∈ Ωn(F ), then
there exists ai ∈ F ∗, ωi ∈

∧n
B
, 1 6 i 6 n, such that ω =

∑
i aiωi. But we have

that B′ = {X}∪B is a p-basis of F (X), hence the ωi are in
∧n

B′ and stay linearly
independent over E and thus 0 6= ωE ∈ Ωn(E). �

Now every field extension E/F has a transcendence basis T . So we have F ⊂
F (T ) ⊂ E with F (T )/F purely transcendental and E/F (T ) algebraic. If T can
be chosen such that E/F (T ) is separable, then we call E/F a separable extension.
The previous two lemmas now imply

Corollary 7.3. Let E/F be a separable extension. Then Ωn(E/F ) = 0 for all n.

For simple purely inseparable extensions we have the following result (cf. [AB1,
Lemma 2.4] in the case p = 2):

Lemma 7.4. Let a ∈ F \ F p, n > 1 and let E = F ( pn
√
a). Then Ωm(E/F ) =

Ωm−1(F ) ∧ da = annΩm(F )(da).

Proof. Let α = pn
√
a. Clearly da = dαpn

= 0 ∈ Ω1(E), hence Ωm−1(F ) ∧ da ⊂
Ωm(E/F ).

For the converse inclusion, note that a can be chosen as part of a p-basis B =
{a} ∪ T of F , in which case {α} ∪ T is a p-basis of E. Let ω ∈ Ωm(E/F ) and
write ω = η + µ ∧ da with uniquely determined η ∈ Ωm

T (F ), µ ∈ Ωm−1
T (F ). Then

0 = ωE = ηE . But since T is part of a p-basis of E, we must have η = 0 ∈ Ωm
T (F ),

so ω = µ ∧ da ∈ Ωm−1(F ) ∧ da. �

8. Differential forms under field extensions: simple algebraic

extensions

In this section, we determine the kernel Ωm(E/F ) for a simple algebraic extension
E/F of a field F of characteristic p > 0.
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Proposition 8.1. Let F be an algebraic closure of F and ξ ∈ F . Let f(X) ∈ F [X ]
be the monic irreducible polynomial with f(ξ) = 0 and let E = F (ξ). Let C(f) ⊂ F ∗

be the set of nonzero coefficients of f .

(i) If f(X) 6∈ F [Xp], then Ωm(E/F ) = 0.
(ii) If f(X) ∈ F [Xp] then [F p(C(f)) : F p] = pr with r > 1. If bi ∈ F ∗,

1 6 i 6 r are such that F p(C(f)) = F p(b1, . . . , br) then

Ωm(E/F ) = Ωm−r(F ) ∧ db1 ∧ . . . ∧ dbr = annΩm(F )(dC(f))

(with the usual convention Ωm−r(F ) = 0 if m < r).

Proof. (i) If f(X) 6∈ F [Xp] then f ′(X) 6= 0 and E/F is separable. The result then
follows from Lemma 7.1.

(ii) Suppose f(X) ∈ F [Xp]. Since char(F ) = p, we cannot have C(f) ⊂ F p or else
f(X) = h(X)p for some h(X) ∈ F [X ]. Hence, [F p(C(f)) : F p] = pr with r > 1.

We make the following observations and fix the following notations for the re-
mainder of the proof:

• By the general theory of polynomials over fields, there exist uniquely deter-
mined ℓ > 1 and g(X) ∈ F [X ] such that g(X) ∈ F [X ] is monic, irreducible

and separable, and f(X) = g(Xpℓ

). We write

g(X) = Xn + an−1X
n−1 + . . .+ a1X + a0 .

• α1, . . . , αn are the n different roots of g(X) in a separable closure F sep of
F (inside F ). We put K = F (α1, . . . , αn), the splitting field of g(X) over
F .

• f(X) has n different roots in F , say, β1, . . . , βn with βpℓ

i = αi.
• As already remarked, C(f) = C(g) 6⊂ F p, i.e. g(X) 6∈ F p[X ], so in particular
αi 6∈ Kp for all i and [Kp(α1, . . . , αn) : Kp] = [Kp(C(g)) : Kp] = pr

(where n > r > 1) by Corollaries 6.2 and 6.4. Without loss of generality,
Kp(α1, . . . , αn) = Kp(α1, . . . , αr).

• Again by Corollary 6.2, any maximal p-independent subset of C(g) =
{a0, . . . , an−1, 1} \ {0} (over F ) will have r elements. If {ai1 , . . . , air , 0 6

i1 < . . . < ir 6 n − 1} is such a maximal p-independent subset, then
Kp(α1, . . . , αr) = Kp(ai1 , . . . , air ).

