
ESSENTIAL p-DIMENSION OF SPLIT SIMPLE GROUPS OF

TYPE An

VLADIMIR CHERNOUSOV AND ALEXANDER MERKURJEV

Abstract. We compute the essential p-dimension of split simple groups
of type An−1 in terms of the functor Alg(n,m) of central simple algebras
of degree n and exponent dividing m.

1. Introduction

Let F be a field and let F : Fields/F → Sets be a functor from the cat-
egory Fields/F of field extensions over F to the category Sets of sets. Let
E ∈ Fields/F and K ⊂ E a subfield over F . We say that that K is a field of
definition of α ∈ F(E) if α belongs to the image of the map F(K) → F(E).
The essential dimension of α, denoted edF(α), is the least transcendence de-
gree tr. degF (K) over all fields of definition K of α. The essential dimension
of the functor F is

ed(F) = sup{edF(α)},

where the supremum is taken over all fields E ∈ Fields/F and all α ∈ F(E)
(see [3, Def. 1.2] or [5, Sec.1]). Informally, the essential dimension of F is the
smallest number of algebraically independent parameters required to define F
and may be thought of as a measure of complexity of F .

Let p be a prime integer. The essential p-dimension of α, denoted edF

p (α),

is defined as the minimum of edF(αE′), where E ′ ranges over all finite field
extensions of E of degree prime to p. The essential p-dimension of F is

edp(F) = sup{edF

p (α)},

where the supremum ranges over all fields E ∈ Fields/F and all α ∈ F(E).
By definition, ed(F) ≥ edp(F) for all p.

For every integer n ≥ 1, a divisor m of n and any field extension E/F , let
AlgE(n,m) denote the set of isomorphism classes of central simple E-algebras
of degree n and exponent dividing m. We can identify AlgE(n,m) with the
subset of the m-torsion part Brm(E) of the Brauer group of E consisting of
all elements a such that the index ind(a) of a divides n. We view Alg(n,m)
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as a functor Fields/F → Sets . Upper and lower bounds for the essential p-
dimension edp

(

Alg(n,m)
)

for a prime integer p different from char(F ) can be
found in [2].

Let G be an algebraic group scheme over F . Write FG for the functor taking
a field extension E/F to the set H1(E,G) of isomorphism classes of principal
homogeneous G-spaces (G-torsors) over E. The essential (p-)dimension of FG

is called the essential (p-)dimension of G and is denoted by ed(G) and edp(G).
A split simple algebraic group G of type An−1 is isomorphic to SLn /µm for

a divisor m of n. In the present paper we compute the essential p-dimension
of G in terms of the integer edp

(

Alg(n,m)
)

.

Theorem 1.1. Let n be a natural number, m a divisor of n and p a prime
integer. Let pr and ps be the largest powers of p dividing n and m respectively
and let G = SLn /µm be the algebraic group defined over a field F of the
characteristic not p. Then

edp(G) =







0, if s = 0;
edp

(

Alg(pr, pr)
)

, if s = r;
edp

(

Alg(pr, ps)
)

+ 1, if 0 < s < r.

Using lower bounds for edp

(

Alg(pr, ps)
)

obtained in [1] and [2], we get:

Corollary 1.2. If p is a prime integer then

(1) p2r−2 + pr−s + 1 ≥ edp(SLpr /µps) ≥ (r − 1)pr + pr−s + 1
if 0 < s < r and p is odd in the case s = 1,

(2) 22r−4 + 2r−1 + 1 ≥ ed2(SL2r /µ2) ≥ (r − 1)2r−1 + 1 if r ≥ 3.
(3) edp(SLp2 /µp) = p2 + p+ 1 if p is odd,
(4) ed2(SL4 /µ2) = 5,
(5) ed2(SL8 /µ2) = 9,
(6) ed2(SL8 /µ4) = 19,
(7) ed2(SL16 /µ2) = 25.

2. Unramified torsors

Let R be a commutative ring and let G be a group scheme defined over R.
There is a bijection between the set of isomorphism classes of G-torsors over R
and the pointed set H1(R,G) of the first cohomology of G for the flat topology
(see [4, Exp. XXIV]). If G is smooth, one can use the étale topology instead
of flat topology.

Let K be a discrete valued field with valuation ring R ⊂ K and residue field
K. We write H1(K,G)nr for the image of the map

H1(R,G) → H1(K,G).

Let α ∈ H1(K,G). If α ∈ H1(K,G)nr we say that α is unramified. Otherwise
α is ramified.