• Clearly, F p(C(f)) = F p(C(g)) = F p(ai1 , . . . , air ), and by Lemma 5.4(b), it
suffices to show the result with b1, . . . , br replaced by ai1 , . . . , air .

We first show that Ωm−r(F ) ∧ dai1 ∧ . . . ∧ dair ⊂ Ωm(E/F ). By Lemma 5.4(a),
it suffices to show that the quasilinear Pfister p-form π = 〈〈ai1 , . . . , air 〉〉 (which is
anisotropic over F ) becomes isotropic (and hence p-split) over E.

But E ∼=F F [X ]/(f(X)), the function field of f over F , and all the nonzero
coefficients of the monic polynomial f(X) ∈ F [Xp] are in F p(a0, . . . , an−1)

∗ =
F p(ai1 , . . . , air )

∗ = DF (π) = GF (π). Hence, by Theorem 3.1, f(X) ∈ GF (X)(π)
and πE is p-split.

For the converse inclusion, let ω ∈ Ωm(E/F ). Since E ∼=F F (βi) for 1 6 i 6 r,

we clearly have ω ∈ Ωm(F (βi)/F ) as well, hence ωK ∈ Ωm(K(βi)/K). But βpℓ

i =
αi 6∈ Kp. Therefore, by Lemma 7.4,

ωK ∈ Ωm−1(K) ∧ dαi for all 1 6 i 6 r.
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Hence, by Proposition 5.5,

ωK ∈ annΩm(K)(dα1, . . . , dαr) = Ωm−r(K) ∧ dα1 ∧ . . . ∧ dαr

(with the usual convention Ωm−r(K) = 0 if r > m).
Since Kp(α1, . . . , αr) = Kp(ai1 , . . . , air ), it then follows from Lemma 5.4(b) that

ωK ∈ Ωm−r(K) ∧ dai1 ∧ . . . ∧ dair .
Now extend the p-independent elements ai1 , . . . , air to a p-basisB = {ai1 , . . . , air}∪
T of F . Since K/F is separable, B is also a p-basis of K and we have that ωK ∈
Ωm−r

T (K)∧ dai1 ∧ . . .∧ dair . So if we write ω as a linear combination over F of the
basis

∧m
B

of Ωm(F ), then ωK is of course the same linear combination with respect
to the same basis

∧m
B

now considered as basis of Ωm(K). It clearly follows that we

must have ω ∈ Ωm−r
T (F ) ∧ dai1 ∧ . . . ∧ dair = Ωm−r(F ) ∧ dai1 ∧ . . . ∧ dair .

The fact that Ωm−r(F ) ∧ dai1 ∧ . . . ∧ dair = annΩm(F )(dC(f)) follows also from
Proposition 5.5. �

Corollary 8.2. Let f(X) = Xpn + an−1X
p(n−1) + . . . + a1X

p + a0 ∈ F [X ] be
irreducible and let ζ be a root of f(X) in an algebraic closure F of F . Then
Ωm(F (ζ)/F ) = annΩm(F )(da0, . . . , dan), i.e. ω ∈ Ωm(F (ζ)/F ) iff ω ∈ Ωm−1(F ) ∧
dai = annΩm(F )(dai) for all ai 6∈ F p.

Proof. This follows readily from Propositions 5.5 and 8.1(ii). �

9. Differential forms under field extensions: function fields of

quasilinear p-forms

Function fields of quasilinear p-forms form a special case of function fields of
hypersurfaces, and the behaviour of differential forms over function fields of quasi-
linear p-forms will play an important role in the investigation of the more general
situation. For further reference on function fields of quasilinear p-forms and some
basic facts we mention without further proof or comment, see [H1, §§ 7.1, 7.2].

Let ϕ = 〈a0, · · · , an〉 be a nonzero quasilinear p-form over F , letX = (X0, · · · , Xn)
be an (n + 1)-tuple of variables. The function field F (ϕ) of ϕ over F is defined as
follows (cf. [H1, Definition 7.3]) :

• If ndegF (ϕ) = 1, then F (ϕ) = F (X1, · · · , Xn), the rational function field
in n variables over F .

• If ndegF (ϕ) > 1, then ϕ(X) = ϕ(X0, · · · , Xn) is irreducible, and one defines

F (ϕ) = Quot

(
F [X0, · · · , Xn]

(ϕ(X))

)
,

the quotient field of the integral domain F [X0, · · · , Xn]/(ϕ(X)).

Clearly, if dimϕ > 2, then ϕ is isotropic over F (ϕ), and if ϕ and ψ are similar,
then F (ϕ) ∼= F (ψ).

Note also that if ψ = ϕ ⊕ (t × 〈0〉), then F (ψ) ∼= F (ϕ)(T1, · · · , Tt), where the
Ti are variables. In particular, F (ϕ) is F -isomorphic to a purely transcendental
extension of transcendence degree id(ϕ) over F (ϕan).

Suppose (after possibly scaling) that ϕ = 〈1, a1, · · · , an〉 and assume that ndegF (ϕ) >
1, then

∑n
i=1 aiX

p
i 6∈ F (X1, · · · , Xn)

p and

F (ϕ) ∼= F (X1, · · · , Xn)(
p
√∑n

i=1 aiX
p
i ) = F (X1, · · · , Xn)(

∑n
i=1

p
√
aiXi) ,
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i.e. F (ϕ) can be realized as a purely transcendental extension of transcendence
degree n = dimϕ− 1, followed by a purely inseparable extension of degree p (note
that −1 = (−1)p).

Furthermore, F is algebraically closed in F (ϕ) iff ndegF (ϕ) > p2, and if ndegF (ϕ) =

p, say, NF (ϕ) = F p(d) with d ∈ F \F p, then F (ϕ) ∼= F ( p
√
d)(X1, . . . , Xn), so F (

p
√
d)

is the algebraic closure of F inside F (ϕ) (see [H1, Proposition 7.6])
The function field of the projective variety defined by ϕ = 0 will be denoted by

F̂ (ϕ) and (with ϕ = 〈1, a1, · · · , an〉) we have

F̂ (ϕ) ∼= F (X1, · · · , Xn−1)
(

p

√
a1X

p
1 + . . .+ an−1X

p
n−1 + an

)
.

One readily checks that F (ϕ) ∼= F̂ (ϕ)(T ), the rational function field in one variable

T over F̂ (ϕ).
The vanishing of differential forms when passing to the function field of a quasi-

linear p-form is described by the following.

Proposition 9.1. Let ϕ be a quasilinear p-form over F with ndegF (ϕ) = pn > 1.
Let b1, · · · , bn ∈ F ∗ be such that NF (ϕ) = F p(b1, · · · , bn). Then

Ωm(F (ϕ)/F ) = Ωm(F̂ (ϕ)/F ) =

{
0 if m < n;
Ωm−n

F ∧ db1 ∧ · · · ∧ dbn if m > n.

Proof. The statement for Ωm(F (ϕ)/F ) is nothing but [H1, Proposition 8.4] and we

refer to the proof there. The statement for Ωm(F̂ (ϕ)/F ) then follows from Lemma

7.2, using the fact that F (ϕ)/F̂ (ϕ) can be realized as a purely transcendental
extension as remarked above. �

The following corollary will be an ingredient in the proof of Theorem 10.3.

Corollary 9.2. Let a, b ∈ F and ω ∈ Ωm(F ). Suppose that [F p(a, b) : F p] = pr

with r ∈ {1, 2} (so a 6∈ F p or b 6∈ F p). Consider aXp + b ∈ F [X ] and suppose that
ωF (X) ∈ Ωm−1(F (X)) ∧ d(aXp + b).

If r = 1 then F p(a, b) = F p(a) if a 6∈ F p resp. F p(a, b) = F p(b) if b 6∈ F p, and
ω ∈ Ωm−1(F ) ∧ da resp. ω ∈ Ωm−1(F ) ∧ db.

If r = 2 then ω ∈ Ωm−2(F ) ∧ da ∧ db

Proof. By assumption, aXp + b 6∈ F (X)p. Let E = F (X)
(

p
√
aXp + b

)
. Now

ωF (X) ∈ Ωm−1(F (X)) ∧ d(aXp + b) means that ωF (X) ∈ Ωm(E/F (X)) by Lemma

7.4, hence ω ∈ Ωm(E/F ). But E ∼= F̂ (ϕ) for the quasilinear p-form ϕ = 〈1, a, b〉
and NF (ϕ) = F p(a, b). The result now follows from Proposition 9.1. �

10. Differential forms under field extensions: function fields of

hypersurfaces

The next lemma is rather technical but it will provide a crucial ingredient in the
induction on the number of variables when treating function fields of hypersurfaces.