If K is complete and G is smooth, the canonical map H1(R,G) → H1(K,G)
is a bijection [4, Exp. XXIV, Prop. 8.1], hence H1(K,G)nr ≃ H1(K,G).
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If G is commutative, then H1(K,G)nr is a subgroup of H1(K,G). We write
H1(K,G)ram for the factor group.

Example 2.1. We have H1(K,µk) = K×/K×k, H1(K,µk)nr = R×/R×k and
H1(K,µk)ram = Z/kZ.

Suppose that K is complete. Let T ′ be a torus over R. We write T for
T ′⊗RK and T for T ′⊗RK. Clearly, T and T are tori overK andK respectively.
The character group T

∗
of T is a module over the absolute Galois group ΓK .

The character group T ∗ coincides with T
∗
, and ΓK acts on T ∗ via the canonical

surjective homomorphism ΓK → ΓK .
We have the split exact sequence of Galois ΓK-modules

1 → R×

nr → K×

nr
v
−→ Z → 0,

where Rnr andKnr are maximal unramified extensions ofR andK respectively.
Tensoring this sequence with the ΓK-module of co-characters T ∗, the dual of

T
∗
, and taking cohomology groups yields exact sequences

1 → T (R) → T (K) → T ∗(K) → 0,

0 → H1
et(R, T ) → H1(K, T )

v∗−→ H1(K, T ∗) → 0.

In particular, the groupH1(K, T )ram is canonically isomorphic toH1(K, T ∗).

3. Azumaya algebras and torsors

Let n = km and G = SLn /µm over a field F , so we have an exact sequence

(1) 1 → µk → G → PGLn → 1.

Let R be a commutative local F -algebra. The exact sequence (1) yields an
exact sequence of pointed sets

H1(R,G)
α
−→ H1(R,PGLn)

∂
−→ H2(R,µk).

Moreover, the group H1(R,µk) = R×/R×k acts on the set H1(R,G) transi-
tively in the fibers of the map α. For an element r ∈ R× and ξ ∈ H1(R,G)
we write rξ for the result of the action of rR×k on ξ.

Recall that there is a canonical bijection between H1(R,PGLn) and the set
of isomorphism classes AlgR(n) of Azumaya R-algebras of degree n, so we have
the map H1(R,G) → AlgR(n) [6, Ch. IV].

The group H2(R,µk) is identified with the subgroup Brk(R) of the Brauer
group Br(R) = H2(R,Gm) of R and the map ∂ takes an algebra A to the
class of A⊗m in Br(R). Therefore, the image of an element ξ ∈ H1(R,G)
in H1(R,PGLn) yields a class Aξ in AlgR(n,m) ⊂ AlgR(n) of algebras of
exponent dividing m. Moreover, every class A ∈ AlgR(n,m) is of the form
A = Aξ for some ξ ∈ H1(R,G).

Twisting (1) by the class of an algebra A ∈ AlgR(n) yields an exact sequence

1 → µk → G′ → PGL1(A) → 1.
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The connecting homomorphism

A×/R× = PGL1(A)(R) → H1(R,µk) = R×/R×k

takes the class aR× to Nrd(a)R×k, where Nrd : A× → R× is the reduced norm
homomorphism. This yields:

Lemma 3.1. Let R be a commutative local F -algebra and A ∈ AlgR(n,m).
Then the factor group R×/

(

R×k ·Nrd(A)
)

acts simply transitively on the fiber
of the surjective map H1(R,G) → AlgR(n,m) over A.

Let K/F be a field extension with a discrete valuation v over F and a prime
element π.

Lemma 3.2. Let ξ ∈ H1(K,G) be an unramified element such that Aξ 6= 0 in
Br(K). If πξ is unramified then k and ind(Aξ) are relatively prime.

Proof. Let R ⊂ K be the valuation ring. By assumption, there are ζ, ζ ′ ∈
H1(R,G) such that ξ = ζK and πξ = ζ ′K . We have (Aζ)K = Aξ = Aπξ =
(Aζ′)K . As the map Br(R) → Br(K) is injective by [6, Ch. IV, Cor. 2.6], we
have Aζ = Aζ′ . It follows from Lemma 3.1 that ζ ′ = λζ for some λ ∈ R×. Then
πξ = ζ ′K = λζK = λξ, therefore by Lemma 3.1 again, π ∈ λ(K×k · Nrd(Aξ)).
Therefore, 1 = v(π) ∈ kZ + ind(Aξ)Z as v(Nrd(Aξ)) ⊂ ind(Aξ)Z by [7, Ch.
XII, §2]. �

4. Tori

Let L/F be a separable field extension of degree n = pr, where p is a prime
integer and m = ps a divisor of n. Consider the torus of norm one elements

R
(1)
L/F

(

Gm,L) for the extension L/F , the factor torus T = R
(1)
L/F

(

Gm,L)/µm and

S = RL/F

(

Gm,L)/Gm. Then T and S can be viewed as maximal tori of G and
PGLn respectively and we have an exact sequence

(2) 1 → µk → T → S → 1.