Lemma 10.1. Let F be a field of characteristic p > 0 and let q(X) = cnX
pn +

cn−1X
p(n−1)+ . . .+c1X

p+c0 ∈ F [Xp] with cn 6= 0. Let C(q) = {c0, . . . , cn}\{0} be
the set of nonzero coefficients of q(X). Suppose that C(q) 6⊂ F p, so q(X) 6∈ F p[Xp]
and [F p(C(q)) : F p] = ps for some s > 1. Let b1, . . . , bs ∈ F such that F p(C(q)) =
F p(b1, . . . , bs).
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Let ω ∈ Ωm(F ) and suppose that ωF (X) ∈ Ωm−1(F (X)) ∧ dq. Then ω ∈
Ωm−s(F ) ∧ db1 ∧ . . . ∧ dbs = annΩm(F )(dc0, . . . , dcn).

Proof. Since not all ci ∈ F p, it follows that q(X) is not a p-th power in K = F (X).
In particular, the polynomial h(X,Y ) = Y p − q(X) ∈ F [X,Y ] is irreducible over
K[Y ] and by Gauss’ Lemma also over F [X,Y ] and over L[X ] where L = F (Y ).

Now ωK ∈ Ωm−1(K)∧dq then just means that ωK ∈ Ωm(K( p
√
q)/K) by Lemma

7.4 and hence ω ∈ Ωm(K( p
√
q)/F ).

Consider the function field E = F (h), i.e. the quotient field of the integral
domain F [X,Y ]/(h). Clearly, E ∼=F K( p

√
q). Now consider the monic irreducible

polynomial

h̃(X) = − 1

cn
h(X,Y ) = Xpn +

cn−1

cn
Xp(n−1) + . . .+

c1
cn
Xp +

c0 − Y p

cn
∈ L[X ]

and let ζ be a root of h̃(X) in an algebraic closure L of L. We then also have
E ∼=F L(ζ).

It follows that ωL ∈ Ωm(L(ζ)/L) and we can invoke Corollary 8.2 to conclude
that

ωL ∈ annΩm(L)

(
d c1
cn
, . . . , d cn−1

cn
, d c0−Y p

cn

)
.

In particular,

ωL ∈ Ωm−1(L) ∧ d ci
cn

for all i ∈ {1, . . . , n− 1} with ci
cn

6∈ Lp,

ωL ∈ Ωm−1(L) ∧ d
(
c0−Y p

cn

)
if c0−Y p

cn
6∈ Lp.

Now ci
cn

6∈ Lp iff ci
cn

6∈ F p in which case this element can be chosen as part of a

p-basis of F . Since L = F (Y )/F is purely transcendental, it readily follows that
ω ∈ Ωm−1(F ) ∧ d ci

cn
.

Case 1. [F p(c0, cn) : F p] = 1, i.e. cn, c0 ∈ F p. Then Ωm−1(F ) ∧ d ci
cn

=

Ωm−1(F ) ∧ dci and F p(c0, . . . , cn) = F p(c1, . . . , cn−1). It follows readily that
ω ∈ annΩm(F )(dc0, . . . , dcn) and we are done by Proposition 5.5.

Case 2. [F p(c0, cn) : F p] = p and cn ∈ F p, so in particular c0,
c0
cn

6∈ F p and

F p(c0, cn) = F p(c0). By Corollary 9.2 we have ω ∈ Ωm−1(F )∧d c0
cn

= Ωm−1(F )∧dc0
and hence

ω ∈ annΩm(F )

(
d c1
cn
, . . . , d cn−1

cn
, dc0

)
.

But clearly F p
(
c1
cn
, . . . , cn−1

cn
, c0) = F p(c0, c1, . . . , cn), thus ω ∈ annΩm(F )(dc0, . . . , dcn)

and the result follows again from Proposition 5.5.

Case 3. [F p(c0, cn) : F
p] = p and cn 6∈ F p. Here, F p(c0, cn) = F p(cn). By Corollary

9.2 we have ω ∈ Ωm−1(F )∧ d
(
−1
cn

)
= Ωm−1(F )∧ dcn since F p

(
−1
cn

)
= F p(cn). This

time, we have
ω ∈ annΩm(F )

(
d c1
cn
, . . . , d cn−1

cn
, dcn

)

but also F p
(
c1
cn
, . . . , cn−1

cn
, cn) = F p(c0, c1, . . . , cn) and we conclude as in Case 2.

Case 4. [F p(c0, cn) : F
p] = p2. This time, by Corollary 9.2 we have ω ∈ Ωm−2(F )∧

d c0
cn

∧ d
(
−1
cn

)
= Ωm−2(F ) ∧ dc0 ∧ dcn since F p

(
c0
cn
, −1
cn

) = F p(c0, cn). Hence

ω ∈ annΩm(F )

(
d c1
cn
, . . . , d cn−1

cn
, dc0, dcn

)
.

Since F p
(
c1
cn
, . . . , cn−1

cn
, c0, cn) = F p(c0, . . . , cn), the result follows once more from

Proposition 5.5. �
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Proposition 10.2. Let F be a field of characteristic p > 0, let X = (X1, . . . , Xn)
be an n-tuple of variables, X ′ = (X1, . . . , Xn−1), and X

p = (Xp
1 , . . . , X

p
n), X

′p =
(Xp

1 , . . . , X
p
n−1). Let

h(X) = Xpℓ
n + gℓ−1(X

′)Xp(ℓ−1)
n + . . .+ g1(X

′)Xp
n + g0(X

′) ∈ F [Xp]

be irreducible, where gi(X
′) ∈ F [X ′p]. Let E = F (h) be the function field of h(X)

over F , i.e., E = Quot
(
F [X ]/(h)

)
. Let C(h) ⊂ F ∗ be the set of nonzero F -

coefficients of h. Then [F p(C(h)) : F p] = ps with s > 1. Let b1, . . . , bs ∈ F such
that F p(C(h)) = F p(b1, . . . , bs). Then

Ωm(E/F ) = Ωm−s(F ) ∧ db1 ∧ . . . ∧ dbs = annΩm(F )(dC(h))
(with the usual convention Ωm−s(F ) = 0 for m < s).

Proof. Note that the irreducibility of h(X) implies that we cannot have C(h) ⊂ F p

for otherwise h(X) = f(X)p for some f(X) ∈ F [X ]. Thus, we indeed have s > 1.

First, we show that Ωm−s(F ) ∧ db1 ∧ . . . ∧ dbs ⊂ Ωm(E/F ). Consider the
quasilinear Pfister p-form π = 〈〈b1, . . . bs〉〉. We then have DF (π) = GF (π) =
F p(b1, . . . bs)

∗ = F p(C(h))∗, hence h(X) ∈ GF (π)[X
p] and by Theorem 3.1, π is p-

split overE, so in particular π is isotropic over E and thus db1∧. . .∧dbs = 0 ∈ Ωs(E)
by Lemma 5.4(a), so indeed Ωm−s(F ) ∧ db1 ∧ . . . ∧ dbs ⊂ Ωm(E/F ).

For the reverse inclusion, consider ω ∈ Ωm(E/F ). By Proposition 5.5, it suf-
fices to show that for every coefficient c ∈ C(h) with c 6∈ F p we have that ω ∈
annΩm(F )(dc). The one variable case n = 1 follows from Proposition 8.1(ii).

So assume n > 2. Since c ∈ C(h), we must have c ∈ C(gi) for some i ∈ {0, . . . , ℓ−
1}, and since c 6∈ F p we have gi(X

′) 6∈ F (X ′)p.
Note also that E ∼= F (X ′)(ζ) with ζ being a root of h(X) (considered as poly-

nomial in Xn over F (X ′)) in an algebraic closure F (X ′). By Proposition 8.1(ii),

ωF (X′) ∈ annΩm(F (X′))(dgi(X
′)) = Ωm−1(F (X ′)) ∧ dgi(X ′) .

Let X ′′ = (X1, . . . Xn−2) and write

gi(X
′) = qk(X

′′)Xpk
n−1 + qk−1(X

′′)X
p(k−1)
n−1 + . . .+ q1(X

′′)Xp
n−1 + q0(X

′′)

with qi(X
′′) ∈ F [X ′′p]. Then there exists j ∈ {0, . . . , k} such that c ∈ C(qj), so in

particular qj 6∈ F (X ′′)p, and we can apply Lemma 10.1 to conclude that

ωF (X′′) ∈ annΩm(F (X′′))(dqj(X
′′)) = Ωm−1(F (X ′′)) ∧ dqj(X ′′) .

Continuing like this by eliminating one variable at a time using Lemma 10.1 but
retaining each time a polynomial containing c as a coefficient, we end up with
ω ∈ annΩm(F )(dc) as desired. �

Theorem 10.3. Let F be a field of characteristic p > 0, let X = (X1, . . . , Xn)
be an n-tuple of variables, X ′ = (X1, . . . , Xn−1), and X

p = (Xp
1 , . . . , X

p
n), X

′p =
(Xp

1 , . . . , X
p
n−1). Let f(X) ∈ F [X ] be an irreducible polynomial and let E = F (f),

the function field of f over F .