Let R be a commutative local F -algebra. The group H1(R, S) is identified
with the relative Brauer group Br(LR/R) := Ker

(

Br(R) → Br(LR)
)

, where
we write LR for L ⊗F R. The composition H1(R, S) → H1(R,PGLn) →֒
Br(R) is identified with the inclusion of Br(LR/R) into Br(R). Comparing
the exact sequences (1) and (2) we have:

Lemma 4.1. The image of H1(R, T ) → H1(R,G) coincides with the set of all
ξ such that Aξ ∈ Brm(LR/R).

Let Γ be the Galois group of a normal closure L′/F of L/F , so Γ is the decom-
position group of the tori T and S. LetX be the Γ-set of all F -homomorphisms
L → L′. We have |X| = n and RL/K

(

Gm,L)
∗ = Z[X ].

Choose a point x0 ∈ X and let Γ0 be the stabilizer of x0 in Γ. As Γ acts
transitively on X , we have, X ≃ Γ/Γ0 and [Γ : Γ0] = n.

Let I be the augmentation ideal in Z[Γ]. Write IX for the kernel of the
augmentation map ε : Z[X ] → Z. We have IX = I · Z[X ].
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Write NX =
∑

x∈X x ∈ Z[X ], so ε(NX) = n.

Let V = RL/K

(

Gm,L)/µm. The character group JX of V is identified with
the subgroup of elements w ∈ Z[X ] with ε(w) ∈ mZ. Note that IX ⊂ JX .

Lemma 4.2. Suppose that r > s. Then NX ∈ pJX + I · JX .

Proof. The map

Γ → I/I2, γ 7→ (γ − 1) + I2

is a group homomorphism. It follows that if γ belongs to the commutator
subgroup [Γ,Γ] of Γ, then

(3) γ − 1 ∈ I2.

Set ∆ := [Γ,Γ]Γ0. Suppose first that ∆ contains Γ0 properly. Consider the
sum u in Z[Γ] of all representatives of the set of left cosets ∆/Γ0 chosen in
[Γ,Γ]. It follows from (3) that u is congruent to [∆ : Γ0] modulo I2.

The element NX is divisible by u, i.e., there is M ∈ Z[X ] such that NX =
uM . It follows that NX is congruent to [∆ : Γ0]M modulo I ·IX . As [∆ : Γ0] is
divisible by p, we have [∆ : Γ0]M = pR for some R ∈ Z[X ] with ε(R) = n/p.
Since r > s, n/p is divisible by m, hence we have R ∈ JX . Overall NX ∈
pJX + I · IX ⊂ pJX + I · JX .

Now suppose that ∆ = Γ0, i.e., Γ0 is normal in Γ. It follows that Γ0 = 1 and
Γ is an abelian p-group of order n. Let Γ′ be a subgroup of Γ of order p and
v =

∑

γ∈Γ′ γ in Z[Γ]. Then NX is divisible by v, i.e., there is M ′ ∈ Z[X ] such

that NX = vM ′. Since ε(M ′) = n/p, we have M ′ ∈ JX . As v is congruent to p
modulo I, NX is congruent to pM ′ modulo I ·JX , hence NX ∈ pJX+I ·JX . �

The exact sequence of tori

1 → T → V → Gm → 1

yields an exact sequence of Γ-modules of co-characters

(4) 0 → T∗ → V∗ → Z → 0.

Write θT for the image of 1 under the connecting homomorphism Z →
H1(Γ, T∗) = H1(F, T∗).

Proposition 4.3. Suppose that r > s. Then θT is not divisible by p in
H1(F, T∗).