(i) If f(X) 6∈ F [Xp], then Ωm(E/F ) = 0.
(ii) If f(X) ∈ F [Xp], write

f(X) = hpℓ(X) + hp(ℓ−1)(X) + . . .+ hp(X) + h0(X)

where hpi(X) is homogeneous of total degree pi and hpℓ(X) 6= 0. Let a ∈ F ∗

be any nonzero element represented by hpℓ(X), and let Ĉ = C
(
1
a
f
)
be the set
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of nonzero F -coefficients of the scaled polynomial 1
a
f(X) ∈ F [Xp]. Then

[F p(Ĉ) : F p] = ps with s > 1. Let b1, . . . , bs ∈ F such that F p(Ĉ) =
F p(b1, . . . , bs). Then

Ωm(E/F ) = Ωm−s(F ) ∧ db1 ∧ . . . ∧ dbs = annΩm(F )(dĈ)
(with the usual convention Ωm−s(F ) = 0 for m < s).

Proof. (i) In this situation, f(X) contains a monomial in which one of the variables,
say, Xn, has an exponent not divisible by p. f(X) is then also an irreducible
polynomial in the variable Xn over the rational function field F (X ′), and we have
E ∼= F (X ′)(ζ) where ζ is a root of f(X) ∈ F (X ′)[Xn] in some algebraic closure

F (X ′). But since f(X) 6∈ F (X ′)[Xp
n], this irreducible polynomial is separable and

henceE/F is a separable extension (in the general sense) and we have Ωm(E/F ) = 0
by Corollary 7.3.

(ii) First note that the irreducibility of f(X) ∈ F [Xp] implies that not all coefficients
of f(X) can be in F p (for otherwise f(X) = g(X)p, a contradiction). In particular,
F 6= F p and F is nonperfect, hence infinite. Thus, since hpℓ(X) 6= 0, there exist

c = (c1, . . . , cn) ∈ F (n) such that a := hpℓ(c) 6= 0. After relabeling the variables if
necessary, we may assume cn 6= 0. Consider the following invertible linear change
A of variables:

A :

{
Xi 7→ Xi + ciXn for 1 6 i < n,
Xn 7→ cnXn .

Denote fA(X) := f(AX). Since f(X) ∈ F [Xp], we clearly have fA(X) ∈ F [Xp],
and for the sets of nonzero coefficients, one readily sees that C(fA) ⊂ F p(C(f))
and (since the linear change of variables is invertible) also C(f) ⊂ F p(C(fA)) and

therefore F p(C(fA)) = F p(C(f)). Let f̂(X) = 1
a
fA(X) ∈ F [Xp]. By the above, we

have

(10.1) F p(C(f̂)) = F p(Ĉ) .
Also, one readily sees that

(10.2) f̂(X) = Xpℓ
n + gℓ−1(X

′)Xp(ℓ−1)
n + . . .+ g1(X

′)Xp
n + g0(X

′) ∈ F [Xp]

with gi(X
′) ∈ F [X ′p]. Since f̂ is obtained from f through an invertible linear

change of variables and subsequent scaling, we clearly have F (f̂) ∼= E = F (f),
hence

(10.3) Ωm(E/F ) = Ωm(F (f̂)/F ) .

Using Eqs. 10.1, 10.2, 10.3, the result then follows by applying Proposition 10.2. �

11. Witt kernels for bilinear forms for function field extensions

Consider the Witt ring W (F ) of nondegenerate symmetric bilinear forms over a
field F of characteristic 2.

For any field extension E/F , we want to study the kernel of the restriction maps

W (E/F ) = ker(W (F ) →W (E))
In(E/F ) = ker(In(F ) → In(E))
In(E/F ) = ker(In(F ) → In(E))

for function field extensions.
For the remainder of this section, we will fix the following notations:
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Notation. • F is a field of characteristic 2.
• X = (X1, . . . , Xn) is an n-tuple of variables, and X2 = (X2

1 , . . . , X
2
n).

• f(X) ∈ F [X ] is an irreducible polynomial.
• E = F (f) is the function field of f over F .
• If f(X) ∈ F [X2], write

f(X) = h2ℓ(X) + h2(ℓ−1)(X) + . . .+ h2(X) + h0(X)

where h2i(X) is homogeneous of total degree 2i and h2ℓ(X) 6= 0. Let a ∈ F ∗

be any nonzero element represented by h2ℓ(X), and let Ĉ = Ĉ(f) = C
(
1
a
f
)

be the set of nonzero F -coefficients of the scaled polynomial 1
a
f(X) ∈

F [X2]. Then [F 2(Ĉ) : F 2] = 2s with s > 1, and there are elements

b1, . . . , bs ∈ F such that F 2(Ĉ) = F 2(b1, . . . , bs). Note that the bi are
necessarily 2-independent.

• Pf(f) = Pf(b1, . . . , bs) is the set of s-fold Pfister forms defined as follows:

Pf(f) = Pf(b1, . . . , bs) = {〈〈c1, . . . , cs〉〉b |F 2(c1, . . . , cs) = F 2(b1, . . . , bs)} .
Note that such Pfister forms will be anisotropic since [F 2(c1, . . . , cs) : F

2] =
[F 2(b1, . . . , bs) : F

2] = 2s and by Lemma 5.4(i).

We will first compute Im(E/F ).

Theorem 11.1. (i) If f(X) 6∈ F [X2], then Im(E/F ) = 0.
(ii) If f(X) ∈ F [X2], then

Im(E/F ) =
{
π ⊗ ϕ

∣∣ϕ ∈ Im−s(F ), π ∈ Pf(f)
}

(with the usual convention Im−s(F ) = 0 for m < s).

Proof. We have the following commutative diagram (the upward arrows are the
usual restriction maps):

νm(E)
βm,E

∼

// Im(E)

νm(F )
∼

βm,F

//

OO

Im(F )

OO

For the kernel of the restriction maps, it thus follows that βm,F (νm(E/F )) =

Im(E/F ). However, νm(E/F ) = νm(F ) ∩ Ωm(E/F ) and, by Theorem 10.3, we
have that Ωm(E/F ) = 0 in case (i), and Ωm(E/F ) = Ωm−s(F ) ∧ db1 ∧ . . . ∧ dbs in
case (ii).

Hence, in case (i), Im(E/F ) = 0. In case (ii), we have

Im(E/F ) = βm,F

(
νm(F ) ∩Ωm−s(F ) ∧ db1 ∧ . . . ∧ dbs

)

and the result now follows from Theorem 5.6 and Remark 5.7(ii). �

Lemma 11.2. Pf(f) ⊆W (E/F ).

Proof. Let π = 〈〈c1, . . . , cs〉〉b ∈ Pf(f). By the definition of Pf(f), Lemma 5.4 and
Theorem 10.3, we have that dc1 ∧ . . . ∧ dcs = db1 ∧ . . . ∧ dbs = 0 ∈ Ωs(E), hence
the quasilinear 2-form 〈〈c1, . . . , cs〉〉 is isotropic over E, thus also the bilinear Pfister
form π = 〈〈c1, . . . , cs〉〉b. Therefore πE is in fact metabolic and the result follows. �

For Im(E/F ), we obtain the following.
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Theorem 11.3. (i) If f(X) 6∈ F [X2], then Im(E/F ) = 0.
(ii) If f(X) ∈ F [X2] and s 6 m, then Im(E/F ) is additively generated by

Pfister forms of type π ⊗ ϕ with π ∈ Pf(f) and ϕ ∈ Pm−s(F ).
(iii) If f(X) ∈ F [X2] and s > m, then Im(E/F ) is additively generated by

Pf(f), so in particular Im(E/F ) = Is(E/F ).

Proof. Let 0 6= ψ be an anisotropic bilinear form in Im(F ). By the Arason-Pfister
Hauptsatz for bilinear forms in characteristic 2, there exists ℓ > m be such that

ψ ∈ Iℓ(F ) \ Iℓ+1(F ). Let ψ := ψ mod Iℓ+1(F ) ∈ Iℓ(F ).
If f(X) 6∈ F [X2] or if ℓ < s in the case f(X) ∈ F [X2], then by Theorem 11.1,

ψE 6= 0 ∈ Iℓ(E) and thus ψE ∈ Iℓ(E) \ Iℓ+1(E). In particular ψE is not metabolic.
This already shows (i).

Now suppose that f(X) ∈ F [X2]. By Lemma 11.2, bilinear forms in Im(F ) that
can be additively generated by forms of type π⊗ϕ with π ∈ Pf(f) and ϕ ∈ Pm−s(F )
if m > s, and by forms in Pf(f) if s > m are clearly in Im(E/F ).

So let 0 6= ψ be an anisotropic bilinear form in Im(E/F ). With ℓ as above and
by what was said before, we may assume without loss of generality that ℓ = m > s.

To express ψ as an element in Im(F ), the field extension E/F and the metabol-
icity of ψ over E, only finitely many coefficients from F are needed, so that without
loss of generality, we may assume that F is finitely generated over its prime field
F, and so by Lemma 4.1 we have In(F ) = 0 for some n > m+ 1.