Proof. Consider the exact sequence of Γ-modules

(5) 0 → Z
f
−→ JX → T ∗ → 0

dual to (4). The image ν of θT under the canonical isomorphisms

H1(F, T∗) ≃ Ext1Γ(Z, T∗) ≃ Ext1Γ(T
∗,Z)

is the class of the sequence (5).
Suppose that ν is divisible by p. Then the image of ν under the map

Ext1Γ(T
∗,Z) → Ext1Γ(T

∗,Z/pZ) is trivial, i.e, the canonical homomorphism
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Z → Z/pZ factors as Z
f
−→ JX

h
−→ Z/pZ for a Γ-homomorphism h. Note that

f(1) = NX , hence h(NX) = 1 + pZ.
The map h vanishes on pJX + I · JX , hence by Lemma 4.2, h(NX) = 0, a

contradiction. �

5. The key proposition

Let K/F be a complete field with discrete valuation v over F and residue
field K. Let ξ ∈ H1(K,G) be an element and L/K an unramified (separable)

field extension of degree n splitting Aξ. Let T = R
(1)
L/K

(

Gm,L)/µm be the torus

as defined in Section 4. Note that T is actually defined over the valuation ring,
so the residue torus T is defined over K. As Aξ ∈ Brm(L/K), the element ξ
has a lifting to H1(K, T ) by Lemma 4.1.

Lemma 5.1. The image of the class xK×k under the composition

K×/K×k = H1(K,µk) → H1(K, T )
v∗−→ H1(K, T ∗)

is equal to v(x)θT .

Proof. The commutativity of the diagram

1 −−−→ µk −−−→ Gm
k

−−−→ Gm −−−→ 1




y





y

∥

∥

∥

1 −−−→ T −−−→ V −−−→ Gm −−−→ 1

shows that the image of xK×k in H1(K, T ) coincides with the image of xK×k

under the connecting homomorphism induced by the bottom sequence in the
diagram.

The result follows from the commutativity of the diagram

K× −−−→ H1(K, T )

v





y





y

v∗

Z −−−→ H1(K, T ∗),

where the bottom map in the connecting homomorphism for the exact sequence
(4). �

Lemma 5.2. Suppose that ξ is unramified and ind(Aξ) ∈ kZ. Then every
ρ ∈ H1(K, T ) over ξ is unramified.

Proof. By assumption, the class Aξ ∈ AlgK(n,m) is unramified. By Lemma
4.1, there is an unramified element η ∈ H1(K, T ) over ξ. In view of Lemma
3.1, ρ = xη for some x ∈ K×. It follows that ξ = xξ.

By Lemma 3.1, x ∈ Nrd(Aξ)K
×k. As v

(

Nrd(Aξ)
)

⊂ ind(A)Z, by assump-
tion, v(x) ∈ kZ. Multiplying x by a kth power in K× we may assume that x
is a unit. Therefore, ρ is unramified. �
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Let M be a field extension of K and let w be an extension on M of the dis-
crete valuation v. We assume that M is complete. Write e for the ramification
index of M/K and M for the residue field of M .

Lemma 5.3. Suppose that ind((Aξ)M) ∈ kZ and ξM = xξ′, where x ∈ M×

and ξ′ is an unramified element in H1(M,G). Then the element w(x)θT in
H1(M,T ∗) is divisible by e.

Proof. Choose an element ρ ∈ H1(K, T ) over ξ. The image of ρ′ := x−1ρM in
H1(M,G) is equal to ξ′ and hence is unramified. By Lemma 5.2, applied to
the field M , ρ′ is unramified.

Consider the following commutative diagram:

H1(K, T )
v∗−−−→ H1(K, T ∗)





y

e





y

H1(M,T )
w∗−−−→ H1(M,T ∗)

where the right vertical map is e times the canonical map. Hence the image
of ρ in H1(M,T ∗) is divisible by e. On the other hand, ρM = xρ′ and ρ′ is
unramified. Hence by Lemma 5.1, the image of ρ in H1(M,T ∗) coincides with
w(x)θT . �

Proposition 5.4. Let M/K be an extension of complete fields with discrete
valuations, let ξ ∈ H1(K,G) be such that ind

(

(Aξ)M
)

= n = pr. Suppose
that ξM = πξ′ for a prime element π ∈ M and an unramified element ξ′ ∈
H1(M,G). If s < r then the ramification index of the extension M/K is not
divisible by p.