Since ψ ∈ Im(E/F ), it follows from Theorem 11.1 that there exists π1 ∈ Pf(f)
and ϕ1 ∈ Im−s(F ) such that

ψ ≡ π1 ⊗ ϕ1 mod Im+1(F ) .

Consider ψ1 := ψ ⊥ −π1 ⊗ ϕ1. Note that ψ1 ∈ Im+1(F ) and that (ψ1)E = 0 ∈
W (E) since ψE = (π1)E = 0. Repeating the argument, we see that there exists
π2 ∈ Pf(f) and ϕ2 ∈ Im−s+1(F ) such that

ψ1 ≡ π2 ⊗ ϕ2 mod Im+2(F ) ,

i.e.

ψ ≡ π1 ⊗ ϕ1 + π2 ⊗ ϕ2 mod Im+2(F ) .

Continuing like this, we conclude that there exist πi ∈ Pf(f) and ϕi ∈ Im−s+i−1(F ),
1 6 i 6 n−m such that

ψ ≡ π1 ⊗ ϕ1 + π2 ⊗ ϕ2 + . . .+ πn−m ⊗ ϕn−m mod In(F ) .

But In(F ) = 0 and thus ψ =
∑n−m

i=1 πi ⊗ ϕi ∈ W (F ). Since ϕi ∈ Im−s+i−1(F ) ⊂
Im−s(F ), it follows readily that ψ can be written as a sum of Pfister forms of type
π ⊗ ϕ with π ∈ Pf(f), ϕ ∈ BPm−s(F ). This completes the proof. �

Corollary 11.4. (i) If f(X) 6∈ F [X2], then W (E/F ) = 0.
(ii) If f(X) ∈ F [X2], then W (E/F ) is additively generated by Pf(f). More

precisely, if 0 6= ψ ∈ W (E/F ) is anisotropic, then there exist ℓ ∈ N,
λi ∈ F ∗, πi ∈ Pf(f), 1 6 i 6 ℓ, such that

ψ ∼= λ1π1 ⊥ . . . ⊥ λℓπℓ .

Proof. In view of 11.3, the only thing that remains to be shown is in part (ii) the
fact that any anisotropic ψ ∈ W (E/F ) can be written as orthogonal sum of forms
of type λπ with λ ∈ F ∗, π ∈ Pf(f).
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We keep the notations from the beginning of this section, in particular Pf(f) =
Pf(b1, . . . , bs). Our proofs show that for any irreducible polynomial g ∈ F [T 2]

(where T a finite tuple of variables) with F 2(Ĉ(f)) = F 2(Ĉ(g)) we haveW (E/F ) =
W (F (g)/F ).

Consider the s-fold quasilinear Pfister 2-form g = 〈〈b1, . . . , bs〉〉 which is anisotropic
since [F 2(b1, . . . , bs) : F

2] = 2s (Lemma 5.4(a)). Then, by the very definition of g,

we have F 2(Ĉ(g)) = F 2(b1, . . . , bs) = F 2(Ĉ(f)), and thus W (E/F ) = W (F (g)/F ).
But in [L1, Theorem 1.2], it was shown that any anisotropic form 0 6= ψ ∈
W (F (g)/F ) can be written as ψ ∼= λ1π1 ⊥ . . . ⊥ λℓπℓ with λi ∈ F ∗, πi ∈ Pf(g) =
Pf(f), which completes the proof. �

Remark 11.5. The determination ofW (F (ϕ)/F ) for quasilinear 2-forms (i.e., totally
singular quadratic forms) in [L1] is very different from our proof for function fields
of arbitrary irreducible polynomials in F [X2]. It doesn’t use any differential forms
but is based on very specific and nice properties of totally singular quadratic forms
that do not generalize to arbitrary polynomials.

Combining the above with Knebusch’s norm principle [Kn2, Theorem 4.2], we
can summarize (still keeping the notations from above):

Corollary 11.6. Let f(X) ∈ F [X ] be an irreducible polynomial with leading coef-
ficient a∗ ∈ F ∗ (with respect to the lexicographical ordering of monomials) and let
ψ 6= 0 be an anisotropic bilinear form over F . Then the following are equivalent.

(i) ψE is metabolic, i.e. ψ ∈W (E/F );
(ii) f(X) ∈ F [X2] and ψ ∼= λ1π1 ⊥ . . . ⊥ λℓπℓ for some ℓ ∈ N, λi ∈ F ∗,

πi ∈ Pf(f);
(iii) a∗f(X) ∈ GF (X)(ψ).
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