Proof. Let L/K be an unramified spitting field for Aξ of degree n and let T
be the torus as above. By Lemma 5.3, θT in H1(M,T ∗) is divisible by the
ramification index e and by Proposition 4.3 applied to the torus TM over M ,
θT is not divisible by p in H1(M,T ∗). Hence, p does not divide e. �

6. Proof of the theorem

We prove Theorem 1.1. Write n = prn′, m = psm′ and k′ = n′/m′. Consider
the groups H = SLpr /µps and G′ = SLn′ /µm′ . We have a natural group
homomorphism H × G′ → G. For a field extension E/F take algebras B ∈
AlgE(p

r, ps), A′ ∈ AlgE(n
′, m′) and A := B⊗A′ ∈ AlgE(n,m). By Lemma 3.1,

the fiber of the natural surjectionH1(F,H) → AlgR(p
r, ps) over B is a principal

homogeneous space under C := E×/
(

E×pr−s

·Nrd(B)
)

. Similarly, the fibers of
the natural surjections H1(E,G′) → AlgE(n

′, m′) and H1(E,G) → AlgE(n,m)
over A′ and A are principal homogeneous spaces under D′ := E×/

(

E×k′ ·

Nrd(A′)
)

and D := E×/
(

E×k · Nrd(A)
)

respectively.
The tensor product yields a bijection

AlgR(p
r, ps)× AlgR(n

′, m′) → AlgR(n,m).
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There is a natural isomorphism C ×D′ → D. It follows that the natural map

H1(E,H)×H1(E,G′) → H1(E,G)

is a bijection.
This bijection yields a surjection FG → FH and a p-surjective map FH →

FG. By [5, Sec. 1.3], edp(G) = edp(H).
Replacing G by H we may assume that n = pr and m = ps. If s = 0 then

G = SLn and edp(G) = 0 asG is special, i.e., allG-torsors over fields are trivial.
If s = r, G = PGLn and FG = Alg(pr, pr), hence edp(G) = edp

(

Alg(pr, pr)
)

.
We may assume that 0 < s < r. By Lemma 3.1, for any field E, the natural

map H1(E,G) → Alg(pr, ps)(E) is surjective and the fibers are homogeneous
sets under E×. It follows that

edp(G) ≤ edp

(

Alg(pr, ps)
)

+ 1.

To prove the opposite inequality choose a field E/F and a (generic) algebra
A in Alg(pr, ps)(E) such that

(6) edp

(

Alg(pr, ps)
)

= edp(A).

Note that as s > 0, the index of A is equal to pr. Choose an element η ∈
H1(E,G) with Aη = A.

Consider the field of formal Laurent series E((t)) and set ξ′ := ηE((t)) ∈
H1(E((t)), G). We have Aξ′ = AE((t)). Choose a finite field extension M/E((t))
of degree prime to p and a subfield K ⊂ M over F such that tr. degF (K) =
edp(tξ

′) and there is an element ξ ∈ H1(K,G) with ξM = tξ′M .
Let w be the extension of the discrete valuation of E((t)) on M . The ramifi-

cation index of M/E((t)) is not divisible by p. The degree of the residue field
M over E is also not divisible by p.

Note that the element ξM is ramified by Lemma 3.2, hence the restriction
on K of the discrete valuation of M is nontrivial. We have tr. degF (K) ≥
tr. degF (K) + 1, therefore,

(7) edp(tξ
′) ≥ tr. degF (K) + 1.

Write K̂ for the completion of K. As M is complete we may assume that K̂
is a subfield of M . Since 0 < s < r, by Proposition 5.4, the ramification index
e of M/K̂ is not divisible by p.

As char(F ) is not equal to p, there is the residue homomorphism [7, Ch.
XII]

∂ : Brn(K̂) → H1(K,Z/nZ).

Let χ̄ = ∂(Aξ) ∈ H1(K,Z/nZ). As (Aξ)M = Atξ′ = Aξ′ = AM is unramified,
we have e · χ̄M = 0 and hence χ̄M = 0 as e is not divisible by p. Hence we can
view the cyclic extension K(χ̄) of K given by χ̄ as a subfield of M .

Let χ ∈ H1(K̂,Z/nZ) be the lift of χ̄. The field K̂(χ) is a subfield of M .
Therefore, the algebra B := (Aξ)K̂(χ) is unramified and its residue B satisfies

B ∈ Alg(pr, ps)
(

K(χ̄)
)

and (B)M = AM .
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Thus, the algebra AM is defined over K(χ̄), hence

(8) tr. degF (K) = tr. degF
(

K(χ̄)
)

≥ edp(A).

We have by (6), (7) and (8):

edp(G) ≥ edp(tξ
′) ≥ tr. degF (K) + 1 ≥ edp(A) + 1 = edp

(

Alg(pr, ps)
)

+ 1.
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